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ABSTRACT
We derive the essentials of the skewed weak lensing likelihood via a simple hierarchical forward
model. Our likelihood passes four objective and cosmology-independent tests which a standard
Gaussian likelihood fails. We demonstrate that sound weak lensing data are naturally biased
low, since they are drawn from a skewed distribution. This occurs already in the framework of
Lambda cold dark matter. Mathematically, the biases arise because noisy two-point functions
follow skewed distributions. This form of bias is already known from cosmic microwave
background analyses, where the low multipoles have asymmetric error bars. Weak lensing
is more strongly affected by this asymmetry as galaxies form a discrete set of shear tracer
particles, in contrast to a smooth shear field. We demonstrate that the biases can be up to
30 per cent of the standard deviation per data point, dependent on the properties of the weak
lensing survey and the employed filter function. Our likelihood provides a versatile framework
with which to address this bias in future weak lensing analyses.

Key words: methods: data analysis – methods: statistical – cosmology: observations.

1 IN T RO D U C T I O N

Weak lensing has matured into a powerful cosmological observ-
able, from which the cosmological parameters and the cosmological
model can be inferred (Hildebrandt et al. 2017; Joudaki et al. 2017;
Troxel et al. 2017). However, weak lensing is also known for be-
ing a systematics-driven observational technique. Often discussed
sources of systematic uncertainties are Intrinsic Alignments (Blazek
et al. 2017; Joachimi & Bridle 2010), misestimates of photometric
redshifts (Hildebrandt et al. 2012; Gatti et al. 2017), and multiplica-
tive and additive biases in the shape measurements (Miller et al.
2013; Zuntz et al. 2013, 2017; Fenech Conti et al. 2017). Here,
we specialize on a further influential origin of systematics in weak
lensing, namely the problem that the actual likelihood with which
to analyse weak lensing real space statistics (such as ξ+ and ξ−) has
so far been insufficiently known.

The fact that the weak lensing likelihood cannot be Gaussian was
demonstrated in Sellentin & Heavens (2018), which revealed that
the actual weak-lensing likelihood must be left-skewed. However,
most current weak lensing analyses employ the Gaussian likelihood
and commonly find lower values for the normalization of the power
spectrum, σ 8, than the Planck analyses (Planck Collaboration XIII
2016). This has led to many publications questioning whether this

�
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is due to systematics, or incorrect physics (e.g. MacCrann et al.
2015).

However, as the weak lensing likelihood is left-skewed in real-
ity, this means it generates more data which fall below the mean,
than above. This implies that any weak lensing observation is in-
trinsically very likely to yield a data vector whose weak-lensing
amplitude is ‘surprisingly’ low and the surprise arises only because
our scientific expectations are currently mostly trained by a Gaus-
sian likelihood. A low lensing amplitude does then not indicate a
flaw in the data, but rather in the expectations.

In this paper we derive a mathematical form of the skewed like-
lihood of weak lensing 2-point functions, and prove that it repre-
sents simulated data more faithfully than a Gaussian likelihood.
The correct likelihood is a mandatory prerequisite to yield unbi-
ased constraints on physical theories: without it, neither maximum-
likelihood estimators for parameters, nor the goodness of fit or
p-values, nor Deviance Information Criteria for sanity checks or
model selection, nor Bayesian pieces of evidence can be com-
puted without biases (Trotta 2008). A sound, well-understood, and
high-quality likelihood is therefore essential for robust constraints
on a physical theory. Here, we will hence take the principled ap-
proach and begin to carefully construct the weak lensing likelihood
from a mathematical argumentation line which separately imple-
ments the different noise processes occurring in weak lensing. A
series of similarly principled approaches have been taken when
preparing for analyses of the cosmic microwave background (CMB)
(Bond, Jaffe & Knox 1998, 2000; Hivon et al. 2002; Hamimeche
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& Lewis 2008, 2009). In this paper we extend these derivations
for weak lensing applications. The upcoming sections will present
the core of a novel modular likelihood, and we expect a series of
sequential refinements in the future. In spirit, our work is clos-
est to Alsing et al. (2016) and Alsing, Heavens & Jaffe (2017,
henceforth AHJ1617) where a Bayesian Hierarchical Model for
weak lensing was constructed – here we will however employ for-
ward modelling of the actual estimator-based techniques that are
widely employed by current weak lensing surveys; CFHTLenS,
KiDS, and DES (Hildebrandt et al. 2017; Joudaki et al. 2017; Troxel
et al. 2017).

Central to understanding this paper is the insight that noise on the
data already exists prior to any attempt of inferring parameters from
the data. As such, there must exist a single unique and cosmology-
independent distribution from which the actual weak lensing data
are drawn, and it must be possible to compute this distribution.
This true distribution function will then only depend on the true
non-Gaussian noise process in the Universe. In the case of a Gaus-
sian data set it would then only depend on the true noisy 2-point
function.

It must hence be possible to verify such a distribution’s level of
realism without making reference to a cosmological model, which
is why later in the paper we will use cosmology-independent tests of
our likelihood. A forward model of the data simply generates them,
and hence belongs into the domain of descriptive statistics. How-
ever, once a well-tested likelihood has been established, parameter
inference can then be conducted, which means the inverse problem
is then carried out, with the aim to now constrain free parameters.
In contrast, the quality of any likelihood should never be judged
by whether it gives the ‘correct’ answer for physical parameters:
this would be akin to changing statistical elements in the analysis
until they prefer the physics one wishes to find. The majority of this
paper will hence be cosmology independent, including our verifica-
tion test conducted in Section 3. Keeping the statistical description
of the data strictly separate from the cosmological parameter infer-
ence leads here to the central result that weak lensing data are biased
low by themselves. When conducting parameter inference, this bias
manifests itself as a σ 8 constraint that is lower than the input cos-
mology, but is neither a signal of new physics, nor an indication that
shape measurements etc. were biased.1

The route of deriving the skewed likelihood by mathematically
following how noise in the large-scale structure and shear mea-
surement combine into a total likelihood has been taken because
this specialization to the weak lensing error budget is more power-
ful than employing general results from the non-Gaussian literature.
General results apply to non-weak-lensing-related situations as well
and are therefore somewhat vague. This includes e.g. the Edgeworth
expansion, or copula likelihoods (Hartlap et al. 2009; Sato, Ichiki
& Takeuchi 2010; Simon et al. 2015). Furthermore, the mathemati-
cal derivation enables future sequential improvements, even though
the likelihood here derived already performs better than a Gaussian
likelihood (Section 3).

To highlight the importance of first describing the data correctly
before explaining them with a physical model, parameter inference
will be conducted in a future paper. This paper concludes instead
with a discussion of the arising biases and their implication for
our physical inference, and whether or not these biases can be
precluded.

1If shape measurements are however additionally biased, then this increases
the total bias.

2 MATH E M AT I C A L D E R I VAT I O N O F T H E
L I K E L I H O O D

2.1 The sense of hierarchical models

Although cosmological data are random variables and therefore
drawn from probability densities, most data analyses in cosmology
currently do not work with the full shape of such distributions, but
are based on typically the first two or four cumulants only. For weak
lensing, the signal is the second cumulant of a sky map, namely a
2-point function. Of this 2-point function, the standard-approach
computes its respective second cumulant, which is the covariance
matrix. The covariance matrix thus includes contributions from
the fourth cumulant of the original sky map, termed the parallelo-
gram configuration of the 4-point function. The covariance matrix
thereby drops all elements of the 4-point function which are not
part of the parallelogram configuration, even though these elements
are non-vanishing. The full likelihood would contain the contribu-
tion by these elements of the 4-point function, which the Gaussian
likelihood drops. Likewise, the full likelihood would contain contri-
butions from the bispectrum or other odd cumulants, which would
give rise to a skewed distribution.

What the standard-approach of Gaussian likelihood inference
ignores, is that any covariance-matrix based inference is only com-
plete and self-contained, if the likelihood is Gaussian. In fact, adding
higher order cumulants into an inference does not fully capture
non-Gaussianity. This is because there exists no other likelihood,
which has a finite number of cumulants (Sellentin, Jaffe & Heavens
2017). Bayesian Hierarchical Models therefore skip over a suc-
cessive inclusion of ever higher cumulants, and directly update
from a cumulant-based inference to a distribution-based inference,
whereby they can handle non-Gaussian data self-consistently.

Given that the weak lensing likelihood is meanwhile known to be
non-Gaussian and skewed (Sellentin & Heavens 2018), developing
a Hierarchical Model to capture this non-Gaussianity has become
inevitable. One Hierarchical Model for weak lensing has already
been developed and applied for weak lensing data in harmonic
space, see AHJ1617. As is typical for Bayesian Hierarchical Mod-
els, the work of AHJ1617 is however numerically rather complex,
and it is therefore worth wondering to which extent it can be sim-
plified. Moreover, weak lensing is on the very first level measured
on an object-basis in real space, namely the shear estimate per indi-
vidual galaxy. Due to the complexity of the real space mask, weak
lensing data are accordingly more often analysed in real space rather
than in harmonic space. In the following sections, we will hence
develop a hierarchical forward model for any real-space statistic
[ξ±, COSEBIS, aperture masses, etc., see Kilbinger (2015) for a
summary of filter functions] circumventing the need to go via a
map. We shall also demonstrate that our Hierarchical Model suc-
ceeds in generating synthetic data which display the same statistical
behaviour as simulated weak lensing data.

2.2 Weak lensing 2-point functions

The cosmological signal whose likelihood we here derive are weak
lensing 2-point functions. For a review of weak lensing, the reader
is referred to Bartelmann & Schneider (2001) and here only the
essentials for the upcoming argumentation line are collected. We
introduce the amplitude of shear power spectra as

A = 3

2
�m

(
H0

c

)2

, (1)

MNRAS 477, 4879–4895 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/477/4/4879/4978476 by Liverpool John M
oores U

niversity user on 22 July 2020



The skewed weak lensing likelihood 4881

where �m is the matter density parameter, c is the speed of light,
and H0 is the Hubble constant. The angular shear power spectra per
redshift bin combination μ, ν are,

Cμν(�) = A2
∫

dχ
qμ(χ )qν(χ )

f 2
K(χ )

Pm

(
� + 0.5

fK(χ )
, χ

)
. (2)

Here, Pm is the Fourier matter power spectrum, evaluated at K-
mode �/χ , at the redshift corresponding to comoving distance χ .
Throughout this paper, the validity of the Limber approximation
shall be assumed, meaning Cartesian Fourier space and harmonic
space are regarded on an equal footing. For weak lensing, this is
an excellent approximation and its accuracy is discussed in Lim-
ber (1953), Loverde & Afshordi (2008), Kilbinger et al. (2017),
Kitching et al. (2017), and Tansella et al. (2017). Tomography is
enforced by splitting the galaxy populations into bins labelled by
Greek indices, which leads to the lensing kernels,

qμ(χ ) = fK(χ )

a(χ )

∫ ∞

χ

dχ ′nμ(χ ′)
fK(χ ′ − χ )

fK(χ ′)
, (3)

where nμ(χ ) is the comoving distribution of galaxies in redshift bin
μ. Given the shear power spectrum C

μν
� , a multitude of real-space

correlation functions can be computed, by transforming via different
filter functions to real space. In general, this transformation can be
written as

ξF(θ ) = 1

2π

∫
d� �F (�θ )Cμν(�), (4)

where ξF(θ ) is the real-space correlation function and F(�θ ) is the
filter that translates from harmonic space to real space. For a recent
overview of the different filters commonly used in weak lensing,
see Kilbinger (2015).

The most commonly used filters are the Bessel functions J0(�θ )
and J4(�θ ) which give rise to the 2-point correlation functions which
can easily be computed from a galaxy catalogue, namely

ξ+(θ ) = 1

2π

∫
d� �J0(�θ )Cμν(�), (5)

and

ξ−(θ ) = 1

2π

∫
d� �J4(�θ )Cμν(�). (6)

The above derivation is conducted in the flat-sky limit, and also
neglects that cosmic shear is in reality a spin-2 field. This is an ex-
cellent approximation, and describes the signal with sufficient accu-
racy even for the up-coming sky surveys (Limber 1953; Loverde &
Afshordi 2008; Kilbinger et al. 2017; Kitching et al. 2017; Tansella
et al. 2017). However, if additional precision is sought, then the
Bessel functions in ξ+ and ξ− have to be replaced by Wigner-d
matrices, and the spin-weights of the spherical harmonics have to
be included.

In the following, the discussion will be mainly focused on ξ+(θ ),
where this choice is representative of the other correlation functions
as well: due to the filter F(�θ ) in equation (4) being linear, the up-
coming statistical derivations carry through for any such filter, and
focusing the discussion on ξ+ is then not a limitation of the gen-
erality. This also holds true for further linear filtering to optimally
compress the data, as done in Asgari et al. (2017) and Heavens et al.
(2017).

2.3 A simple hierarchical forward model

Given the need for a non-Gaussian likelihood, and the potential of
Hierarchical Models to provide principled and realistic solutions

for this, one quickly arrives at the wish to simplify the Bayesian
framework for weak lensing as presented in AHJ1617. We here
achieve this as follows.

One of the computationally most demanding steps in AHJ1617
arises because this model samples from a sky map on an interme-
diate step. It can thereby correctly include even highly complicated
survey masks, encompassing the survey footprint and stellar and
satellite masks alike. The parameter inference is then carried out in
another step where the model transforms to harmonic space, where
the shear power spectrum is compared to a theoretical prediction. To
also include additive shape noise, the model of AHJ1617 employs
numerically demanding Wiener filtering of the sky map in a third
step. This computational hurdle has in AHJ1617 been overcome
via messenger fields (Elsner & Wandelt 2013; Jasche & Lavaux
2015) and the overwhelming dimensionality of the data space to be
sampled has there been addressed with Gibbs and Hamilton Monte
Carlo Sampling.

Although this framework has been proven to be numerically vi-
able, the following observation indicates that a substantial simpli-
fication should be possible: the weak lensing 2-point functions ξ+,
ξ− are readily measured in real-space via the estimator

ξ̂
μν
± (θ ) =

∑
ab wawb

[
ε

μ
t (�xa)εν

t (�xb) ± ε
μ
×(�xa)εν

×(�xb)
]

∑
ab wawb

, (7)

where ε = εs + γ , for weak shears when the measured ellipticities
are the sum of source ellipticities εs and shear γ . The indices μ,
ν denote the redshift bins. This estimator counts galaxy pairs with
a certain angular distance: The sum over a, b runs over all galaxy
pairs for which the angular separation |�xa − �xb| falls into an interval
θ ± �θ . As such, it reacts to the total number of pairs found, but
as long as the noise is isotropic and homogeneous throughout the
survey, and as long as the 2-point correlation function truly only
depends on the distance between galaxies, this estimator is fairly
blind with respect to the precise geometry of a mask, especially on
angular separations much smaller than the survey footprint. But if
the precise geometry of the survey volume has only a minor impact,
then sampling from a sky map might not be necessary. Instead the
2-point correlation functions can be used as summary statistics.

Our final weak lensing data set originates from a map of the shear
field on the sky. We denote the shear field as S(ϑ , ϕ, μ) where ϑ , ϕ

are the celestial angles, and μ labels the redshift bin, the field can
be decomposed into spherical harmonics via2

S(ϑ, φ,μ) =
∑
�,m

a
μ
�mY�m(ϑ, φ), (8)

where Y�m are the spherical harmonics and tomography is achieved
by splitting the population of source galaxies into different distri-
butions nμ(z), see equation (3). Assuming statistical isotropy, and
that the a

μ
�m are drawn from a Gaussian distribution with vanish-

ing mean, the complete information contained in this data set is
preserved when marginalizing out the individual modes, and trans-
forming on to their 2-point correlation function instead. As the
shear field is mildly non-Gaussian, this compression into a 2-point
function will lose some information on physical parameters which

2We here again use spin-0 fields, as this was found to be an excellent
approximation even for the signal (Limber 1953; Loverde & Afshordi 2008;
Kilbinger et al. 2017; Kitching et al. 2017; Tansella et al. 2017). As this is
none the less an approximation, we conduct cosmology-independent tests
in Section 3 which finds indeed that the quality of this approximation is
sufficient.
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could potentially be assessed by sampling from the full map if a
parameter-dependent model for the statistics of the full map did
exist. This is however currently not yet the case. To date, the most
precise theoretical predictions are available for 2-point functions
only, and cosmological parameter inference is then not disadvan-
taged by here marginalizing over the a�m and thereby estimating
2-point functions.

On the full sky, a realization of the thus arising angular power
spectrum is given by

Ĉ� = 1

2� + 1

�∑
m=−�

|a�m|2. (9)

The realized power spectrum Ĉ� does not follow a Gaussian dis-
tribution, since it sums up quadratic combinations of Gaussianly
distributed variables. Squaring is a non-linear operation, and con-
sequently Gaussianity is lost and Ĉ� follows a left-skewed Gamma-
distribution instead. Only for high �, where the sum in equation
(9) runs over sufficiently many m-modes, does the Central Limit
Theorem overwhelm the non-linearity of the quadratic estimator.

Inferring parameters from the shear power spectrum is observa-
tionally however not ideal. It is much easier to predict from a noisy
full-sky power spectrum the corresponding real-space correlation
function, than it is to construct a robust estimator of pseudo-C�

by transforming a noisy real-space correlation function. This is be-
cause applying a mask is easier than deconvolving a mask, and
because shape noise is trivially additive in real space, but not in
harmonic space. It is hence easier to put in a mask, as done here,
or in AHJ1617 than it is to remove a mask (Hamimeche & Lewis
2008, 2009; Asgari et al. 2016; Köhlinger et al. 2017).

Returning to equations (2), (3), and (4) we see however that the
angular filter functions equation (4) are noise-free weights. As the
statistical distribution of the full-sky Ĉ� is known, the noise of the
Ĉ� can be fed through to real-space, and there shape-noise can be
added.

This forward modelling has a further advantage: As power spectra
measure the variance in harmonic or Fourier space, they must be
positive definite. In contrast, correlation functions can take negative
values because they measure the excess probability of finding pairs
with distance r. This is best known from the galaxy correlation
function ξ gg, where the probability to find pairs within a distance of
r is

〈npairs〉 = n̄2[1 + ξgg(r)]dV1dV2, (10)

where Vi are two infinitesimal volumes and n̄ is the average spa-
tial galaxy number density. This excess probability can be larger or
lower than the average n̄2, indicating positive or negative correla-
tion. The possible negativity implies immediately that correlation
functions cannot be Gamma-distributed, since Gamma distributions
generate positive semidefinite variables only.

Therefore, we exploit the knowledge of Ĉ� being positive and
Gamma-distributed, and feed this through to real-space by apply-
ing filter functions. This forward modelling naturally enables noisy
negative values of the correlation function because the filter func-
tions between harmonic and real space (here the Bessel functions)
oscillate and admit negative values.3

3To avoid confusion, we explicitly note that we are here not discussing the
problem of negative likelihoods, as they appear in an Edgeworth expansion.
Our likelihood is positive definite but enables the necessary negative values
of the data.

Accordingly, we start from the Gamma distribution of the noisy
Ĉ�, given by Mardia, Kent & Bibby (1979), Anderson (2003), Gupta
& Nagar (2000), Hamimeche & Lewis (2008), and Hamimeche &
Lewis (2009) as

P(Ĉ�|C�) ∝ Ĉ
ν−2

2
�

C
ν
2
�

exp

(
−ν

2

Ĉ�

C�

)
. (11)

The scalar ν is called the degrees of freedom, and counts the number
of modes averaged over. It thus depends on � and for a full-sky
observation, one would have ν = 2� + 1. We here study the statistics
of the harmonic power spectrum of the shear (which is a spin-2 field)
on the same footing as the harmonic power spectrum of a scalar
field. This is consistent, since the shear field can be represented by
applying differential operators to the equally scalar lensing potential
field. Differential operators do however not change the degrees of
freedom, and the statistical properties of the shear field can hence
be derived from the statistics of the spin-0 lensing potential field.

The distribution equation (11) is a special type of a Gamma
function. If xi are generic Gamma distributed variables,4 with

xi ∼ Gamma(ai, b), (12)

where a is the shape parameter (ν/2 in our case) and b the scale
parameter (2C�/ν in our case) of the Gamma distribution, then the
sum over such Gamma distributed samples follows(

N∑
i=1

xi

)
∼ Gamma

[(
N∑

i=1

ai

)
, b

]
. (13)

Furthermore, a scalar multiple of a Gamma distributed variable is
distributed according to

if x ∼ Gamma(a, b) ⇒ cx ∼ Gamma(a, cb). (14)

From these two properties, we see that there exists no analytical
solution if we wish to add up multiple Gamma distributed Ĉ� that are
all drawn from different ν, and that each is weighted with different
prefactors arising from the filter function, c = F(�θ ). Fortunately,
sampling from a Gamma distribution is straight forward, such that
a numerical implementation of this process is easy and has short
code-execution times.

Drawing realizations Ĉ� of the shear power spectrum include ran-
domness from the large-scale structure into the total weak lensing
likelihood. A further dominant uncertainty is shape noise, gener-
ated because real galaxies are not spherical, but come with intrinsic
source ellipticities, εs. The distribution of εs is traditionally ap-
proximated by a Gaussian5 with standard deviation σεi

= 0.29 per
ellipticity component (i = 1, 2) (see for example Hildebrandt et al.
2017). These two dominant sources of scatter in weak lensing com-
bine into the likelihood

∀� : Ĉ� ∼ Gamma

[
ν(�)

2
,

2C�

ν(�)

]
,

∀θ,∀F : ξ̂F (θ ) ∼
∑

�

�F (�θ )

2π
Ĉ�,

ξ̂F (θ ) → ξ̂F (θ ) + s(θ ), with s(θ ) ∼ G
(
0, Cs

)
, (15)

4We adopt the usual statistical convention, denoting ‘drawn from’ as ‘∼’.
5For the purposes of this paper we adopt Gaussian-distributed shape noise,
noting that in contrast to a Gaussian likelihood our analysis framework can
readily include more complex distributions, such as the observed galaxy
ellipticity distributions from, for example, Melchior & Viola (2012), Miller
et al. (2013), and Fenech Conti et al. (2017), that are not well approximated
by Gaussian distributions.
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The skewed weak lensing likelihood 4883

where G is the Gaussian distribution and the shape noise s(θ ) has
variance

Cs = σ 4
ε

Askyn̄22πθ�θ
, (16)

where σ 2
ε = σ 2

ε1
+ σ 2

ε2
. This covariance simply suppresses the scalar

shape noise σ ε per galaxy by the total number of galaxies averaged
over in the angular bin �θ around θ (Schneider et al. 2002; Joachimi,
Schneider & Eifler 2008).

Equation (15) is the central result of this paper: it generates the
distribution, D, of weak lensing data, ξ̂F (θ ) ∼ DF (Ĉ�, σ

2
ε , n̄, Asky),

which depends on the noise of the shear Ĉ�, the filter function F,
shape noise σ 2

ε , and survey area Asky and the survey’s galaxy density
n̄.

Equation (15) describes the noise on weak lensing data, indepen-
dently of any cosmological model; the true noise is a property of
the data only, not a property of the assumed physical model. Upon
availability of a data vector and a cosmological theory, it therefore
induces the weak lensing likelihood

L(ξ̂ obs
F | p), (17)

where ξ̂ obs
F are the observed data, and p is the parameter to be

inferred via maximum-likelihood estimation. If the order of the
conditionality statement is reversed by priors π

L( p|ξ̂ obs
F ) = L(ξ̂ obs

F | p)π ( p)

π (ξ̂ obs
F )

, (18)

then maximum-a-posteriori inference can be carried out. We note,
that we do not refer to our equation (15) as a Bayesian Hierarchical
Model. As our equation (15) employs no (arbitrary) priors and
instead forward models the data, it is not Bayesian as such. Rather,
it is a hierarchical forward model, which is why in this paper it is
referred to as ‘hierarchical’ but not as ‘Bayesian’.

The remaining task at hand is now to work out the degrees of
freedom, ν. If a smooth field could be observed on the full sky, then
the degrees of freedom would simply be ν = 2� + 1. As realistic
surveys only cover a fraction of the sky, this has to reduce the degrees
of freedom whereby statistical scatter is enhanced. Furthermore,
galaxies are discrete tracer particles, rather than a smooth random
field, and this must lead to a further reduction in the degrees of
freedom.

It is well known that a survey which covers the fraction fsky of
the full sphere can only support a finite number of correlated �

modes, and the degrees of freedom can then be approximated by
ν ≈ fsky(2� + 1) (Hamimeche & Lewis 2008, 2009). The loss of
statistical precision due to galaxies being discrete tracer particles
can be estimated by enforcing a pixelization of the survey, such that
sufficiently many galaxies in one pixel can jointly mimic a smooth
but pixelized field.

We therefore imagine pixels on the sky with side length θ . In
the flat sky approximation the pixel area will be Apix ≈ π2/�2

pix. If
the pixel is supposed to represent a smooth shear field, then it must
contain a certain number Ngal of galaxies, that are averaged over. The
higher the galaxy density of the survey, the smaller these pixels can
be. If the survey has a number density of n̄ galaxies per area, then a
pixel that contains Ngal galaxies must have size Apix = Ngal/n̄, from
which we identify,

�pix ≈
√

π2n̄

Ngal
. (19)

The degrees of freedom on the masked and pixelated sky are then,

ν ≈ fsky
(2� + 1)

�pix
. (20)

The degrees of freedom derived from this argumentation line have
the right order of magnitude, but in the end it has to be underlined
that this is an approximation. However, a refinement, which would
also allow to include soft variations induced by the harmonic trans-
form of a survey mask, would be to include a factor geff(�) into the
degrees of freedom. For simple masks, this factor can be computed
analytically, but given the complications with survey boundaries
and stellar masks, the factor geff is measured more easily from 200
to 300 simulations or from a Bayesian Hierarchical Model (see also
the discussion Hivon et al. 2002). This leads to the total degrees of
freedom being

ν ≈ fsky
(2� + 1)

�pix
geff (�). (21)

For the scope of this paper, we measure geff from the 930 SLICS
weak lensing simulations (Harnois-Déraps & van Waerbeke 2015).
We first determine the marginal densities of each data point ξ+(θ i),
given by the histogram Hi of the 930 SLICS samples. These
marginal distributions are readily predicted from our likelihood,
given a value for geff(�). We hence determine our likelihood for
different values of geff(�), each time drawing 930 samples per data
point, and distributing them on to histograms Hi. The value for
geff(�) that reproduces the simulations best is then the value that
minimizes the distance between the simulated histograms Hi and
the predicted histograms Hi. A stable metric to compute the dis-
tance between histograms is given by the L1-norm and we hence
minimize the total error

Etot =
∑
i=1

Ei, (22)

where the discrepancy between the histograms of each marginal
distribution is

Ei = 1

B

B∑
b=1

|Hi
b − Hi

b |, (23)

where the subscript b runs over the number of bins B in each his-
togram.

We find that an �-independent geff is sufficient within the preci-
sion enabled by the simulations. As a best-fitting value, we found
geff ≈ 2.29, where the uncertainty on geff is caused by the limited
number of 930 simulations. Fortunately, the shape and the ampli-
tude of the likelihood are relatively stable to changes in geff of up to
40 per cent. For the scope of this work, geff is therefore sufficiently
well determined. For future research we will target a deeper math-
ematical understanding of geff and thereby become independent of
simulations.

In Section 3 we prove that our statistical model gives rise to
a weak lensing likelihood, which passes four stringent tests that a
Gaussian likelihood fails. The approximations discussed here hence
represent the actual noise on weak lensing data more faithfully than a
Gaussian approximation with an arbitrarily complicated covariance
matrix. We therefore proceed to prove that our likelihood is not just
a mere model, but a faithful representation of genuine weak lensing
data.
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3 AC C U R AC Y O F T H E D E R I V E D
L I K E L I H O O D

Sellentin & Heavens (2018) presented stringent tests that character-
ize non-Gaussian statistical behaviour, and any sound weak lensing
likelihood should hence pass these tests. The methods derived in
Sellentin & Heavens (2018) test whether all pairwise combinations
of data elements display the correct statistical behaviour under addi-
tion, division, and multiplication, and whether the correct marginal
distribution ensues for each data point. In combination, these tests
reveal whether random variables have the correct mathematical be-
haviour as real data. Sellentin & Heavens (2018) show that non-
Gaussianities are present in the CFHTLenS data set and we here
show that this is a generic feature of weak lensing data, and that our
likelihood equation (15) is able to reproduce these non-Gaussian
features well.

Fig. 1 depicts a trans-covariance matrix as first defined in Sel-
lentin & Heavens (2018). A trans-covariance matrix has the same
structure as a covariance matrix, but whereas a covariance matrix
measures the covariance between two data points, a trans-covariance
measures non-Gaussian correlations instead. The trans-covariance
matrix of Gaussian data vanishes. The strength of trans-covariance
matrices is that they hunt for non-Gaussian correlations not by
computing cumulants but by computing distributions instead. As
cumulants only carry incomplete and limited information on non-
Gaussianities, the test via distributions is more robust and more
sensitive. To be precise, Sellentin & Heavens (2018) define in
their equations (7), (10), and (12) three trans-covariance matri-
ces, S+, S÷, S∗, which test whether sums, ratios, and products of
random variables follow the correct distribution. The elements of
the trans-covariance matrices then depict the total deviation of the
measured distribution from the distribution that should ensue. Trans-
covariance matrices thereby react to whether the correct skewness
is produced, the correct overall shape of the distribution, the correct
outlier fraction and many more properties arising from a distribu-
tion’s shape.

In Fig. 1, the trans-covariance matrix was estimated from a set of
930 simulated weak lensing data vectors. These 100 deg2 field-of-
view simulations are a significant advance on the 12.84 deg2 ‘Clone-
simulations’ (Harnois-Déraps, Vafaei & Van Waerbeke 2012; Hey-
mans et al. 2012; Harnois-Déraps et al. 2013) used in Sellentin
& Heavens (2018). The non-Gaussianities here discussed therefore
cannot be attributed to the known loss of power in the ‘Clone-
simulations’ for angular scales θ > 10 arcmin that resulted from the
small simulation box size of L = 147 Mpc h−1. With a simulation
box size of L = 505 Mpc h−1, this finite box effect impacts the am-
plitude of the recovered SLICS weak lensing signal only on scales
larger than θ > 100 arcmin. This now well understood effect is also
corrected for in our analysis.

The trans-covariance matrix in Fig. 1, S+, was produced for
an illustrative 100 deg2 weak lensing survey, assuming 10 tomo-
graphic bins with an equal number density of galaxies in each bin
of 2.6 arcmin−2. The redshift bin modelling for this mock sur-
vey is depicted in Fig. 2, displaying 10 tomographic bins of equal
number density, each convolved with a Gaussian filter of width
σ = 0.02(1 + z), and restricted to the redshift range [0.1–3.0]. The
correlation functions ξ+ and ξ− are used as summary statistics, with
32 angular bins, logarithmically spaced equidistantly between 0.5
and 400 arcmin.

While the left-hand panels of Fig. 1 omit shape noise, the right-
hand panels also contain a Gaussian shape noise of σεi

= 0.29 per

ellipticity component. The colour bar indicates how strongly two
data points couple in a non-Gaussian fashion, with green and yellow
being data points that are most strongly subjected to non-Gaussian
statistics. Data points indicated in blue behave approximately Gaus-
sian under addition. The full trans-covariance matrices for division
and multiplication also reveal the presence of non-Gaussianities,
and are discussed in more detail in Section 3.1.

By comparing the top and bottom panels of Fig. 1, it is evident
that the estimator ξ+ is more subject to non-Gaussian correlations
than ξ−. This is caused by the different filter functions of ξ+ and
ξ−. Fig. 3 shows the ratio of the filter functions for ξ+ and ξ− and
illustrates that the filter of ξ+ puts a larger weight on low �-modes.
As these low �-modes have the smallest degrees of freedom ν, they
are most subject to skewness and thereby cause the striking non-
Gaussianities in ξ+. An exchange of the filter function to any other
filter function commonly used in weak lensing (Kilbinger 2015;
Asgari et al. 2017) or even an optimal linear compression thereof,
e.g. via a MOPED-filter function (Heavens et al. 2017), will change
the non-Gaussianity of the compressed 2-point correlation function,
and this is self-consistently modelled by our likelihood.

By comparing the left- and right-hand panels of Fig. 1, we see
that the weak lensing likelihood is indeed strongly modular. This
supports the structure of our likelihood equation (15) which treats
the randomness of cosmic structure formation, and the shape noise
due to galaxies being non-spherical on separate levels. We further-
more see that shape noise leads to a strong Gaussianization of the
data. This is expected, since the shape noise model that has been
included in the SLICS simulations follows a Gaussian distribution.
The right-hand panels show that, in the presence of shape noise,
the non-Gaussianity is only significant on large angular scales. On
these scales, which contain the most galaxy pairs, Gaussian shape
noise is suppressed but the non-Gaussianities seen in the left-hand
panels still remain. We therefore conclude that, for a fixed sur-
vey area, deeper surveys will suffer more significantly from these
non-Gaussian statistics.

Having thus supported the modular structure of our likelihood,
we continue to show that our likelihood equation (15) also succeeds
in reproducing all marginal distributions of the simulated weak
lensing data within the regime where the simulations are reliable
(see Section 3.2). This can be seen in Fig. 4, which depicts the
distribution of ξ+ estimators for the first tomographic redshift bin
in Fig. 2, assuming zero shape noise (i.e. σ ε = 0). The binning
of the histograms which compare the distribution of ξ+ measured
from the SLICS simulations, with the distribution predicted by our
likelihood function in equation (15), is the same. For Fig. 4, the
sky area of our likelihood was set to 100 deg2, which is set by the
size of the SLICS simulated sky patch. We find the same level of
agreement for all tomographic redshift bins, and for the case when
shape noise is also included in the analysis. We therefore conclude
that our likelihood correctly reproduces the marginal distributions
as produced via simulations of cosmic structure formation and weak
lensing.

For the SLICS simulations, the number of possible histogram bins
is limited by the available number of 930 simulations. In contrast,
sampling from our likelihood is straight-forward, and Fig. 5 there-
fore depicts a more highly resolved version of the shape noise free
marginal distributions, adapted to a sky coverage of 450 deg2 (KiDS-
450-like), 1320 deg2 (DES-Yr1-like), and 15 000 deg2 (Euclid-like),
where the mock survey properties are summarized in Table 1. Fig. 5
reveals the strongly skewed nature of the marginal distributions.
However for increasing sky coverage, a slow Gaussianization pro-
cess sets in, such that the distributions for the Euclid survey area are
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The skewed weak lensing likelihood 4885

Figure 1. Trans-covariance matrices S+ (equation 7 of Sellentin & Heavens 2018) for an illustrative 100 deg2 10-bin tomographic weak lensing survey with
32 angular bins and a galaxy number density of 2.6 arcmin−2 per tomographic bin. Greenish elements mark data points that are subject to non-Gaussian
statistics. Redshifts increase to the lower right corner. Angular bins range from 0.5 arcmin to about 6 deg. Within each redshift bin, the angular scale increases
towards the lower right corner. Left: without shape noise. Right: with shape noise. Top: ξ+. Bottom: ξ−. All colours are to scale. From the right we see that the
non-Gaussianities are more prominent on large angular scales where the increasing number of galaxy pairs suppresses the shape noise.

more symmetric than those for the current KiDS and DES survey
areas (but not fully symmetric). The Gaussianization arises from er-
godicity: as the survey size increases, the areal average gets closer
to the ensemble average. This is also why small angular scales
Gaussianize first. The slow Gaussianization by increasing the sur-
vey volume however also implies that the skewness of weak lensing
likelihoods is subject to the same constraints as cosmic variance: the
finiteness of the maximally ever observable cosmic volume leads
to a minimal asymmetry that the weak lensing distributions will
maintain.

3.1 Trans-covariance tests

To test whether our likelihood generates data that also have the cor-
rect non-Gaussian behaviour when convolved in mathematical func-

tions, we conduct the trans-covariance tests of Sellentin & Heavens
(2018) on them. The results are displayed in Fig. 6, and are to be in-
terpreted as follows: If a likelihood fails the trans-covariance tests,
it means this likelihood assesses correlations in the data incorrectly.
Such a likelihood then does not correctly account for mutual in-
terdependencies between different data points. In analyses of the
large-scale structure, this is especially problematic, as our signals
are precisely correlations between different data points. In general, a
likelihood that fails the trans-covariance tests is incorrectly shaped,
which will lead to biases when inferring physical parameters. It will
also lead to biases when inferring which physical model is preferred
out of a set of multiple competing models.

The trans-covariance matrices test for non-Gaussianity by as-
sessing whether predictions for Gaussian distributed samples hold
true or not. These tests are based on the shape of distributions
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4886 E. Sellentin, C. Heymans and J. Harnois-Déraps

Figure 2. The 10 tomographic redshift bins as chosen to model a typ-
ical weak lensing survey. The galaxy density is constant per bin with
2.6 arcmin−2.

and are sensitive with respect to skewness, curtosis, higher order
cumulants, outlier-fractions, etc. The tests begin by taking N syn-
thetic data vectors and whitening them via a mean-subtraction and
Cholesky-whitening transform. If the N random vectors were indeed
Gaussianly distributed, then this whitening step destroys all corre-
lations in the vector elements. If the vectors were non-Gaussianly
distributed, then the whitening destroys Gaussian correlations only,
but non-Gaussian correlations survive. These are then identified by
histograming sums, ratios, and products of the random vector el-
ements. For Gaussian random variables, the limiting distributions
of these arithmetic functions are known for N → ∞. Hence the
trans-covariance tests take either the L1 or L2 norm between the
sampled histograms and the limiting distribution for N → ∞. The
larger these norms, the less compatible are the histograms with the
result that should occur for Gaussian variables. The test is repeated
for each combination between data elements i and j. The trans-
covariance matrices then summarize visually the outcome of all
tests for all combinations between the data points: the i, j-entry of
each trans-covariance matrix depicts the distance between the sam-
pled histogram and the limiting distribution for Gaussian variables.
As such, a large value in any element of a trans-covariance matrix
indicates incompatibility with Gaussian distributions. The arising
patterns in a trans-covariance then illustrate inherent non-Gaussian
correlations between data points, which are to be reproduced by a
non-Gaussian likelihood.

The tests in Fig. 6 demonstrate that the samples drawn from
our likelihood equation (15) represent the statistical behaviour of
weak lensing data more faithfully than the Gaussian likelihood.
Samples from our likelihood add correctly, multiply correctly, and
also have the correct ratios. As all mathematical functions can
be represented by a concatenation of these operations, we there-
fore conclude that our likelihood from equation (15) represents the
true statistical behaviour of weak lensing data to a high degree of
accuracy.

In contrast, the first column of Fig. 6 illustrates that a Gaussian
likelihood fails the trans-covariance tests, irrespective of whether
the covariance matrix was computed by any of the methods pre-
sented in Lacasa & Kunz (2017), Lacasa (2017), Joachimi et al.
(2008), Hildebrandt et al. (2017), Dark Energy Survey Collabora-

tion (2016), and Sellentin & Heavens (2016, 2017). This means
weak lensing data are non-Gaussianly distributed and assuming a
Gaussian likelihood therefore poses an unnecessary limitation to the
quality of weak lensing analyses. This holds true for even arbitrarily
precise covariance matrices.

3.2 Known limitations of the SLICS simulations

In order to facilitate the comparison between our likelihood and the
synthetic weak lensing data vectors from the SLICS simulations,
we compile in Table 2 the known limitations of the simulations.
The most influential problem with the simulations is that the fi-
nite simulated volume cannot support large-scale modes, and hence
power is lost with low �-modes. When comparing our likelihood
to the SLICS simulations, we mimic this effect in our likelihood
by switching off the low �-modes. This is an approximation as the
low-� power in the simulations decays smoothly, in contrast to the
sharp cut-off that we implement. As such we should not expect
perfect agreement between the high θ marginal distributions shown
in Fig. 4. Nor should we expect the trans-covariance matrices mea-
sured from the SLICS simulations (second column of Fig. 6) to
perfectly agree with the trans-covariance matrices measured with
the inclusion of this �-mode cut in our likelihood (third column of
Fig. 6).

Even though the low �-modes are missing in the simulations, they
are of course present in real data, and we hence display the trans-
covariance matrices for all �-modes down to � = 2 in the last column
of Fig. 6. As expected, the non-Gaussianity in the weak lensing data
increases when these low �-modes are included. The low �-modes
also dominate the skewness of the marginal distributions, which is
why Fig. 4 (where we switched off the low multipoles to mimic
the simulations) displays less skewed marginal distributions than
Fig. 5 where we plot marginal distributions after including the low
�-modes that the simulations exclude.

A further more difficult to mimic discrepancy between the sim-
ulations and our likelihood is that the resolution effects in the sim-
ulations produce ξ+ and ξ− realizations which deviate by up to
∼10 per cent from the theoretical prediction of ξ+ and ξ− from the
input cosmology. This is also understood and is described in more
detail in Harnois-Déraps & van Waerbeke (2015). We measure the
mean scale dependent deviation between the simulated and theoret-
ical prediction for ξ+ and ξ−. We then add this mean value to each
SLICS realization when comparing results in Fig. 4. This correction
translates the histograms, but does not change their shape.

As this correction may affect the trans-covariance matrices in
an opaque way (because various histograms are then shifted with
respect to each other), this calibration is not included in Fig. 6. The
remaining expected discrepancy between the simulations and our
likelihood (which truly samples from the SLICS input cosmology)
is therefore partially responsible for the relatively small differences
in the trans-covariance matrices that compare our likelihood to the
simulations.

Overall, it can be seen that our likelihood is more reliable in repro-
ducing the trans-covariance matrices and the marginal distributions,
than a Gaussian likelihood. The trans-covariances in Fig. 6 refer to
a shape noise free case, i.e. they only test the non-Gaussianity
of the likelihood arising from noise in the large-scale structure that
feeds through to the 2-point function. Fig. 7 demonstrates that when
adding shape noise, the quantitative agreement between our likeli-
hood and the simulations increases further. This is because shape
noise dominates on the smallest angular scales. Shape-noise there-
fore dominates the error budget where non-linearities in structure
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The skewed weak lensing likelihood 4887

Figure 3. Illustration of which multipoles are preferred by the different filter functions. Left: absolute value of the filter function �J0(�θ ) as a function of the
multipole �. Middle: same scale as left, but now �J4(�θ ). The steep drop of this filter function indicates that it strongly suppresses contributions from the low
multipoles. Right: ratio of the filter functions for ξ+ and ξ−. This ratio is equal to J0(θ�)/J4(θ�), and for this plot the absolute value was taken. If the ratio is
equal to unity, then ξ+ and ξ− put the same weight on harmonic modes with a given �, but as can be seen, especially for low �, ξ+ puts more weight on these
modes. As fewer modes with low � exist, this means the estimator ξ+ will be more subject to non-Gaussianities.

Figure 4. Non-Gaussian marginal distributions of individual weak lensing data points. Depicted is ξ+ for different angles as given in the legend, for the
first tomographic redshift bin. The solid curves are measured from the 100 deg2 SLICS with zero shape noise. The dashed curves were produced from the
non-Gaussian likelihood equation (15) with the same settings as the simulations. This shows that our mathematically derived likelihood produces marginal
distributions in agreement with the simulations. In other words, our assumption of the a�m being Gaussian-distributed is a good approximation. As can be seen,
the density functions are strongly left-skewed which makes them peak below the mean. It is thereby very likely that one weak lensing data vector contains
many data points which are lower than average. Fig. A1 presents similar conclusions for the corresponding analysis of the ξ−-estimator.

Figure 5. Increasing the sky coverage leads to a slow Gaussianization of the marginal distributions of ξ+(θ ). The distributions here shown were produced with
our forward model equation (15) and include the low �-modes that the SLICS simulations lack. The Gaussianization first sets in at small angular separations
and proceeds to larger angular scales when the survey volume is increased. This is due to ergodicity, where the increasing volume average feigns an ensemble
average. Even for a Euclid-like survey, noticeable non-Gaussianity will remain on angular scales above ≈50 arcmin. Shape noise has here not been added; the
displayed distributions refer to redshift bin 1. Fig. A2 presents the distributions for the corresponding analysis of the ξ−-estimator.
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Table 1. Weak lensing survey properties which affect the likelihood.

Parameter Value Meaning Influences

n̄ 2.6 arcmin−2/tomogr.bin Galaxy density Degrees of freedom via pixelization
geff calibrated Density of states Effect of mask geometry on degrees of freedom
Asky 450/1320/15 000 deg2 Survey area Values adopted for KiDS/DES/Euclid-like surveys
fsky Asky[sterad]/4π Sky fraction Degrees of freedom by setting density of � modes
σεi

0.29 Shape noise std. dev. Reduction of overall precision due to shape noise

Figure 6. Trans-covariance matrices, a highly sensitive and cosmology-independent test of non-Gaussianity (see Sellentin & Heavens 2018). The correct
weak lensing likelihood should – apart from residual inaccuracies in the numerical simulations – reproduce the patterns seen in the second row. Rows: addition,
division, multiplication. First column: vanishing trans-covariance matrices of the currently standard Gaussian likelihood. Second column: trans-covariance
matrices measured from the SLICS simulations, whose non-zero elements indicate whether the sums, ratios, and products follow the correct distribution. By
definition, the Gaussian likelihood from the first row cannot produce the patterns of the second row. Third column: trans-covariance matrices derived from our
likelihood equation (15), where we approximately mimic the loss of power in the simulations by turning off the low �-modes. The up to ∼10 per cent deviation
of the simulated SLICS data from the input cosmological model due to resolution effects is not corrected for, contributing to the discrepancies between the
second and the third column. Nevertheless, our likelihood is a significant improvement in recovering the simulated trans-covariance matrices, in comparison to
the Gaussian likelihood. Fourth column: turning on the low �-modes that are lost in simulations enhances the non-Gaussianity because the low multipoles have
the lowest degrees of freedom. The simulations therefore underestimate the skewness of weak lensing likelihoods. The plots refer to ξ+ of the first redshift bin
and are representative of the other redshifts. Here, no shape noise was added. The agreement between simulations and our likelihood equation (15) improves
with shape noise, see Fig. 7.

formation are expected, which can to-date not be reproduced with
our likelihood.6

6Note that the usual angular cuts to weak lensing data are additionally always
chosen such as to suppress contributions from the most non-linear scales.

Even though the limitations of the SLICS simulations are under-
stood and can be mimicked, a certain grey-zone arises, where it is
not completely clear how the output of the simulations should be
interpreted. This affects the comparison with our likelihood. For
future improvements of the likelihood here presented, we hence
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The skewed weak lensing likelihood 4889

Table 2. Limitations of the SLICS simulations which affect the comparison with the likelihood here derived, for further details see Harnois-Déraps & van
Waerbeke (2015).

Parameter Value Meaning Causes

kNyq 19 h Mpc−1 Fourier Nyquist frequency Simulations lack scatter from high k modes.
�Nyq 1.3 × 105 Harmonic Nyquist frequency Simulations lack scatter from high �.
�min ≈20 Smallest � resolved Simulations lack skewness from low � modes.
Asky 100 deg2 Simulated survey area Sampling range by cutting of high � modes
mres 2.88 × 109 M� h−1 Mass resolution Scale-dependent deviation of ξ+, ξ− from the input cosmology.
�ξ+ ≈10 per cent Typical discrepancies Angular dependent uncertainty of simulated ξ+.
�ξ− ≥ 10 per cent Typical discrepancies Angular dependent uncertainty of simulated ξ−.

Figure 7. Transcovariance matrix with shape noise; displaying the first
three redshift bins from Fig. 1. Left: SLICS simulations. Right: our likeli-
hood equation (15). The right-hand panel also includes the low �-modes that
the SLICS simulations lack.

target to become independent of the calibration on the simulations,
and compute the degrees of freedom in a fully independent manner.

4 IMPLICATION FOR WEAK LENSING BI ASES

Given that our likelihood for weak lensing 2-point functions suc-
cessfully passed four tests that a Gaussian likelihood fails, we are
now in a position to use a fully probabilistic framework to deter-
mine how parameter biases in weak lensing will arise when using a
Gaussian likelihood.

The marginal distributions in Fig. 4 and also those in Fig. 5
illustrate that the weak lensing likelihood is left-skewed. This means
it will most often produce data vectors whose lensing amplitude is
lower than that of the input cosmology. These biases are quantified
in more detail in Figs 8 and 9: these figures illustrate that the value
of each data point is biased low, such that the biases occur already
before parameter inference is conducted.

This bias is independent of any astrophysical or data-related sys-
tematics and cannot be addressed by, for example, improvements in
shape measurement technology, or by marginalizing over nuisance
parameters in a standard Gaussian likelihood analysis. This bias
indicates neither any modifications of gravity nor other deviations
from Lambda cold dark matter: each input cosmology will always
generate weak lensing data that are most likely below their mean.
The bias is caused by our analysis technique computing a 2-point
function, and it is in this sense ‘self-made’ but unavoidable.

The left-skewness arises because the shear power spectra Ĉ
μν
� are

Gamma distributed. The Gamma distribution is a non-symmetric
distribution and peaks below its mean. Its mean (μ), peak (p), and

variance (v) are given by

μ = C�

p = C�

(
1 − 2

ν

)
for ν > 2

v = 2C2
�

ν
. (24)

From equation (24) we see that as ν increases, the expectation value
approaches the peak value. For an infinitely precise measurement,
the maximum likelihood estimator is therefore unbiased. For finite
ν however, the bias B = μ − p is

B = −2C�/ν. (25)

The fact that the different C� are all continually biased low then
feeds through to the real-space correlation functions, such that these
are also biased low. The left-skewness implies that the maximum-
likelihood parameters will not coincide with the mean parameters.
Only for large degrees of freedom ν will the Central Limit Theo-
rem kick in, and the skewed Gamma distribution then tends to its
Gaussian limit, given by

− 2 logL(C�|Ĉ�) = ν

2

(
C� − Ĉ�

Ĉ�

)2

. (26)

The distribution of real-space correlation functions will then Gaus-
sianize accordingly, and in this Gaussian limit, the peak of the
likelihood and the mean coincide. As the degrees of freedom in-
crease linearly with fsky, the likelihood will only linearly tend back
towards a Gaussian as the survey area grows. In Figs 5 and 8 we see
that not even a Euclid-like survey area reaches this Gaussian limit
fully. Structure formation by itself leads to each data point of ξ+

being biased low by up to half a standard deviation, in the absence
of shape noise.

Adding shape noise does not remedy this situation as shape noise
does not decrease the absolute value of the bias. It does however
decrease the ratio of the bias to the total statistical error by increasing
the uncertainty on the measurement.

The discussion until now has been independent of a theoretically
motivated parametrization to explain the data. In fact, the input
cosmology was so far only needed to generate data, but was kept
fixed throughout the entire paper. A preliminary study of how the
biases from the data translate on to biases of physical parameters,
can now be executed as follows: As the weak lensing amplitude
scales with S8 = σ8

√
�m, the low weak lensing amplitude directly

translates into a maximum likelihood estimator for S8 being biased
low, and the smaller the degrees of freedom, the larger this bias.

The total bias on σ 8 is an agglomeration of the biases contributed
by each data point, and the bias of each data point depends mainly
on angular scale, the galaxy density of the survey, and the area of
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Figure 8. Bias of the shape-noise free weak lensing correlation functions, divided by the standard deviation per data point. This is the ratio of biases arising
from the large-scale structure, to variance caused by the large-scale structure. The legends B1, B2, B3 refer to redshift bins 1, 2, 3 from Fig. 2. As can be
seen, each data point is consistently biased low by around half a standard deviation. This ratio between the bias and the standard deviation remains remarkably
constant when increasing the sky coverage from 450 deg2 (KiDS-like) to 15 000 deg2 (Euclid-like). However, Gaussianization sets in very slowly, see also
Fig. 5. The noisiness of the curves arises because all samples of a histogram contribute to mean and standard deviation, while only the samples in the highest
bins influence the peak. The peak position is hence noisier than the mean, and this noise has purposefully been left in the plots to give a visual impression of the
uncertainty. The biases are relatively universal for different redshift bins because the redshift binning determines the shear-Ĉ�, but the bias is dominated by the
degrees of freedom ν, which react to survey size, rather than survey depth and binning. Cross-bins are therefore similarly biased as the intrabin correlations here
shown. Fig. A3 presents the corresponding analysis of the ξ− statistic, which is also biased low, but less so, since it suppresses the low multiple contributions.

Figure 9. Like Fig. 8, but now with shape noise added: this does not remove the bias which arises from cosmic variance of the 2-point function, but it reduces
the ratio of the bias to the now increased total standard deviation. On the smallest angular scales, the bias is negligible in comparison to the total noise, yet for
scales larger than 20 arcmin. The data of a KiDS-like survey can be biased by about 10–20 per cent of a standard deviation, and up to 25–30 per cent for surveys
with DES-like and Euclid-like sky coverage on the same angular scales. For each sky coverage in the Figs 5, 8, and 9, 26 000 samples of a tomographic survey
with the first three bins from Fig. 2 were produced. Per survey, this required 200 single-core CPU hours, illustrating that our likelihood is sufficiently fast to
allow for improvements. The corresponding plot for ξ− is given in Fig. A4, which is less biased because it suppresses the low multipole contributions.

the survey – it depends relatively weakly on the shear power spectra
themselves. Fig. 10 illustrates that the left-skewness of the weak
lensing likelihood indeed has the correct order of magnitude to
explain the low σ 8 as found in weak lensing studies. It has however
to be cautioned, that the arising bias is stochastic, i.e. it will depend
on the realization of the data vector drawn. The meaning of this is
discussed in the conclusions, together with an outlook of how weak
lensing data can be manipulated to reduce the impact of this bias on
physical parameters.

5 TH E ROA D A H E A D

Data analysis can only lead to unbiased constraints on a physical
theory if the employed likelihood is correct (e.g. Cramer 1946;
Jeffreys 1961; Mardia et al. 1979; Anderson 2003; Sun & Berger
2006; Trotta 2008). At the same time, it is broadly recognized that

weak lensing is subject to uncertainties which should ideally be fully
and consistently included in the analysis, but the current standard
approach via a Gaussian likelihood does not allow this. One example
for this is the addition of a shape noise covariance matrix on to the
covariance matrix of cosmic structure formation: the addition of
covariance matrices is only correct, if the noise distributions of
both elements are Gaussian. Another challenge that is currently
not handled fully and consistently are intrinsic alignments: these
produce correlated shapes between galaxies, and thereby modify
both the noise and signal at the same time. Only including them in
the signal is insufficient.

In order to enable a consistent treatment of such weak lensing
uncertainties, we have dropped the assumption of a Gaussian likeli-
hood, and updated to a modular distribution based likelihood. Apart
from being mathematically more principled, updating to a modular
likelihood offers several major conceptual advantages.
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The skewed weak lensing likelihood 4891

Figure 10. Marginal distributions of ξ+(θ ) for the third redshift bin in Fig. 2 assuming a 450 deg2 survey with shape-noise. The skewness of the likelihood
translates into a bias on σ 8 that depends on angular scale. The solid blue line indicates the predicted value of ξ+(θ ) for the SLICS input cosmology which
has σ 8 = 0.826. The dashed line indicates the predicted value of ξ+(θ ) for the same set of cosmological parameters, but with σ 8 halved to σ 8 = 0.413. Left:
on small angular scales, with θ = 12 arcmin, ergodicity removes the bias, such that the likelihood peaks at the input σ 8. Middle: on intermediate scales, with
θ = 63 arcmin, the skewness of the likelihood can shift the peak from the input σ 8 to half its value. Right: on the largest angular scales in comparison to the
survey footprint, with θ = 126 arcmin, the variance increases sufficiently to reduce the difference between the mean and peak of the distribution in comparison
to the scatter.

Realistic shape noise is not well modelled by a Gaussian dis-
tribution (e.g. Miller et al. 2013). The current standard Gaussian
likelihood however adds the standard deviation of shape noise to
the total covariance, i.e. it treats shape noise as if it were Gaus-
sian distributed. Using our likelihood equation (15), we see that the
addition of covariances is insufficient as the third line of equation
(15) reveals that shape noise leads in reality to a convolution. This
arises because the sum s = u + v of two independently distributed
summands with u ∼ Pu(u) and v ∼ Pv(v) is distributed according
to the convolution of the two individual distributions

s ∼ Ps(s) =
∫

Pv(s − u)Pu(u) du. (27)

This convolution leads to a smooth deformation of Ps(s), such that
the sum is distributed according to a genuinely new distribution.
A likelihood that is a priori restricted to a Gaussian shape, cannot
include the emergence of such a genuinely new distribution. The
current standard approach hence cannot account for this effect,
whereas our likelihood correctly includes it. This remains true if we
update to a more realistic non-Gaussian distribution of shape noise.

A further advantage of our modular likelihood is that redshift un-
certainties can be included as well: in a Gaussian likelihood redshift
uncertainties can only imperfectly be accounted for by marginaliz-
ing over nuisance parameters. Here however, uncertainties on nμ(z)
can either be included in the second line of equation (15), or by
including a ‘zeroth’ level of the hierarchy before the current first
line.

In this manner, we see that the mathematical structure of our
likelihood equation (15) is more flexible than a Gaussian likeli-
hood, enabling us to refine weak lensing analyses. We therefore
expect the mathematical framework here presented to become the
core likelihood to future sequential refinements. A current concep-
tual disadvantage, that we wish to improve upon, is the dependence
on simulations to calibrate the number of degrees of freedom ν in
the case of a masked survey geometry through the factor geff(�)
in equation (21). Future refinements will address this dependence.
Upon having studied these questions, the forward model here pre-
sented can be turned ‘inside-out’, such that the inverse problem
of parameter inference can be carried out. This is possible since

the first level of our forward model depends on the cosmological
parameters.

6 C O N C L U S I O N S

The tension between weak lensing constraints of S8 = σ8/
√

�m and
CMB measurements from the Planck satellite motivates the ques-
tion of whether weak lensing results are inherently biased low. In
this paper we have demonstrated that the answer to this question is
yes. The amplitude of weak lensing 2-point functions is biased low
already prior to any parameter inference – then using a Gaussian
likelihood approximation centres on this preferentially low ampli-
tude and hence biases weak lensing S8 constraints low by up to 30
per cent of the weak lensing errors per data point. The magnitude
of each data point’s bias thereby depends on its angular scale, the
redshift, the survey properties, and the chosen filter function. For
example, ξ− is less biased than ξ+ and the framework derived in this
paper allows us to discuss this question in great detail. We have seen
that these biases arise even if the cosmological theory is correct, and
the data are sound.

It had previously been demonstrated that the likelihood of weak
lensing 2-point functions is skewed (Sellentin & Heavens 2018),
and here the core elements of the skewed distribution have been
derived. Mathematically it is a sum over weighted Gamma distri-
butions, where the weights are given by the angular filter functions.
The skewness of a likelihood for 2-point functions is already known
from analyses of the CMB, where primarily the lowest multipoles
are subject to asymmetric distributions (Bond et al. 1998, 2000;
Hamimeche & Lewis 2008, 2009). The exact same mechanism ap-
plies to weak lensing 2-point functions, only that their distributions
are more asymmetric than those of a CMB data set with the same
sky area. The enhanced asymmetry is caused by galaxies being
discretely spaced tracer particles instead of a smooth random field.

The core elements of the skewed weak lensing likelihood are
given in equation (15), and currently include cosmic variance from
the large-scale structure, and Gaussian shape noise from the in-
trinsic ellipticity dispersion of galaxies and the associated shape
measurement uncertainty. A generalization to also include red-
shift misestimates, intrinsic alignments, mask geometry, additive
and multiplicative biases, as well as selection effects during shear
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measurements, is intended as future work. A further intended re-
finement is the abstraction from simulations: even though we were
here able to correct for known imperfections of simulations to an
adequate precision for this paper, prior to applying our likelihood
to data, we will pursue a mathematical study of how the degrees of
freedom and the mask geometry interplay. Becoming independent
of the simulations is certainly an important goal.

From the perspective of a statistician, having derived the non-
Gaussian likelihood is a milestone which allows us to render data
analysis more realistically. However, our result is somewhat confus-
ing from the perspective of a theoretical physicist: dealing with an
asymmetric likelihood means that the most likely parameters will
not coincide with the parameters that are preferred on average. From
three different perspectives, we henceforth discuss the meaning of
biases arising in this manner.

The term ‘bias’ is typically used to describe a deterministically
arising bias. One example of a deterministic bias would be to ne-
glect intrinsic alignments in the data analysis, despite knowing of
their importance, and thereby forcing the likelihood to peak in an
incorrect place. Accounting for the missed intrinsic alignments then
corrects the analysis and thereby removes this bias.

The situation highlighted in this paper however deals with a
different type of bias: the skewed weak lensing likelihood gives rise
to stochastic biases, rather than deterministic ones. A stochastic
bias arises when the mean of a data set does not coincide with the
most likely data set. It is therefore the data set itself which displays
statistically biased behaviour. For a stochastically arising bias, there
cannot exist a single satisfactory recipe to ‘remove’ it: the success
of such a recipe would always depend on the realization of the data
vector drawn. For example, with the left-skewed likelihood here at
hand, the maximum-likelihood estimate will be biased low, and one
could hence be tempted to ‘correct’ for this by adding in the average
distance between maximum-likelihood and mean. This would move
the data upwards through the distribution. If however, by chance,
a data set is drawn which already falls above the mean, then this
upward-shifting ‘correction’ recipe actually moves the data even
further away from the mean, whereby the recipe fails.

Such stochastically arising biases can only be treated and under-
stood in a stochastic manner. In fact, for a strict Bayesian, the notion
of a ‘bias’ does not even exist: if the entire analysis is conducted
conditional on the single data vector available, and a repetition of
the experiment is impossible, then the notion of a ‘mean’ is nonsen-
sical, and thereby the notion of a bias. Instead, a Bayesian would
not perceive the skewed likelihood as a problem and rather anal-
yse it jointly with a prior. The maximum-a-posteriori parameters
would then be interpreted as the ‘most likely’ estimate of the under-
lying parameters which the Universe actually obeys. Importantly
however, the resulting inference would then be interpreted as con-
ditional on the priors and the likelihood, and this conditionality is
easily accepted by a Bayesian (but not by a theoretical physicist).

To a Frequentist, the skewness of the likelihood would be highly
suspect. It means that the event that is most likely to occur is not
the event that occurs on average. The Frequentist would then pre-
fer the mean as the best representation of the underlying model,
and this will systematically deviate from the result of a Bayesian
via maximum a-posteriori likelihood estimation. To opt out of this
ambiguous situation, the Frequentist would hence repeat the mea-
surements and average the data, whereby the likelihood of the av-
erage data set begins to Gaussianize. Thereby the Frequentist can
asymptotically evade the problem of the stochastic biasing, but for
cosmology this route is only viable within the limits of ergodicity
and cosmic variance.

To the theoretical physicist, the skewed likelihood poses a co-
nundrum: coming from a Lagrangian theory of the Universe and
believing in the concept of there existing a unique set of ‘true’
parameters which have to be found, it is now highly undesirable
that two ambiguous concepts exist of what might represent the
‘true’ parameters best: are the true parameters those that describe
the Universe on average, or those that describe the Universe that
is most likely? A theoretical physicist would typically also dislike
the Bayesian conditionality interpretation or any heuristic ‘correc-
tion scheme’, and rather prefer an unconditional statement on what
the true parameters are (i.e. the theoretician would hope that the
statistical inference leaves no traces when constraining physics).

Having thus discussed the perception of the skewed likelihood
from the three perspectives of a Bayesian, a Frequentist, and a
theoretical physicist, we here conclude that an interesting approach
to deal with these stochastically arising biases is the following way:

If we wish to return to a unique ‘best-fitting’ solution of parame-
ters, then a symmetric likelihood is needed. It does not necessarily
need to be Gaussian, other symmetric likelihoods such as the t-
distribution presented in Sellentin & Heavens (2016, 2017) also
lead to a unique best fit, while also correctly including noise in
covariance matrices. For weak lensing 2-point functions, returning
to a symmetric likelihood can be achieved in a three-step manner.
First, the correlation functions ξ+ and ξ− are to be measured in real
space. These will however be biased in a complicated way, as all real
space data points include contributions from low �-modes, which
are the dominant source of the likelihood’s asymmetry. Hence, one
would include a potential second step of filtering the measured ξ+

and ξ− through COSEBIS (Schneider, Eifler & Krause 2010; As-
gari et al. 2017), in order to remove potential B-mode contributions
from the signal. In harmonic space, the bias can then be studied and
potentially be reduced by excluding the low multipoles.

The last step of this procedure can lead to a symmetrization of
the likelihood without losing too much data. A coarse binning in
real-space could of course also be done, however this would have
the predominant aim to suppress asymmetry from low �-modes, and
hence more constraining power of the data might be lost than by
cleaning the data set in Fourier space. The resulting cleaned data
set can then either be analysed with the likelihood here presented,
or depending on the success of the symmetrization, also with its
Gaussian approximation. In total, making the best-fitting parame-
ters unique in the manner described here constitutes however a ma-
jor re-analysis of weak lensing data sets. It is therefore scheduled
for future KiDS cosmic shear analyses. Due to non-Gaussianities
being a general feature of weak lensing, they are of equal impor-
tance for future DES (Troxel et al. 2017) and Hyper Suprime-Cam
(Mandelbaum et al. 2017) studies of weak lensing.

The results derived in this paper, especially the numbers given for
the biases, depend on the employed filter functions (here J0 and J4),
which can however be quickly exchanged. The results also depend
on the assumed sky coverage and the galaxy number density of
the respective survey. The absolute value of the biases can only be
decreased by increasing the sky coverage and the number density of
the surveys. The ratio of the biases to the total uncertainty displays a
less monotonic behaviour: as the surveys become more precise and
reduce shape noise and increase the sky coverage, the biases become
ever more important in comparison to the total error bar. Depending
on redshift, biases of up to 30 per cent of the standard deviation per
data point are possible. This translates into scale-dependent biases
on σ 8 that is consistently biased low. In total, we can maintain, that
any sound cosmology produces weak lensing data whose amplitude
is biased low, and this neither indicates a flaw in the data, nor a

MNRAS 477, 4879–4895 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/477/4/4879/4978476 by Liverpool John M
oores U

niversity user on 22 July 2020



The skewed weak lensing likelihood 4893

flaw in the cosmological theory. Strategies to address these biases
could either be a probabilistic propagation via the likelihood here
presented, or a restructuring of the analysis strategy to evade biased
scales.
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Harnois-Déraps J., van Waerbeke L., 2015, MNRAS, 450, 2857
Hartlap J., Schrabback T., Simon P., Schneider P., 2009, A&A, 504, 689
Heavens A. F., Sellentin E., de Mijolla D., Vianello A., 2017, MNRAS, 472,

4244

Heymans C. et al., 2012, MNRAS, 427, 146
Hildebrandt H., Erben T., Kuijken K., van Waerbeke L., Heymans C.,

Coupon J., Benı́tez N., 2012, MNRAS, 421, 2355
Hildebrandt H. et al., 2017, MNRAS, 465, 1454
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A P P E N D I X A : TH E ξ− ESTIMATO R

As described in the main body of the paper, the non-Gaussianity
inherent in weak lensing estimators arises from the low multipoles in
harmonic space. The non-Gaussianity which a real-space estimator
then exhibits hence depends on the filter function that translates
from harmonic to real space. In the main body, we had focused on
ξ̂+, and here present for completeness the corresponding results for
ξ̂− in Figs A1–A4.
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Figure A1. Like Fig. 4, only now for ξ̂−. The plot uses the same simulations and the same forward-modelled data as Fig. 4, the only change is that now the
filter function of ξ̂− was used. This shows that our forward model handles both ξ̂+ and ξ̂− self-consistently at the same time.

Figure A2. Like Fig. 5, without shape noise, now for ξ̂−. The histograms here shown use precisely the same samples of the power spectrum as those in Fig. 5,
the only difference is that now the (noise-free) filter function of ξ− is used. The estimator ξ− is biased less than ξ+, but in total still biased low.

Figure A3. Like Fig. 8, without shape noise, illustrating the bias of ˆξ−.
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Figure A4. Like Fig. 9, with shape noise, only now depicting the bias of ˆξ−. As can be seen, the estimator ξ̂− is nearly unbiased when shape noise is included.
The noise of the curves arises from the uncertainty of the peak bin for the histograms: even if the entire histogram shape can already we well resolved, the
position of the peak will still scatter. This is because all histograms sample contribute to the shape, but only much fewer samples determine the peak position
(namely those in the peak bin). Notice the noise is just 5 per cent of the standard deviation. See Figs 5 and A2 to see noise in the peak region.
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