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In this paper, a modified car-following model is proposed by taking into account the influence of

the average speed effect of the vehicles and driver’s memory on traffic flow basing on the two velocity

difference model (TVDM). The stability conditions are obtained through the linear stability analysis.

The time-dependent Ginzburg-Landau (TDGL) equation and the modified Korteweg-de Vries (mKdV)

equation are derived in the unstable area by means of nonlinear analysis, respectively. The TDGL

and mKdV equations are constructed to describe the traffic behavior near the critical point. The

evolution of traffic congestion and the corresponding energy consumption are discussed. Numerical

simulations are in good agreement with the theoretical results. It is found that the extended model

can not only to depress the energy consumption but also to enhance the stability of traffic flow.

Keywords: Traffic flow; Driver’s memory; Average speed; Energy consumption; T-

DGL equation

1. Introduction

In recent years, the traffic problem did more and more influence on the development of the

city and the rhythm of human life. In order to solve this problem, a large number of traffic

models have been proposed to research the complex traffic phenomena. Such as the substantial

traffic models [1-10] which mainly include car-following models [11-19], cellular automation

models [20-23], gas kinetic models [24-26], and hydrodynamic lattice models [27-29] have been

posed to study traffic flow. The optimal velocity model (for short OVM) was firstly proposed

by Bando et al. [30] in 1995, which has successfully revealed the dynamic evolution of traffic
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jam in a simple way. The equation of motion is shown as follows:

dvn(t)

dt
= a[V (∆xn(t))− vn(t)] (1)

where vn(t) is the velocity of car n at time t, ∆xn(t) = xn+1(t)−xn(t) represents the headway of

two successive vehicles, a is the sensitivity coefficient of a driver, and V (∆xn(t)) is the optimal

velocity function.

However, the OVM has shortcomings of high acceleration rate and unrealistic deceleration.

To solve the drawbacks of OVM, Helbing and Tilch [31] put forward a generalized force model

(for short GFM), i.e.

dvn(t)

dt
= a[V (∆xn(t))− vn(t)] + λH(−∆vn(t))∆vn(t) (2)

where H is the Heaviside function, λ is a sensitivity coefficient different from a, ∆vn(t) =

vn+1(t)− vn(t) is the velocity difference between the leading car n+ 1 and the following car n.

Jiang et al.[32,33] developed the full velocity difference model (FVDM). The study shows that

the FVDM is in agreement with the field data better than OVM and GFM.

dvn(t)

dt
= a[V (∆xn(t))− vn(t)] + λ∆vn(t) (3)

However, the deceleration of FVDM is too high. In order to solve the deficiency, Ge et

al.[34] proposed the two velocity difference model (for short, TVDM) by considering the ITS

application.

dvn(t)

dt
= a[V (∆xn(t))− vn(t)] + λ [p∆vn(t) + (1− p)∆vn+1(t)] (4)

Comparing with the above models, TVDM and FVDM have better agreement with the field

data than OVM and GFM.

In recent years, with the improvement of the quality of people’s living standards, traffic

problems are becoming more and more serious in modern city. In particular, the problem of

energy consumption caused by traffic congestion has become a hot issue, and it has attracted

the attention of many scholars. The real traffic is affected by many complicated factors such

as capability, average speed, drivers’ sensitivity and so on. These main factors on the uniform

traffic flow are treated as disturbance to lead to the change of the vehicle velocity, which spreads

like a wave. Therefore, this change of velocity will result in the added energy consumption.
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In addition, we consider the relationship between energy consumption and vehicle stability.

On the basis of the kinetic energy theorem, the energy consumption of each vehicle on a road

can be researched in more details, which describes every vehicle to do work by consuming

energy. Through describing the change of the vehicle in two adjacent moments, the change of

the kinetic energy is defined as:

∆Ei =
1

2
[v2i (t)− v2i (t− 1)] (5)

where vi(t) and vi(t− 1) are the velocity of vehicle i in the two successive time steps.

Basing on the above analysis, these models can explain some complex and real traffic

phenomena. Besides, the following car driver always need a period of time to respond for

current traffic conditions in real traffic environment. Therefore, we should try to shorten the

time as much as possible. In fact, the average speed of the vehicle group front reflects the whole

traffic condition. However, these models are not suitable for the study of the average speed

effect of the vehicle group because the predecessors did not think about this factor. Therefore, a

extended car-following model is presented based on the TVDM taking into account the influence

of the average speed [35,36] effect of the vehicles and the driver’s memory [37,38] on traffic flow.

This is the main difference with other models.

In Sect. 2, the improved model is presented with considering the driver’s memory and

jerk based on TVDM. The stable condition is analyzed by using linear stability theory. In

Sect. 3, the new model is analyzed by the nonlinear analysis near the critical point, and the

TDGL equation is obtained. In Sect. 4, the mKdV equation is derived. In Sect. 5, numerical

simulation is given. In Sect. 6, the conclusions are drawn.

2. The improved model and linear stability analysis

Basing on TVDM, we proposed an improved car-following model considering the influence

of the average speed effect of the vehicles and driver’s memory on traffic flow. The main motion

equation is shown as follows:

dvn(t)

dt
= a[V (

1

τ0

∫ t

t−τ0

∆xn(u)du)− vn(t)] + +λ1[
1

n

n∑
l=1

dxn+l(t)

dt
− dxn(t)

dt
]

+λ2[p∆vn(t) + (1− p)∆vn+1(t)] (6)
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where 1
n

∑n
l=1

dxn+l(t)

dt
is the average speed term between the car n and its leading cars n, n+1,

n + 2, ..., n + n at time t. ∆xn(u) = xn+1(u) − xn(u) is the headway between the preceding

car n + 1 and the following car n, a is the sensitivity which corresponds to the inverse of the

delay time, τ0 is driver’s memory time, λ1 is the responding factor to the difference between the

average speed and velocity and λ2 is the two velocity difference model parameter. The optimal

velocity function is proposed [30].

V (∆xn(t)) =
vmax

2
[tanh(∆xn(t)− hc) + tanh(hc)] (7)

where vmax is the maximal velocity and hc is the safety distance. The function V (.) is a

monotonically increasing function with an upper bound (maximal velocity) and has a turning

point ∆xn = hc : V
′′(hc) = 0. For convenience of linear analysis, Eq.(6) can be rewritten as:

d2xn(t)

dt2
= a[V (

1

τ0

∫ t

t−τ0

∆xn(u)du)−
dxn(t)

dt
] + λ1[

1

n

n∑
l=1

dxn+l(t)

dt
− dxn(t)

dt
]+

λ2[p(
dxn+1(t)

dt
− dxn(t)

dt
) + (1− p)(

dxn+2(t)

dt
− dxn+1(t)

dt
)] (8)

Furthermore, Eq.(8) can be rewritten in terms of the headway:

d2∆xn(t)

dt2
= a[V (

1

τ0

∫ t

t−τ0

∆xn+1(u)du)− V (
1

τ0

∫ t

t−τ0

∆xn(u)du)−
d∆xn(t)

dt
]+

λ1[
1

n

n∑
l=1

d∆xn+l(t)

dt
− d∆xn(t)

dt
] + λ2[p(

d∆xn+1(t)

dt
− d∆xn(t)

dt
)+

(1− p)(
d∆xn+2(t)

dt
− d∆xn+1(t)

dt
)] (9)

It is obvious that the traffic flow can reach the steady state when the vehicle run with

constant headway h and constant velocity V (h). So, the steady-state solution is given as:

x0
n(t) = hn+ V (h)t, h =

L

N
(10)

where N is the total vehicle number and L is the road length.

Suppose yn(t) is a small deviation from the steady state x0
n(t) : xn(t) = x0

n(t) + yn(t).

Substitute it into Eq.(8) and linearize it which yields

dyn
2(t)

dt2
= a[V ′(h)(

1

τ0

∫ t

t−τ0

∆yn(u)du)−
dyn(t)

dt
] + λ1[

1

n

n∑
l=1

dyn+l(t)

dt
− dyn(t)

dt
]

λ2[p(
dyn+1(t)

dt
− dyn(t)

dt
) + (1− p)(

dyn+2(t)

dt
− dyn+1(t)

dt
)] (11)
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where ∆yn(t) = yn+1(t)−yn(t) and V ′(h) = dV (∆xn)dt|∆xn = h. Expanding yn(t) = exp(ikn+

zt), it reads

z2 = a[V ′(eik − 1)e−zγτ0 − z] + λ1z(
1

n

n∑
l=1

eikl − 1) + λ2z[p(e
ik − 1) + (1− p)(e2ik − eik)] (12)

where V ′ = V ′(h). Let z = z1(ik) + z2(ik)
2 + · · · , then the first-and second-order terms of ik

are:

z1 = V ′(h), z2 =
V ′

2
− γτ0V

′2 +
λ1V

′

na

n∑
l=1

l +
λ2V

′ − V ′2

a
(13)

Denote τ0 = sτ , s > 0 is the proportionality coefficient of τ0 with τ . The parameter γ

represents the driver’s memory intensity. For small disturbance with long wavelengths, the

uniform traffic flow is instable in the condition that

a < 2(1 + γs)V ′ − 2(λ2 +
λ1

n

n∑
l=1

l) (14)

The stability condition is given:

a = 2(1 + γs)V ′ − 2λ2 − λ1(1 + n) (15)

Figure 1 shows the phase diagram in the (h, a)-plane where h is the headway and a is

sensitivity which corresponds to the inverse of the delay time. The solid lines denote the

results of the neutral stability curves with different the values of n and λ2. It shows the stable

region and unstable region from Fig.1, the critical points decrease with increasing the value of

the parameter n.

From the pattern (a), (b) and (c) of Fig.1, we increase n (n=1, 4, 7) with the same λ2, the

stable region gradually increase and the the unstable region decrease piecemeal. As we can see

from the pattern (a), (b) and (c) of Fig.1, the unstable region gradually increase when we take

the same λ2, with the decrease of n (n=7, 4, 1). As increasing λ2, the stable region is increasing

gradually with other parameters are unchanged from the pattern(d) of Fig.1. The traffic flow

is more stable.

The result is relevant with the parameter n. (vmax = 2, hc = 4)
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Fig.1. The phase diagram of the model according to different values of parameter n and λ2

3. TDGL equation

In the car-following models, the nonlinear density wave equation is inferred to describe

the propagation characteristics of traffic congestion. In this part, we employ the method of

nonlinear analysis to research the traffic problems. On the coarse grain size, we describe the

traffic flow by using the long wavelength models and then obtaining the solution of the equation.

The slow change behavior of long waves near the critical point is analyzed. The slow scales

for space variable j, time variable t and undetermined constant b are introduced, and the slow

variables X and T are defined as follows:

X = ε(j + bt), T = ε3t, 0 < ε ≪ 1. (16)

The headway ∆xn(t) = hc + εR(X,T ) is set as:

∆xn(t) = hc + εR(X,T ). (17)
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By bringing Eqs.(16)-(17) into Eq.(9), and expanding to the fifth-order of ε. We get the

expression:

ε2(b− V ′)∂XR + ε3[τb2 − 1

2
V ′(1− 2bγτ0 + 2λ2bτ)−

λ1bτ

n

n∑
l=1

l]∂2
XR+

ε4[∂TR + (τλ1b(p−
3

2
)− 1

6
V ′(1− 3bγτ0 + 3b2γ2τ 20 )−

λ1bτ

2n

n∑
l=1

l2)∂3
XR− V ′′′

6
∂XR

3]

+ε5[(2τb+ γτ0V
′ − λ2τ − λ1τ

n

n∑
l=1

l)∂X∂TR + (τλ1b(p−
7

6
)− λ1bτ

6n

n∑
l=1

l3−

1

24
V ′(1− 4γτ0b+

1

6
γ2τ 20 b

2 − 4γ3τ 30 b
3))∂4

XR− V ′′′

12
(1− 2γτ0b)∂

2
XR

3] = 0 (18)

Now, we consider the traffic flow near critical point τ = (1 + ε2)τc, τ0 = sτ , s > 0. By

taking b = V ′, the second- and third-order terms of ε is eliminated from Eq.(18), which leads

to the simplified equation as following

ε4∂TR = ε4[
1

6
V ′(1− 3V ′γτs+ 3V ′2γ2τ 2s2)− λ2τV

′(p− 3

2
) +

λ1V
′τ

2n

n∑
l=1

l2]∂3
XR−

ε4
|V ′′′|
6

∂XR
3 + ε3

V ′

2
[1− V ′γτs+ 2λ2V

′τ + (1 + n)λ1τ − 2V ′τ ]∂2
XR−

ε5[(λ2V
′τ(p− 3

2
)− λ1V

′τ

2n

n∑
l=1

l2 − V ′

6
(1− 3V ′γτs+ 3V ′2γ2τ 2s2))(2V ′τ + V ′γτs−

λ2τ − λ1τ

2
(1 + n)) + λ2(p−

7

6
)V ′τ − λ1V

′τ

6n

n∑
l=1

l3 − V ′

24
(1− 4V ′γτs+

1

6
V ′2γ2τ 2s2 − 4V ′3γ3τ 3s3)]∂4

XR + ε5
|V ′′′|
12

[1 + 4V ′τ − 2λ2τ − λ1τ(1 + n)]∂2
XR

3 (19)

By transforming variable X and T into variable x = ε−1X and t = ε−3T , and taking

S(x, t) = εR(X,T ), Eq.(19) is rewritten as follows:

∂tS = [
1

6
V ′(1− 3V ′γτs+ 3V ′2γ2τ 2s2)− λ2τV

′(p− 3

2
) +

λ1V
′τ

2n

n∑
l=1

l2]∂3
xS−

|V ′′′|
6

∂xS
3 +

V ′

2
[1− V ′γτs+ 2λ2V

′τ + (1 + n)λ1τ − 2V ′τ ]∂2
xS−

[(λ2V
′τ(p− 3

2
)− λ1V

′τ

2n

n∑
l=1

l2 − V ′

6
(1− 3V ′γτs+ 3V ′2γ2τ 2s2))(2V ′τ + V ′γτs−

λ2τ − λ1τ

2
(1 + n)) + λ2(p−

7

6
)V ′τ − λ1V

′τ

6n

n∑
l=1

l3 − V ′

24
(1− 4V ′γτs+

1

6
V ′2γ2τ 2s2 − 4V ′3γ3τ 3s3)]∂4

xS +
|V ′′′|
12

[1 + 4V ′τ − 2λ2τ − λ1τ(1 + n)]∂2
xS

3 (20)
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By adding term (V ′+γsV ′−λ2− 1
2
λ1(1+n))[1−V ′γτs+2λ2V

′τ +(1+n)λ1τ −2V ′τ ] on both

left and right sides of Eq.(20) and performing t1 = t and x1 = x− (V ′ + γsV ′ − λ2 − 1
2
λ1(1 +

n))[1− V ′γτs+ 2λ2V
′τ + (1 + n)λ1τ − 2V ′τ ]t for Eq.(20) we get

∂t1S = (∂x1 −
V ′

2(1 + γs)V ′ − 2λ2 − λ1(1 + n)
∂2
x1
)[(

1

6
V ′(1− 3V ′γτs+ 3V ′2γ2τ 2s2)−

λ2τV
′(p− 3

2
) +

λ1V
′τ

2n

n∑
l=1

l2)∂2
x1
S − (V ′ + γsV ′ − λ2 −

1

2
λ1(1 + n))

[1− V ′γτs+ 2λ2V
′τ + (1 + n)λ1τ − 2V ′τ ]S − V ′′′

6
S3] (21)

We define the thermodynamic potentials:

ϕ(S) ≡ −[
1

2
(1 + γs)V ′ − 1

2
λ2 −

1

4
λ1(1 + n)]

[V ′γτs− 2λ2V
′τ − (1 + n)λ1τ + 2V ′τ − 1]S2 +

|V ′′′|
24

S4 (22)

By rewritten Eq.(21) with Eq.(22), the TDGL equation is derived

∂t1S = −(∂x1 +
V ′

2(1 + γs)V ′ − 2λ2 − λ1(1 + n)
∂2
x1
)
δΦ(S)

δS
(23)

Φ(S) ≡
∫

dx1[(
1

6
V ′(1− 3V ′γτs+ 3V ′2γ2τ 2s2)−

λ2τV
′(p− 3

2
) +

λ1V
′τ

2n

n∑
l=1

l2)(dx1S)
2 + ϕ(S)] (24)

where δΦ(S)/δS indicates the function derivative. The TDGL Eq.(23) has two steady-state

solutions except trivial solution S=0: one is the uniform solution

S(x1, t1) = ±[
3(2(1 + γs)V ′ − 2λ2 − λ1(1 + n))(2λ2V

′τ − λ1τ + 2V ′τ − 1)

|V ′′′|
]
1
2 (25)

And the other is the kink solution

S(x1, t1) = ±[
3(2(1 + γs)V ′ − 2λ2 − λ1(1 + n))(2λ2V

′τ − λ1τ + 2V ′τ − 1)

|V ′′′|
]
1
2×

tanh


[
(V ′γτs− 2λ2V

′τ + 2V ′τ − 1)(2(1 + γs)V ′ − 2λ2 − λ1(1 + n))
1
24
V ′(1− 3V ′γτs+ 3V ′2γ2τ 2s2)− 1

4
λ2τV ′ + λ1V ′τ

8n

∑n
l=1 l

2

] 1
2

× (x1 − x0)

 (26)

where x0 is constant. Equation (26)represents the coexisting phase.By the condition

∂ϕ/∂S = 0, ∂2ϕ/∂S2 > 0 (27)
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We obtain the coexisting curve from Eq.(22) in terms of the original parameters

(∆x)co = hc ±±[
3(2(1 + γs)V ′ − 2λ2 − λ1(1 + n))(2λ2V

′τ − λ1τ + 2V ′τ − 1)

|V ′′′|
]
1
2 (28)

The spinodal line is given by the condition

∂2ϕ/∂S2 = 0 (29)

From Eq.(22), we obtain the spinodal line described by the following equation

(∆x)co = hc ±±[
(2(1 + γs)V ′ − 2λ2 − λ1(1 + n))(2λ2V

′τ − λ1τ + 2V ′τ − 1)

|V ′′′|
]
1
2 (30)

The critical point is given by the condition ∂ϕ/∂S = 0 and Eq.(29)

(∆x)c = hc, ac = 2(1 + γs)V ′ − 2λ2 − λ1(1 + n) (31)

4. mKdV equation

Similarly, we discuss the slowly varying behavior at long wavelengths near the critical point

with the derivation of the TDGL equation. We extract slow scale for space variable n and time

variable t. By inserting ac = 2(1 + γs)V ′ − 2λ2 − λ1(1 + n), a = (1 + ε2)ac into Eq.(18), one

obtains:

ε4(∂TR− j1∂
3
XR + j2∂XR

3) + ε5(j3∂
2
XR + j4∂

4
X + j5∂

2
XR

3) = 0 (32)

Table 1: The coefficients ji of the model

j1 j2 j3

V ′

6
+

1
2
V ′3γ2s2

[2(1+γs)V ′−2λ2−λ1(1+n)]2
− λ2(p− 3

2
)V ′−λ1V

′
2n

∑n
l=1 l

2+V ′
2
γs

2(1+γs)V ′−2λ2−λ1(1+n)
−V ′′′

6
V ′2

2(1+γs)V ′−2λ2−λ1(1+n)

j4

λ2(p− 7
6
)V ′−λ1V

′
6n

∑n
l=1 l

2+V ′
6
γs

2(1+γs)V ′−2λ2−λ1(1+n)
−

1
6
γ2s2V ′3

24[2(1+γs)V ′−2λ2−λ1(1+n)]2
+

γ3s3V ′4

6[2(1+γs)V ′−2λ2−λ1(1+n)]3
− V ′

24

j5

V ′′′

6
[ (3V

′+γs)V ′−2λ2−λ1(1+n)
2(1+γs)V ′−2λ2−λ1(1+n)

]

where the coefficients ji are given in Table 1.
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In the table V ′ = dV (∆xn)/d∆xn|∆xn = hc, V
′′′ = d3V (∆xn)/d∆x3

n|∆xn = hc. In order

to derive the regularized equation, we make the following transformation:

T =
1

j1
T ′, R =

√
j1
j2

(33)

So the standard mKdV equation with an O(ε) correction term as follows:

∂T ′R′ = ∂3
XR

′ − ∂XR
′3 − ε[

j3
j1
∂2
XR

′ +
j4
j1
∂4
XR

′ +
j5
j2
∂2
XR

′3] (34)

If we ignore the O(ε), they are just the mKdV equations with a kink solution as the desired

solution:

R′
o(X,T ′) =

√
ctanh

√
c

2
(X − cT ′) (35)

Then, assuming that R′(X,T ′) = Ro
′(X,T ′) + εR1

′(X,T ′), we take into account the O(ε)

correction. For the purpose of determining the selected value of the velocity c for the kink solu-

tion, it is necessary to satisfy the solvability condition. As (Ro
′,M [Ro

′]) ≡
∫ +∞
−∞ dX ′Ro

′M [R′],

where M [Ro
′] = j3

j1
∂2
XR

′ + j4
j1
∂4
XR

′ + j5
j2
∂2
XR

′3. We get the general velocity c:

c =
5j2j3

2j2j4 − 3j1j5
(36)

Hence, the general kink-antikink soliton solution of the headway, from the mKdV equation

is obtained:

∆xn(t) = hc ±

√
j1c

j2
(
τ

τc
− 1)× tanh

√
c

2
(
τ

τc
− 1)× [n+ (1− cj1)(

τ

τc
− 1)t] (37)

where V ′′′ < 0, this kink soliton solution also represents the coexisting phase, and the kink

solution(37) is agree with the solution(26) obtained from the TDGL equation. Thus, the

jamming transition can be described by both the TDGL equation with a nontravelling solution

and the mKdV equation with a propagating solution.

5. Numerical simulation

In this section, we carried out the numerical simulation by the computer. With the periodic

boundary condition, the initial conditions are given as follows:

∆xj(0) = ∆x0 = 4.0,∆xj(1) = ∆x0 = 4.0, for j ̸= 50, 51, ∆xj(1) = 4.0 − 0.5, for j =

50,∆xj(1) = 4.0 + 0.5, for j = 51

We choose the total number of cars and the sensitivity as N = 100 and a = 1.7.
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Fig.2 Space–time evolution of the headway after t=10,000 with the different λ2-values.
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Fig.3. Headway profiles of the density wave at t =10,300 correspond to Fig.2, respectively.
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Figure 2 shows the space-time evolution of the headway after t = 104 time steps under the

different parameter λ2. Other parameters are assumed as: vmax = 2.0, hc=4.0. It indicates

the kink-antikink solutions propagating backwards. In Fig.2, the typical traffic patterns(a)-(d)

exhibit the space-time evolution of the headway corresponding to the cases of λ2=0.3, 0.4, 0.5,

0.6 respectively. Pattern (a) with λ1=0.2 and γ=0.1, the result shows that the traffic flow is

very chaotic and unstable. When a small disturbance is added into the uniform traffic flow,

the propagating backward stop-and-go traffic jam appears which is quite similar to the mKdV

solution. From pattern(b) to pattern(d) in Fig.2, the extended traffic flow model congestion

situation has a large improvement. In a word, the traffic flow will be smoother while the γ is

smaller. Finally the traffic congestion will be eased.

Figure 3 shows the headway profiles and density waves for different the two velocity differ-

ence model parameter λ2 at t = 10300 corresponding to panels in Fig.2, respectively. Then we

get the similar outputs to Fig.2. Gradually, as increasing the parameter λ2, the amplitude of

the kink-antikink solition is weakening. Therefore, the traffic flow model has gradually become

stable.

Figure 4 shows the space-time evolution of the headway after t = 104 time steps under the

different parameter γ. Other parameters are the same. A battery of simulations are carried out

under the periodic conditions for the extended car-following model with different parameters

γ. It can exhibit the kink-antikink solutions propagating backwards. From pattern (a) with

λ1=0.2, λ2=052 in Fig.4 and other parameters are unchanged, it is clearly shown that the traffic

is very chaotic and unstable. When a small disturbance is added into the uniform traffic flow,

the propagating backward stop-and-go traffic jam appears which is very similar to the mKdV

solution. From pattern(b) to pattern(d), the extended traffic flow model congestion situation

has a larger improvement. Especially, when the parameter γ is the minimal, the heavy traffic

flow becomes the most stable. In general terms, the scales of headway decrease accordingly

with the increase of γ, which implies that the traffic flow will be smoother with each passing

day.

Figure 5 exhibits the headway profiles and density waves for different λ2 at t = 10300

corresponding to panels in Fig.4, respectively. And then we obtain the similar outputs to Fig.4.

In a word, it is obviously that the traffic flow model is becoming stable gradually as increasing

the parameter λ2.
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Fig.4. Space–time evolution of the headway after t=10,000 with the different γ-values.
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Fig.5. Headway profiles of the density wave at t =10,300 correspond to Fig.4, respectively.
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Fig.7 Profile of energy consumption of vehicle according to different values of parameter γ.

Figure 6 shows the distribution of energy consumption for the models with different param-

eter n. The red curve denotes the model with n=5. The area of loop is the tiniest, so it is the

most steady. The blue curve indicates the model with n=3 and the yellow curve denotes the

model with n=1, respectively.

Figure 7 shows the distribution of energy consumption for the models with different pa-

rameter γ. The red curve denotes the model with γ=0.3. The area of loop is the largest, so

it is the most unstable. The blue curve indicates the model with γ=0.2 and the yellow curve

denotes the model with γ=0.1, respectively.

From the Fig.6 and Fig.7, we can see two regions with ∆E<0 and ∆E>0. It indicates

the acceleration process and deceleration process. On the one hand ∆E<0 denotes the energy

consumption in the deceleration process of a vehicle, on the other hand ∆E>0 describes the

energy consumption of vehicle during acceleration. It is clear that the area of the acceleration
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process and the deceleration process are not symmetrical from the diagram. The area of the

deceleration process is larger than the area of the acceleration process. The results show that

the energy consumption of the deceleration process is more than the acceleration process. From

the diagrams, the energy consumption has decreased with the increase of n and has decreased

with the decrease of γ.

6. Conclusion

The above analysis proved that the extended control item did improvement to the stability

of traffic flow. In our paper, an improved car-following model of traffic flow basing on the TVDM

is put forward to describe traffic phenomena. It takes the influence of the average speed effect

of the vehicles and driver’s memory into account on traffic flow. By the linear stability analysis,

we acquire the neutral stability line and the critical point by the linear stability analysis. And

the TDGL equation has been derived to describe the traffic behavior near the critical point by

using the reductive perturbation method. In addition, the mKdV equation has been inferred

and shown the relationship between the TDGL and the mKdV equations. From the perspective

of energy consumption, the stability of traffic flow has been analyzed. Finally, the results of

the analysis are in good agreement with the numerical simulation results.
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