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Abstract. On-line monitoring of grinding process has substantial advantages over traditional 
post-process quality control techniques for detecting malfunctions and reducing costs and inspection 
times. The selection of appropriate sensors and adequate signal processing methods are essential to 
establish optimum grinding control strategies with good prediction quality within acceptable response 
times. This paper assessed three signal-processing methods for grinding surface creation monitoring 
based on acoustic emission (AE) signals in abrasive scratch experiments. The AE signals are analysed 
in time domain (time direct analysis, TDA), frequency domain (fast Fourier transform, FFT) and in 
the combined time-frequency domain (singular spectrum analysis, SSA). The result showed that the 
FFT and SSA signal feature extraction methods gives better indication in correlation to the surface 
creation with different abrasive geometrical characteristics. For both sapphire and zirconia materials, 
the results of FFT method showed the best correlation between AE features and surface creation 
characteristics in scratching tests and the most significative information was in the frequency range 
between 0 and 200 kHz. This finding allows a great reduction in the sampling frequency of the signal, 
making this method the most suitable for real time applications. This work reveals that the AE signals 
processed with the adequate feature extraction method can present good correlation with the 
characteristics of interaction between abrasive and workpiece in scratching tests and can provide 
meaningful information for the on-line monitoring of surface creation in grinding processes. 

1. Introduction 

On-line process monitoring on a CNC machine could bring significant impacts in manufacturing 
cost and efficiency by reducing post process inspection and rework for product quality control (Lauro 
et al., 2014; Teti et al., 2010). On line monitoring techniques allows the real time assessing crucial 
aspects of machining process, such as tool condition (Boaron and Weingaertner, 2018; Arun et al., 
2018), chatter (Siddhpura and Paurobally, 2012), surface finish ( García and Núñez, 2018), chip 
formation (Karam and Teti, 2013), and surface damage (Liu et al. 2006; Liu et al., 2005). In order to 
provide relevant meaningful information, a method of optimum selection of sensors, signal 
processing algorithms and predictive techniques should be established according to the specified 
parameters under analysis. A broad range of sensors have been used in machining process monitoring, 
including dynamometers, accelerometers and acoustic emission sensors (Teti et al., 2010). 
Considering signal processing, different methods have been applied in time and frequency domain, 
for example, time direct analysis (TDA) (García et al. 2018), singular spectrum analysis (SSA) 
(García and Núñez, 2017), Fourier transform (García et al. 2018), and wavelet transform (Liao et al., 
2007). For analysing the correlation between various signal parameter features under study, many 
prediction techniques have been proposed in previous researches, i.e., the multivariate regression 
(García and Núñez, 2018), the artificial neural networks (García et al., 2018) and the support vector 
machines (Arun et al., 2018). 
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Of all machining processes, grinding is one of commonly used processes for finishing operation to 
achieve tight tolerances and high surface quality of workpieces. In grinding, the wheel surface 
topography is an important aspect to be evaluated in relation to grinding performance due to the 
continuously changed abrasive grain shape affects the quality of ground components. In recent years, 
process monitoring techniques have been extensively investigated and applied to grinding process to 
monitor critical aspects of grinding process, such as chip thickness (Yang et al., 2019), tool wear 
(Wegener et al., 2011), surface finish (Nguyen et al., 2019), surface damage (Liu et al., 2006). Nguyen 
et al. (2019) developed a model to predict the abrasive wear and the surface finish using cutting force 
signals. The signals were processed in both time and frequency domains so that the wear and the 
surface finish could be predicted using adaptive neural fuzzy inference system, Gaussian process 
regression and Taguchi methods. Tang et al. (2009) developed a mathematical model of grinding 
forces to characterise the surface topography of the ground workpieces. Yang et al. (2019) predicted 
the minimum chip thickness in single diamond grain grinding using cutting forces, obtaining good 
relationship between experimental and estimated values. 

One of commonly used process signals in grinding monitoring has been acoustic emission (AE), 
which is defined as an elastic wave propagation in the bandwidth between 20 and 2000 kHz due to 
material particle displacements under stresses (Lee et al., 2006). The beauty of using AE signal is that 
AE could provide process dynamic information in much higher frequency domain than other sensors. 
It also isolates background noise well. In grinding, the acoustic emission signal represents many 
important aspects of grinding, such as, the rupture of grains and bound bridges in the wheel and the 
workpiece chipping, cracks, elastic contact, plastic deformation, phase transformation. Thus, AE 
signals have been used to characterise different technological performance aspect of the grinding 
process. Griffin and Chen (2009) proposed a method for monitoring phenomena as cutting, ploughing 
and rubbing in single grit processes using the AE signal. By applying short time Fourier transform it 
was demonstrated that the three phenomena could be determined in the 50-500 KHz frequency range. 
Weingaertner and Boaron (2012) monitored the grinding wheel´s topography by analysing the 
acoustic emission signal in RMS format. Later, Boaron and Weingaertner (2018) analysed acoustic 
emission signals in both time and frequency domains for evaluating the topographic characteristics of 
a fused aluminium oxide grinding wheel. The evaluation of the grinding wheel was based on the 
effective contact time with the workpiece during the scratch experiment by interpreting the AE 
scanning signals in terms of the relative movement between the grinding wheel and an instrumented 
diamond tip. Rameshkumar et al. (2018) registered the acoustic emission signals in grinding 
operation to predict the wear level of the grinding wheel. In their investigation, the acoustic emission 
was analysed in time domain using different features such as root mean square, amplitude, ring-down 
count and average signal level. By using machine-learning techniques, for example, decision tree, 
artificial neural network, and support vector machine, they could estimate whether the wheel was 
sharp or dull. In the same way, Liao (2007) developed a grinding wheel condition monitoring method 
based on acoustic emission wavelet packet transform to estimate the wheel sharpness or dullness. 
Later, Liao (2010) developed a model based on the analysis of acoustic emission signal using 
autoregressive modelling and discrete wavelet decomposition to classify the state of grinding wheel. 
Liu et al. (2005) and (2006) determined the wavelet packet transform was an ideal signal processing 
method to evaluate the acoustic emission signal and to extract features correlated to the grinding burn 
phenomena. Similarly, Yang et al. (2014) developed a sensor system based in acoustic emission 
signal to extract grinding burn features, but instead of using wavelet packet transform, the 
Hilbert-Huang transform (HHT) was used. For the signal feature extraction, they used the average 
energy and the energy percentage for obtaining the HHT components correlated with the burn defects. 
Chiu and Guao (2008) constructed an support vector machine (SVM) model for the state 
classification of CBN grinding with featured data from acoustic emission signals. Dias et al. (2016) 
proposed a new methodology to predict and detect the surface quality and the dimensional errors by 
acoustic emission in centreless grinding process, where the acoustic emission was processed in both 



the frequency and the time-frequency domain by fast Fourier transform and wavelet analysis, 
respectively.  

Using acoustic emission signals in grinding process monitoring is commonly applied to assess the 
wear level of the grinding wheel, which is a kind of aggregation of grain shapes in the grinding wheel 
surface. However, the direct relationship between the acoustic emission and the surface quality of the 
machined workpiece in relation to grain shapes have not been studied in a good extent and more 
research in this field is required. Regarding to AE signal processing methods in grinding processes, 
the time direct analysis (TDA), fast Fourier transform (FFT) and wavelet transform (WT) have been 
explored for analysing the signal in time, frequency and time-frequency domains, respectively. 
Nevertheless, another important processing method singular spectrum analysis (SSA) that is 
frequently used in other machining processes has not been tried in abrasive processing. 

Considering aforementioned circumstances, the main objective of this study is to monitor grinding 
surface creation during grinding scratch tests based on the acoustic emission signals acquired. Three 
signal feature extraction methods are discussed here, i.e, the time direct analysis (TDA), the frequency 
domain analysis with the fast Fourier transform (FFT) and the analysis in the combined 
time-frequency domain with the singular spectrum analysis (SSA). In order to correlate the signal 
characterization parameters with the surface creation, multiple regression predictive models were 
analysed. All predictive models were analysed individually for each workpiece materials and no 
information about the abrasive grains were used in the models since the data source for model 
development is based exclusively in the acoustic emission signals. 

2. Experimental Design and Methodology 

The abrasive scratching experiments were carried out on a numerical control machine centre XR 
610 VMC Bridgeport, using abrasive cutting tools assembled to a rotating steel wheel of diameter 80 
mm (see Fig. 1a). Five different types of diamond abrasives of different geometrical shapes were used 
for the cutting tools. The workpiece materials used in the tests were zirconia and sapphire, and their 
mechanical properties are shown in Table 1. The samples were prepared with surface roughness Ra 
0.064 µm for zirconia and Ra 0.151 µm for Sapphire. The test sample was carefully lined up with 
machining plane within a 2 µm range to ensure actual depth of cut in the range of interests. An AE gap 
eliminating technique was applied to ensure the initial contact was less than 1 µm. Each test was 
carried out under dry condition, with a cutting speed (Vs) of 1 m/s, a downward feed rate (Vw) of 1000 
mm/min and a nominal cutting depth (ae) of 1 μm. The cutting spindle rotational speed was 238 rpm. 
In each machining trial, the acoustic emission (AE) was registered using a Physical Acoustics WD 
sensor mounted as near as possible to the cutting zone.  WD is a true differential wideband sensor 
calibrated and certified by “Physical Acoustics Corporation” which owns a very high sensitivity and 
bandwidth. The optimum operating range is defined in the frequency range of 100-900 kHz and for 
and appropriate signal definition the sampling frequency (fs) of 2 MHz was selected.  As it is shown in 
Fig. 1b, each scratch surface was measured using a Bruker interferometer and the deepest cut (D) and 
its width of cut (W) were evaluated. The parameter selected to characterize the surface creation was 
the ratio W/D, which could be an indicator of grit shape that engaged with workpiece. The registered 
acoustic emission signals in each test can be extracted into individual scratch signal (Fig. 1c). This 
subdivision enabled the direct correlation between the acoustic emission signals and the abrasive 
feature values of the W/D parameter. 

 
 
 
 
 
 



Table1: Typical ranges of mechanical properties for sapphire (Lounis Ait Ourab, 2020) and zirconia 
(Xiao et al., 2016) (Ma et al., 2020) materials. 
PROPERTIES SAPPHIRE ZIRCONIA 
Tensile strength (MPa) 400 350-550 
Young´s Modulus E (GPa) 345 210-220 
Flexural strength (MPa) 2500 - 4000 800 - 1000 
Poisson´s ratio 0.25 – 0.3 0.3 
Hardness (GPa) 18-22 12-18 
Density (g/cm3) 3.98 5.8 - 6.05 

 

 
 

Fig. 1. Experimental design. 
 



The methodology applied in this study involved the analysis of the acoustic emission signals using 
the three signal feature extraction methods as shown in Fig 2. The acoustic emission signal processed 
with the TDA, FFT and SSA signal processing methods was statistical, characterized by the features 
shown in Table 2. To correlate the signal features extracted by each method with the W/D parameter, 
multivariable polynomic regression methods were applied as predictive techniques to assess the 
relation between scratch feature parameter W/D and acoustic emission characteristics. Finally, an 
exhaustive analysis of signal feature extraction was carried out to determine the optimum signal 
feature extraction for the monitoring of surface creation in relation to W/D parameter. 

 
 

 
Fig. 2. Methodology. 

 
Table 2. Statistical feature extraction of acoustic emission signal. 
FEATURES TDA FFT SSA 
Root mean square RMS RMSfi RMSλi 

Standard deviation SD SDfi SDλi 
Maximum amplitude - Afi - 
Peak to peak amplitude PP - PPλi 
Kurtosis K Kfi Kλi 
Skewness S Sfi Sλi 
Energy E Efi Eλi 
Entropy SE SEfi SEλi 
Mean X Xfi Xλi 
Frequency of maximum - Ffi - 
*Where the superscript fi indicates the frequency range (f1,…,fn) for FFT method, the superscript λi 
the number of eigenvalue (λ1,…,λL) for SSA method. 
 

All of the models obtained were diagnosed by analysing atypical values, multicollinearity, 
independence and normality of the residuals, homoscedasticity, and hypothesis contrast tests. The 



predictive models were built using stepwise regression method, frequently used in machining process 
monitoring. In this technique, only significative variables are incorporated to the model and 
non-significative variables are rejected automatically. The method progressively introduces the signal 
features (one by one) into the model and it can be described as follow: in each step, a new feature is 
added to the model and then, F test are realized and p-values of all candidate variables included in the 
model are determined to verify if their significance decrease below the specified significance levels. If 
any variable is statistically non-significative, it is rejected from the model and the process continues 
until the last variable is analysed. This method requires two significance levels: one for adding and the 
other for removing features. Both levels were defined for obtaining variables with statistical 
significance at 90% of confidence, i.e. all features in the model have p-values lower than 0.01. The 
model for illustrating the relation between the scratch feature parameter W/D and the features of 
acoustic emission signals might be presented with a formula as shown in Eq.1. Predictive models 
were assessed in four ways. Firstly, the goodness of fit to experimental data was evaluated using the 
adjusted determination coefficient (adjusted R-squared, R2

adj). This coefficient is a modification of 
R-Squared parameter (Eq.2), which consider the effect of the number of independent regressors 
(signal features) and evaluates how the predicted data are adjusted within the line of the regression 
equation. The higher the value of R2

adj (Eq.3), the better model fit to the experimental data.  Secondly, 
the sum of squares type III and the p-values (Eq.4) (Box et al., 2005) were calculated in order to 
determine the variables for better correlated with the W/D parameter. The sum of squares type III 
determines the effect of each significant signal feature over the response variable (W/D) after all other 
features available in the model have been considered. The sum of error squares can indicate the 
estimation error reduction when a new variable is added to the predictive model. The higher values in 
the sum of squares of a signal feature, the more influence in the response variable. The general 
function of the sum of squares of deviations is expressed in Eq. 5, which comprises two items on the 
right indicating the sum of squares of the regression model and the sum of squares of the residuals, 
respectively. Furthermore, the goodness of fit was evaluated by the graphical representation of the 
experimental values of W/D versus the predicted values with the predictive model. Finally, the 
reliability of the model was assessed by the percentage in the distribution error (er) (Eq. 6). 
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where  iy  was the predicted value of surface creation (W/D) at i observation, iy  was the experimental 

value of W/D (response variable) at i observation, y  was the mean value of the response variable, and 
m was the total number of the W/D values obtained in the experimental measurements.  
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where P is a probability function and H0 is the null hypothesis. 
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3. Results and Analyses 

3.1 Time Direct Analysis.  

The TDA is one of the most used signal processing methods in machining processes monitoring 
(Lauro et al., 2014). This method directly analyses the signal registered by sensors in the time domain, 
with no transformation or decomposition, providing fast signal processing at a low 
analytical-computational cost, and making it suitable for real time applications. The TDA method 
directly extracts the signal information using parametric characterization by statistic and 
non-statistics parameters (García and López, 2018). Fig. 3 shows a simulated sinusoidal signal 

( ) sin( )x t wt=  discretized by the succession[ ]ix , with 0,1, 2, , 1i N= − , and where N is the total 
number of points. The term N relies on sampling frequency (fs) and sampling time (t), which has a 
direct impact on signal processing times. Bearing in mind, the high sampling frequency of the 
acoustic emission signal (fs = 2 MHz), the sampling rate of this signal must be optimized to avoid 
excessive processing times incompatibles with real time applications (see Fig 3). The efficacy of the 
TDA method mainly depends on the type of signal, the selected features for the parametric 
characterization and the aspects of the machining process under assessment. In many occasions, 
working directly with the time domain signal parameters could provide an adequate signal 
characterization. However, in some cases, this method cannot extract sufficient information, which 
often is hidden or masked in the signal itself. The signal feature extraction using TDA method in this 
study is based on the parameters showed in Table 2.  

 

 
Fig. 3. Time direct analysis signal processing method. 

 
Considering the models built by TDA method to estimate W/D parameter in relation to AE signal 
features, Table 3 depicts the determination coefficient (adjusted R-squared, R2

adj) of the regression 
models, the type III sum of squares (Box et al., 2005), the p-values for the significant characterization 
parameters and the coefficients (ai) of the regression model equation. For both sapphire and zirconia 
materials, it can be observed that the obtained predictive models give very poor results in correlation 
to the parameter W/D. The model for sapphire expressed only 10.6% of the variability of the 
experimental data, and the model for zirconia expressed the 25.5 %. This implies that the signal 
feature extraction method in time domain (TDA) failed to achieve an adequate signal characterisation.   

 



Table 3. Significant parameters of the sapphire and zirconia predictive models for the TDA method. 
Sapphire Zirconia 
R2

adj = 10.6 % R2
adj = 25.25 % 

Features Coef. (ai) SS Type III p-Value Features Coef. (ai) SS Type III p-Value 
Constant 55.17 - - Constant 45.7 - - 
K -2.461 4871 0.018 RMS -370 1611.5 0.001 
Error - 31942 - E 1230 949.6 0.010 
- - - - Error - 5066.6 - 
 

The analysis of the goodness of fit to the experimental data of the TDA method are shown in Fig. 4, 
which revealed again that TDA method failed to provide adequate signal feature extraction for the 
prediction of W/D parameter. The reliability of the models was assessed according to the distribution 
of the prediction errors (Fig. 4c). Estimated values of W/D parameter with relative errors lower than 
15% ( 15%)re ≤ are considered in the optimum range of prediction and estimated values with relative 
errors lower than 25% ( 25%)re ≤  in the acceptable range of prediction. The poor behaviour observed 
in the acoustic emission signal processed with TDA method for both test materials, generated models 
with 90.4% and 47.7% of estimated data out of the acceptable range of predictions ( 25%)re >  for 
sapphire and zirconia, respectively.   

 

 
Fig. 4. Estimated values vs experimental values of the parameter W/D for TDA method: a) Sapphire, 
and b) Zirconia. c) Prediction reliability with the TDA method. 

 
 

3.2 Frequency Analysis. 

In the machining process monitoring, Fourier transform analysis provides the information of the 
frequency spectrum of monitored signals. For the succession x[i] the discrete Fourier transform (DFT) 
was defined by Eq. 7: 
 

( )
21

0
   0,, 1, 2, , 1

kiN j
N

ik
i

X x e k N
π − −  

 

=
= = … −∑  

     
(7) 

 
 
The main restriction of (Eq. 7) is its high computational cost, due to the calculus of N 

multiplications of the term (2 / )j ki N
ix e π−   for each of the N values of Xk, in other words, this algorithm 

entails the calculation of approximately N2. Thus, for high frequency sample signals, as acoustic 
emission signal is, the use of this algorithm may not be an ideal processing method. To overcome this 



drawback, the DFT is implemented by using the algorithm with the highest computational efficiency 
denominated fast Fourier transform (FFT), which reduces the number of operations to 2logN N . 

In order to determine the general behaviour of the AE signal in frequency domain, and establish the 
frequency ranges with potentially more information about the machining process, the power spectrum 
of AE signal for both the sapphire and zirconia materials are shown in Fig. 5. It can be observed 
similar behaviours in all diamond scratch tests with some differences in the power spectrum 
amplitude between the five diamond abrasives due to the differences in grain attribute and shape. The 
AE spectrum reaches the maximum amplitude at approximately 35 kHz (1). After that frequency, the 
power spectrum gradually decreases until around 400 kHz (2), then, a few feature peaks of power 
spectrum were found between 450 and 600 kHz (3).   

 

 
Fig. 5. Acoustic emission power spectrum: a) sapphire, and b) zirconia. 

 
According to the preliminary analysis, it can be seen that relevant spectrum frequency range is 

around 0-600 kHz. The frequency analysis of AE signal was undertaken with a complete analysis of 
the bandwidth 0-600 kHz (Fig. 6a). It should be noted, that the total bandwidth under analysis entails 
certain frequency ranges with significant information fails to be adequately characterized, thus, the 
analysis was realised in two ways. Firstly, the entire bandwidth 0-600 kHz was discretized into six 
independent frequency ranges of 100 kHz each (Fig. 6b). Secondly, to analyse smaller frequency 
ranges, the bandwidth 0-600kHz was split into three independent frequency intervals of 0-200 kHz, 
200-400 kHz and 400-600 kHz (Fig. 6c). To achieve a precise signal characterization, each new 
bandwidth was fractioned into twenty independent frequency ranges of 10 kHz each.  



 
Fig. 6. Frequency ranges for AE signal analysis. 

 
3.2.1 Analysis of frequency range 0-600 kHz.  

The Table 4 depicts the results of the regression models for estimating W/D parameter by the 
processing of the AE signal in the bandwidth 0-600 kHz with FFT method, for both the sapphire and 
zirconia materials. Table 4 shows the determination coefficient (R2

adj), the frequency ranges, the type 
III sum of squares, the p-values and the coefficients of the regression model equation for the 
significant characterization parameters.  

As it was mentioned in Table 2, the superscript of the features indicates the frequency range of 
concerned feature variable, for example, the feature Xf2 indicate the arithmetic mean of the FFT in the 
frequency range 100-200 kHz. It can be observed that both materials, obtained predictive models with 
very poor results, having little impact on the parameter W/D. The model for sapphire explained the 
33.62% of the variability of the experimental data, and the model for zirconia only the 18.52 %, which 
indicated a very poor correlation to W/D parameter.  

 
Table 4. Significant parameters of the sapphire and zirconia predictive models for the FFT method in 
0-600 kHz. 
Sapphire Zirconia 
R2

adj = 33.62 % R2
adj = 18.52 % 

Features Coef. (ai) SS Type III p-Value Features Coef. (ai) SS Type III p-Value 
Constant 73.9 - - Constant -29.3 - - 
Xf2 46.5 1824 0.089 Xf1 -2.73 901.6 0.016 
Sf3 -13.43 6218 0.003 Ef5 0.000147 491.2 0.070 
SEf3 -108.3 2982 0.031 Error - 5522.9 - 
Ef6 -104290 5957 0.003 - - - - 
Error - 22051 - - - - - 



 
The analysis of the goodness of fit to the experimental data of the FFT method in the entire 

bandwidth are shown in Fig. 7. The results were quite similar to that of TDA analysis, where the 
predictive models for both materials obtained poor results. The model for sapphire (Fig. 7a) 
overestimated the data in most of the cases for values of W/D parameter between 10 and 50, and 
underestimated the data for values of W/D between 50 and 90. The model for zirconia (Fig, 7b) 
obtained better results with homogeneous distribution, but with higher deviation in many data. In 
relation to model reliability in terms of the distribution error of the estimated data, once again the 
results showed poor behaviour, where 83.3% and 59.6% of estimated data were out of the acceptable 
range ( 25%)re > for the sapphire and zirconia models, respectively. This implies the analysis of the 
bandwidth 0-600 kHz in intervals of 100 kHz is not valid to extract significative information of AE 
signal correlated with W/D parameter.  

 

 
Fig. 7. Estimated values vs experimental values of the parameter W/D for FFT method in 0-600 kHz: 
a) Sapphire, b) Zirconia. c) Prediction reliability with the FFT method in 0-600 kHz. 
 
3.2.2 Analysis of 0-200, 200-400 and 400-600 kHz in steps of 10 kHz. More precise analysis in 
frequency domain is needed due to the poor efficiency in predictive models of the previous analysis. 
Fig. 8 shows the determination coefficient (R2

adj) of the predictive models built in three independent 
frequency bandwidths of 0-200 kHz, 200-400 kHz and 400-600 kHz, for both the sapphire and 
zirconia materials. As it was mentioned in the previous section, each bandwidth was fractioned into 
independent frequency ranges of 10 kHz to achieve a precise signal characterization. It can be 
observed that the determination coefficient of all models dramatically increased compared with the 
analysis in the bandwidth 0-600 kHz. The best results were obtained at lower frequencies (0-200 
kHz), reaching predictive models with excellent fit to experimental data with R2

adj of 95.5% and 
90.7% for sapphire and zirconia, respectively. In the medium frequencies (200-400 kHz) the 
behaviour of the predictive models in both materials was totally different, the model for sapphire 
explained de 87.7% of the variability of the experimental data whereas the model for zirconia 
expressed only 54.2%. At higher frequencies (400-600 kHz) both models the sapphire and zirconia 
obtained similar results with R2

adj of 84.2 % and 81.3%, respectively.  

Table 5 shows the significative features for the best predictive models obtained in the bandwidth 
0-200 kHz (see Fig. 8), for sapphire and zirconia materials. For the sapphire model, a broad number of 
the analysed frequency bands showed significative information correlated with the parameter W/D. 
The ranges f4 (30-40 kHz) provided the most significative feature of the model (Af4) with the highest 
sum of square. This frequency range correspond with the higher power spectrum of the AE signal (see 
Fig 5). The next frequency bands providing high values of sum of square were in decreasing order f9 
(Sf9), f3 (Af3, Sf3), f20 (SEf20) f14 (Kf14) f16 (SEf16). The rest of significant frequency ranges also 
provided information but to a lesser extent. Similar to sapphire, the model of zirconia possesses a 



broad number of analysed frequency ranges with the information correlated with the W/D parameter. 
However, in contrast, the model for zirconia presents less differences in the sum of squares of the 
significative features, only in the range f16 (Ff16) a value is slightly higher than in the rest of the 
variables.  

 

 
Fig. 8. Adjusted R-Squared 2( )adjR obtained in the prediction of W/D parameter in three independent 
frequency intervals. 

 
Table 5: Significant parameters of the sapphire and zirconia predictive models for the FFT method in 
0-200 kHz. 
Sapphire Zirconia 
R2

adj = 95.48 % R2
adj = 90.07 % 

Features Coef. (ai) SS Type III p-Value Features Coef. (ai) SS Type III p-Value 
Constant -1134 - - Constant 180.6 - - 
Af3 -3.289 8779.6 0.000 Kf1 -3.494 556.9 0.000 
Sf3 10.33 876.8 0.000 SEf2 0.0610 166.3 0.005 
Af4 2.237 10797.7 0.000 Sf5 -7.22 221.6 0.001 
Xf5 5.67 302.9 0.011 Kf6 -3.735 353.6 0.000 
Af6 -4.194 2754.1 0.000 Ff6 -0.001001 169.7 0.004 
Ff6 0.006697 4189.0 0.000 Ef9 -517 389.0 0.000 
SDf8 31.26 2140.2 0.000 SDf10 7.21 493.6 0.000 
Sf9 -53.01 9021.8 0.000 RMSf14 -131.3 655.5 0.000 
Kf11 8.682 3324.4 0.000 Xf14 194.3 922.0 0.000 
Kf13 7.76 2149.6 0.000 Kf15 -4.568 491.3 0.000 
Kf14 -16.89 6879.5 0.000 Ff15 -0.000934 176.4 0.004 
SEf16 28.56 5887.5 0.000 Ff16 -0.002430 1472.2 0.000 
Af17 9279 883.9 0.000 SDf19 -161.0 824.3 0.000 
Ef18 0.004789 214.2 0.030 Af20 47.2 366.8 0.000 
Ff18 -382.5 1570.6 0.000 Xf20 -147.4 787.2 0.000 
SEf20 -29.62 7163.6 0.000 Ff20 0.002294 804.8 0.000 
Error  1013.6 - Error  431.6 - 
 

The analysis of the correlations of the estimated data versus the experimental data for the FFT 
method in the 0-200 kHz frequency band (Fig. 9) revealed the model for zirconia had an even 



distribution in all of the W/D parameter ranges, with no bias and a very strong correlation (see Fig 9b). 
The model obtained for sapphire (Fig 9a), in spite of having higher determination coefficient than 
zirconia model, showed a higher deviation with underestimation of W/D values between 10 and 20. In 
the prediction error distribution of the estimated data, Fig. 9c showed the zirconia model achieved the 
best behaviour in all ranges of relative error under study. The model for zirconia reached a 71.4 % of 
estimated data in the interval of optimum prediction ( 15%)re ≤  versus the 57.1% for the sapphire 
model. As for the range of acceptable prediction ( 25%)re ≤ , once again the model for zirconia 
expressed the best results with a 95.2 % of estimated data versus the 76.2% for the sapphire model. 

 

 
Fig. 9. Estimated values vs experimental values of the parameter W/D for FFT method in 0-200 kHz: 
a) sapphire. b) zirconia. Prediction reliability with the FFT method in 0-200 kHz. 

 
According to the analysis above, the bandwidth 0-200 kHz discretized in frequency ranges of 10 

kHz was the best method to obtain an optimal acoustic emission signal characterisation in the FFT 
analysis. This method provided an optimal correlation between the acoustic emission signal and the 
W/D parameter in both materials, reaching for the zirconia material a slightly better behaviour. The 
proposed method enabled to obtain the frequency ranges with the most significative information of 
the process. In addition, the signal processing only in the bandwidth 0-200 kHz implies that the 
sample frequency of the acoustic emission could be substantially reduced, improving the 
computational cost and making this method suitable for real time applications.    

3.3. Singular Spectrum Analysis 

As it was mentioned in the introductory section, singular spectrum analysis (SSA) is a common 
signal processing method frequently used in machining process monitoring, however, it has never 
been applied to surface creation supervision in abrasive scratch experiment considering AE signal. 
SSA is an advanced non-parametric signal processing method that enables the signal analysis in the 
combined time-frequency domain. SSA method transforms a time signal into an independent time 
series with defined frequency ranges referred to as the principal component as illustrated in Fig. 10. 
The mathematical development of the SSA technique described by Golyandina et al. (2001) can be 
split basically in four steps: the first step consists of the calculate of a Hankel matrix 

1( ,..., )i KX X −=X  from the original signal registered by the sensor 0 1( ,..., )Nx x x −= , where N is the 
number of point of the sample. This matrix is commonly referred to as the trajectory matrix, with 

1 2( , , ) ,T
i i i LX x x− + −= …  1 i K≤ ≤  and 1,K N L= − +  where L is an integer number denominated 

window length. The second step is to calculate the singular value decomposition (SVD) of the 
trajectory matrix decomposing the X matrix into a series of elementary matrixes T

i i i iU Vλ=X , 



with /T
i i iV U λ= X , and where iU and iλ  are the eigenvectors and eigenvalues of the 

matrix T=S XX . In the third step, the time series reconstruction of the elementary matrixes iX is 
performed using the individual or the grouped reconstruction method (García and Núñez, 2017). The 
individual method is applied when there is no correlation between matrixes iX , and the grouped 
method is applied when there is a correlation among them. This method permits the reduction of 
principal components, and analytical-computational cost by defining a grouping indices kI , 
with 1,...,k m= , in such a way that the trajectory matrix can be represented by the expression 

1 k
m

Ik== ∑X X   (8) 

Finally, in the fourth step, each matrix kIX  is transformed into a time series 1 2 3( , , )k k k kg g g g=  of 
length N termed principal component, where 1

kg  calculates the elements of a series for *0 1k L≤ < −  
using Eq.9, 2

kg  for * *1L k K− ≤ <  through Eq.10, and 3
kg  for *K k N≤ <  with Eq.11 (García and 

Núñez, 2017).  

   
1

1 *
, 2

1

1
1

k

k m k m
m

g x
k

+

− +
=

=
+ ∑  (9) 

   
*

2 *
, 2*

1

1 L

k m k m
m

g x
L

− +
=

= ∑  (10) 

   
*

*

1
3 *

, 2
2

1 N K

k m k m
m k K

g x
N k

− +

− +
= − +

=
− ∑  (11) 

where ( )* min ,L L K=  and ( )* max ,K L K= . 
As it was mentioned previously, each principal component obtained in the signal decomposition of 

the original signal with the SSA method is associated to a specific frequency range, which enables the 
method the real-time ability for advanced signal filtering with combined time-frequency 
characterization (Fig. 10). 

The window length (L) is a crucial factor to achieve an optimum signal decomposition with the 
SSA method. The adequate selection of this parameter depends mainly on the type of signal and the 
machining process under study. If the window length is too narrow, the analysis is simplified due to 
the lower number of principal components, consequently it may lead to deficient signal 
decomposition with no significative information about the process. Conversely, if the window length 
is too long, the high number of principal components may hinder the identification of components 
with significative information correlated with the machining process. In this study, in order to achieve 
an adequate signal decomposition, predictive models were built increasing the size of the window 
length (L) according to the series [ , 2 ,3 ,..., ]L i i i ni=  were 5i =  and { }1,2,3,...n∈ = , stopping the 
process when an optimum data fit R2

adj was reached. Finally, if the effective window length and the 
significative principal components are selected optimally, the result would be similar to other 
time-frequency signal processing methods such as wavelet packet transform, Hilbert-Huang 
transform, and principal component analysis.  

Fig. 11 shows the evolution in the fit to experimental data (R2
adj) for seven predictive models built 

with seven different window lengths, from L=5 to L=35 in steps of 5. It can be observed that at lower 
window lengths the SSA method failed to achieve good results with R2

adj values, which are lower than 
50% for both the sapphire and zirconia materials. For L=30, the sapphire started to improve the data 
fit with an R2

adj of 70.1 % whereas the zirconia remained almost constant regarding to the previous 
window lengths. For L=35, both materials reached models with an optimum fit to experimental data, 
with R2

adj of 92.3% and 96.4% for sapphire and zirconia, respectively, which means the principal 
components calculated at this window length provide significative information correlated with the 
W/D parameter. 



 

 
Fig. 10. SSA decomposition of a time series. 

 
 

 
Fig 11. Adjusted R-Squared 2( )adjR  for different level decomposition: L5, L10, L15, L20, L35, L30 and 
L35. 

 
Table 6 shows the principal components and the significative features for the predictive models 

obtained with the SSA method using a windows length of L=35. For both models, a broad number of 
principal components showed significative information correlated with the parameter W/D. For 
sapphire model, the principal components λ15 (Kλ15), λ19 (Sλ19) and λ21 (Xλ21) provided the most 
significative features of the model with the highest sum of square. The next frequency bands 



providing high values of sum of square were in decreasing order λ11 (Xλ11), λ32 (Sλ32), λ15 (Kλ15), λ6 
(Sλ6), λ30 (Sλ30) and λ16 (SDλ16). The rest of significant principal components also provided 
information but in a lesser extent. In contrast with the model for sapphire, for zirconia model higher 
differences in the sum of squares of the significative features were not found, obtained for the 
principal components λ7 (Sλ7), λ8 (Kλ8), λ8 (Sλ28), λ28 (PPλ28), λ18 (Xλ18) and λ10 (Kλ10) the most 
significative features. Such difference may relate to the different attributes of materials. 
 
Table 6: Significant parameters of the sapphire and zirconia predictive models for the SSA method. 
Sapphire Zirconia 
R2

adj = 92.29 % R2
adj = 96.42 % 

Feat. Coef. (ai) SS Type III p-Value Feat. Coef. (ai) SS Type III p-Value 
Constant 52.12  0,000 Constant 54.93  0,000 
SEλ1 0.000120 809.0 0.003 Xλ6 -9.56 59.47 0,005 
Sλ4 191.9 1087.3 0.001 Sλ7 -1.872 1868.85 0,000 
Sλ6 214.9 3018.0 0.000 Sλ8 -930.0 1480.76 0,000 
Xλ11 110.6 6190.3 0.000 Kλ8 1.4120 1554.34 0,000 
Kλ12 1.161 1457.6 0.000 Sλ10 -132.1 436.52 0,000 
SEλ14 -2.184 466.0 0.017 Kλ10 0.7467 1207.01 0,000 
SEλ15 740.6 12277.2 0.000  Pλ11 0.780 224.73 0,000 
Kλ15 -2.067 3299.2 0.000 Sλ11 96.24 717.66 0,000 
SDλ16 -105.2 2970.2 0.000 Kλ15 -0.275 409.91 0,000 
Sλ19 -527.0 9382.2 0.000 Xλ18 -160.9 1385.80 0,000 
Xλ21 -477.7 8702.4 0.000 SDλ19 -80.3 352.85 0,000 
Sλ27 117.2 1576.3 0.000 Sλ22 17.39 57.46 0,006 
Xλ29 1029 2204.4 0.000 PPλ23 6.275 668.66 0,000 
Sλ30 0.3341 3103.1 0.000 Sλ25 8.94 110.94 0,000 
Sλ31 -24641 1812.9 0.000 Sλ27 51.15 418.45 0,000 
Sλ32 51409 5300.3 0.000 Xλ28 287.3 511.09 0,000 
Xλ33 745 469.2 0.017 PPλ28 -8.166 1432.24 0,000 
Sλ34 -51119 2063.2 0.000 Sλ34 -1221 72.14 0,003 
Xλ35 -883 2167.5 0.000 Sλ35 5796 31.97 0,034 
Sλ35 53492 386.6 0.028 Error - 136.99  
Error - 1454.2 - - - - - 

 
The analysis of the goodness of fit by the correlations of the estimated data versus the experimental 

data for the SSA method are shown in Fig. 12. It can be observed the model for zirconia (Fig. 12b) 
obtained a uniform distribution with no bias in all of the ranges of W/D parameter. The model 
obtained for sapphire (Fig 12a) showed higher deviation in most of estimated values of W/D 
parameter regarding the zirconia model, underscoring two point of over-estimation highlighted in red 
colour. In relation to model reliability in terms of the distribution error of the estimated data, Fig. 12c 
showed the zirconia model achieved the best behaviour with the 92.8 % of data in the optimum range 
( 15%)re ≤ , and all of the data in the range of acceptable predictions ( 25%)re ≤ . The behaviour for 



sapphire model was totally different with only the 47.6% of data in the optimum range ( 15%)re ≤ and 
the 64.3% in the range of acceptable prediction ( 25%)re ≤ .  

 
Fig.  12. Estimated values vs experimental values of the parameter W/D for SSA method in 0-200 

kHz: a) sapphire. b) zirconia. Prediction reliability with the SSA method. 

4. Conclusive Remarks 

In this study, the acoustic emission signals in the abrasive scratching are analysed for surface 
creation monitoring by using three feature extraction methods, which are in time domain (TDA), in 
frequency domain (FFT) and in the combination of time-frequency domains (SSA). The surface 
creation was evaluated by using the scratch feature parameter W/D of the maximum depth scratch in 
the scratch profile. The analyses show:  

• It has been observed that the TDA signal processing method failed to obtain meaningful signal 
feature extraction with coefficient of determination R2

adj lower than 30%.  
• For the FFT signal processing method, the analysis of the frequency range of 0-600 kHz does 

not provide good results due to the length of the discretization intervals (100 kHz) is too long, 
leaving the significative information hidden or disguised behind the signal appearance. The 
best bandwidth for relevant AE signal feature extraction was achieved at 0-200 kHz, with 
predictive models reaching R2

adj values of 95% and 90% for sapphire and zirconia, 
respectively. The frequency range discretization with intervals of 10 kHz enabled the isolation 
and location of signal characteristics to aggregate effective information for the monitoring of 
the W/D parameter.  

• For the SSA signal processing method, the best results were obtained with L=35, providing 
predictive models with R2

adj values of 92% and 96% for sapphire and zirconia, respectively. 
The principal components providing most relevant information for monitoring the ratio W/D 
were λ15, λ19 and λ21 for sapphire, whereas no particular principal component stood out for 
zirconia. 

Both FFT and SSA methods proved to be effective methods for W/D feature monitoring, whereas 
the best predictive model for zirconia material was obtained with SSA, the best signal processing 
method for sapphire material was the FFT. Nevertheless, the use of the FFT at lower frequencies 
(0-200 kHz) implies a great reduction in the sampling frequency of the acoustic emission signal, 
reducing the computational cost and making this method the most suitable for real time applications. 

Finally, the research has demonstrated that acoustic emission signal in frequency domain has 
proven to be the most effective information for monitoring the surface creation in abrasive scratch 
experiments. The applicable models developed in this research provide good evidence for using AE 
signal to present abrasive machining performance in relation to abrasive physical conditions. Such 
knowledge could help engineers to monitor and improve grinding operations. 



References 

Arun, A., Rameshkumar, K., Unnikrishnan, D., Sumesh, A., 2018. Tool Condition Monitoring of 
Cylindrical Grinding Process Using Acoustic Emission Sensor. Mater. Today Proc. 5, 
11888–11899. 

Boaron, A., Weingaertner, W.L., 2018. Dynamic in-process characterization method based on 
acoustic emission for topographic assessment of conventional grinding wheels. Wear 406–407, 
218–229. 

Box, G.E.P., Hunter, J.S., Hunter, W.G., 2005. Statistics for experimenters : design, innovation, and 
discovery. Wiley-Interscience. 

Chiu, N.H., Guao, Y.Y., 2008. State classification of CBN grinding with support vector machine. J. 
Mater. Process. Technol. 201, 601–605. 

Dias, E.A., Pereira, F.B., Ribeiro Filho, S.L.M., Brandão, L.C., 2016. Monitoring of through-feed 
centreless grinding processes with acoustic emission signals. Meas. J. Int. Meas. Confed. 94, 
71–79. 

García Plaza, E., Núñez López, P.J., 2017. Surface roughness monitoring by singular spectrum 
analysis of vibration signals. Mech. Syst. Signal Process. 84, 516–530. 

García Plaza, E., Núñez López, P.J., 2018a. Application of the wavelet packet transform to vibration 
signals for surface roughness monitoring in CNC turning operations. Mech. Syst. Signal Process. 
98, 902–919. 

García Plaza, E., Núñez López, P.J., 2018b. Analysis of cutting force signals by wavelet packet 
transform for surface roughness monitoring in CNC turning. Mech. Syst. Signal Process. 98, 
634–651. 

García Plaza, E., Núñez López, P.J., Beamud González, E.M., 2018. Multi-sensor data fusion for 
real-time surface quality control in automated machining systems. Sensors (Switzerland) 18. 

Golyandina, N., Nekrutkin, V.V. (Vladimir V., Zhigli︠a︡vskiĭ, A.A. (Anatoliĭ A., 2001. Analysis of 
time series structure : SSA and related techniques. Chapman & Hall/CRC. 

Griffin, J., Chen, X., 2009. Characteristics of the acoustic emission during horizontal single grit 
scratch tests: Part 1 characteristics and identification. Int. J. Abras. Technol. 2, 25–42. 

Karam, S., Teti, R., 2013. Wavelet transform feature extraction for chip form recognition during 
carbon steel turning. Procedia CIRP 12, 97–102. 

Lauro, C.H., Brandão, L.C., Baldo, D., Reis, R.A., Davim, J.P., 2014. Monitoring and processing 
signal applied in machining processes - A review. Meas. J. Int. Meas. Confed. 58, 73–86. 

Lee, D.E., Hwang, I., Valente, C.M.O., Oliveira, J.F.G., Dornfeld, D.A., 2006. Precision 
manufacturing process monitoring with acoustic emission. Int. J. Mach. Tools Manuf. 46, 
176–188. 

Liu, Q., Chen, X., Gindy, N., 2005. Fuzzy pattern recognition of AE signals for grinding burn. Int. J. 
Mach. Tools Manuf. 45, 811–818. 

Liu, Q., Chen, X., Gindy, N., 2006. Investigation of acoustic emission signals under a simulative 
environment of grinding burn. Int. J. Mach. Tools Manuf. 46, 284–292. 

Lounis Ait Ourab, 2020. Micron Diamond Processing of Advanced Ceramics. PhD Thesis, Liverpool 
John Moores University.. 

Ma, Z., Wang, Z., Wang, X., Yu, T., 2020. Effects of laser-assisted grinding on surface integrity of 



zirconia ceramic. Ceram. Int. 46, 921–929. 

Nguyen, D.T., Yin, S., Tang, Q., Son, P.X., Duc, L.A., 2019. Online monitoring of surface roughness 
and grinding wheel wear when grinding Ti-6Al-4V titanium alloy using ANFIS-GPR hybrid 
algorithm and Taguchi analysis. Precis. Eng. 55, 275–292. 

Siddhpura, M., Paurobally, R., 2012. A review of chatter vibration research in turning. Int. J. Mach. 
Tools Manuf. 61, 27–47. 

Tang, J., Du, J., Chen, Y., 2009. Modeling and experimental study of grinding forces in surface 
grinding. J. Mater. Process. Technol. 209, 2847–2854. 

Teti, R., Jemielniak, K., O’Donnell, G., Dornfeld, D., 2010. Advanced monitoring of machining 
operations. CIRP Ann. - Manuf. Technol. 59, 717–739. 

Warren Liao, T., 2010. Feature extraction and selection from acoustic emission signals with an 
application in grinding wheel condition monitoring. Eng. Appl. Artif. Intell. 23, 74–84. 

Warren Liao, T., Ting, C.F., Qu, J., Blau, P.J., 2007. A wavelet-based methodology for grinding 
wheel condition monitoring. Int. J. Mach. Tools Manuf. 47, 580–592. 

Wegener, K., Hoffmeister, H.W., Karpuschewski, B., Kuster, F., Hahmann, W.C., Rabiey, M., 2011. 
Conditioning and monitoring of grinding wheels. CIRP Ann. - Manuf. Technol. 60, 757–777. 

Weingaertner, W.L., Boaron, A., 2012. A method to determine the grinding wheel’s topography 
based on acoustic emission. Int. J. Abras. Technol. 5, 17–32. 

Xiao, X., Zheng, K., Liao, W., Meng, H., 2016. Study on cutting force model in ultrasonic vibration 
assisted side grinding of zirconia ceramics. Int. J. Mach. Tools Manuf. 104, 58–67. 

Yang, M., Li, C., Zhang, Y., Jia, D., Li, R., Hou, Y., Cao, H., Wang, J., 2019. Predictive model for 
minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics 
under different lubricating conditions. Ceram. Int. 45, 14908–14920. 

Yang, Z., Yu, Z., Xie, C., Huang, Y., 2014. Application of Hilbert-Huang Transform to acoustic 
emission signal for burn feature extraction in surface grinding process. Meas. J. Int. Meas. 
Confed. 47, 14–21. 

 


