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ABSTRACT
Higher order, non-Gaussian aspects of the large-scale structure carry valuable information
on structure formation and cosmology, which is complementary to second-order statistics. In
this work, we measure second- and third-order weak-lensing aperture-mass moments from
the Canada–France–Hawaii Lensing Survey (CFHTLenS) and combine those with cosmic
microwave background (CMB) anisotropy probes. The third moment is measured with a sig-
nificance of 2σ . The combined constraint on �8 = σ 8(�m/0.27)α is improved by 10 per cent,
in comparison to the second-order only, and the allowed ranges for �m and σ 8 are substan-
tially reduced. Including general triangles of the lensing bispectrum yields tighter constraints
compared to probing mainly equilateral triangles. Second- and third-order CFHTLenS lensing
measurements improve Planck CMB constraints on �m and σ 8 by 26 per cent for flat � cold
dark matter. For a model with free curvature, the joint CFHTLenS–Planck result is �m =
0.28 ± 0.02 (68 per cent confidence), which is an improvement of 43 per cent compared to
Planck alone. We test how our results are potentially subject to three astrophysical sources of
contamination: source-lens clustering, the intrinsic alignment of galaxy shapes, and baryonic
effects. We explore future limitations of the cosmological use of third-order weak lensing,
such as the non-linear model and the Gaussianity of the likelihood function.

Key words: methods: statistical – cosmological parameters.
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1 IN T RO D U C T I O N

The extraordinary rise of observational cosmology over the past
20 yr has profoundly modified the ambitions and the methods of
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physical cosmology. It has opened a new era where precision cos-
mology may allow astronomers and physicists to address key ques-
tions about fundamental laws of physics. Cosmological surveys
probing a range of different scales and epochs, using techniques
such as cosmic microwave background (CMB) anisotropies, su-
pernovae of Type Ia, baryonic acoustic oscillations, galaxy cluster
counts, and weak gravitational lensing have based a broad cosmo-
logical paradigm upon strong observational foundations.

Cosmological weak lensing, also called cosmic shear, denotes
tiny shape distortions of distant galaxy images that arise from grav-
itational lensing of light by the large-scale structure of the Universe.
It is a cumulative, anisotropic gravitational shear effect that a light
bundle experiences by passing through cosmic structures on the
way from the galaxy to the observer. A circular beam of light is
hereby transformed into a small ellipse. This gives us a powerful
way to indirectly observe dark matter in the Universe and to study
its distribution on cosmological scales.

Although the lensing effect is very weak, it modifies the shapes
of galaxies in a coherent manner and can therefore be detected,
analysed statistically, and interpreted within a cosmological model,
by observing millions of galaxies. The distribution of weak grav-
itational distortions as a function of angular scale is indeed an
almost direct gravitational imprint of the dark matter distribution
projected on the sky. The second-order shear correlation between
galaxy pairs have been measured from different surveys since 2000,
and have been successfully used to constrain the power spectrum
of dark matter. Recent results are for example: Fu et al. (2008) for
the Canada–France–Hawaii Legacy Survey (CFHTLS) third data
release; Schrabback et al. (2010) for the Hubble Space Telescope
COSMOS1 survey; Benjamin et al. (2013) and Kilbinger et al.
(2013) for CFHTLenS; and Jee et al. (2013) for the Deep Lens
Survey.

Third-order cosmic shear statistics contain information about
the bispectrum of the projected matter density, which is the low-
est order measure of non-Gaussianity of the large-scale struc-
ture (Bernardeau, Van Waerbeke & Mellier 1997; Van Waerbeke,
Bernardeau & Mellier 1999; Van Waerbeke et al. 2001). The accu-
racy of cosmological parameters constraints from combined mea-
surements of second- and third-order shear statistics is expected
to be increased significantly (Takada & Jain 2004; Kilbinger &
Schneider 2005; Vafaei et al. 2010).

The first detections of third-order shear statistics was ob-
tained from VIsible imaging Multi-Object Spectrograph (VIRMOS)
(Bernardeau, Van Waerbeke & Mellier 2003; Pen et al. 2003)
and Cerro Tololo Inter-American Observatory (CTIO) data (Jarvis,
Bernstein & Jain 2004, hereafter JBJ04). With the improvement of
shape measurement techniques and point spread function (PSF) cor-
rections for space-based observations by Schrabback et al. (2010),
Semboloni et al. (2011a) obtained cosmological constraints from
three-point shear statistics using the data from COSMOS, which
are consistent with the Wilkinson Microwave Anisotropy Probe 7
(WMAP7) best-fitting cosmology. Van Waerbeke et al. (2013) mea-
sured third-, fourth-, and fifth-order cosmic shear statistics from
reconstructed convergence maps, and found good agreement for the
third-order moment with WMAP7 predictions.

In this paper, we perform a combined second- and third-order
weak-lensing analysis to constrain parameters of different cosmo-
logical models using the CFHT Lensing Survey2 (CFHTLenS),

1 http://cosmos.astro.caltech.edu
2 www.cfhtlens.org

which covers 154 square degrees in five optical bands u�, g′, r′,
i′, z′ obtained as part of the CFHT Legacy Survey. A companion
paper, Semboloni et al. (in preparation), presents in more detail the
third-moment measurement and systematics tests. An overview of
the CFHTLenS data and analysis can be found in Erben et al. (2013)
and Heymans et al. (2012).

This paper is organized as follows. In Section 2, we briefly re-
view the theoretical background of weak gravitational lensing and
second-/third-order statistics of cosmic shear. In Section 3, we de-
scribe the CFHTLenS data and covariance measurement methods
and calibration, the theoretical model, and the statistical analysis to
compare our models to the data. Section 4 presents the CFHTLenS
measurements and cosmological constraints. In Section 5, we dis-
cuss astrophysical contaminants to third-order lensing, and Sec-
tion 6 shows combined constraints with other cosmological probes.
We conclude the paper with a discussion of our results in Section 7.

The data that are presented in this work (aperture-mass moments
and covariance matrices) are available at http://www.cfhtlens.org.
The software used for the cosmological analysis can be downloaded
from http://cosmopmc.info.

2 W E A K C O S M O L O G I C A L L E N S I N G

2.1 Theoretical predictions

Cosmic shear is the weak lensing effect caused by the large-scale
structure. The theory of weak lensing has been reviewed in detail in
Bartelmann & Schneider (2001); Hoekstra & Jain (2008); Munshi
et al. (2008); Bartelmann (2010).

The convergence of a galaxy at angular position ϑ and comoving
distance w is given by the all matter density contrast δ times the
lensing efficiency, integrated over all (lens) distances,

κ(ϑ, w) = 3

2
�m

H0

c

∫ w

0
dw′g(w′, w)δ(fK (w′)ϑ, w′); (1)

g(w′, w) = H0

c

fK (w′)fK (w − w′)
fK (w)a(w′)

, (2)

where fK(w) is the comoving angular diameter distance which de-
pends on the curvature K of the Universe. H0 is the Hubble constant,
c the speed of light, �m the total matter density, and a(w) the scale
factor. The convergence of a population of sources with a random
density distribution in comoving coordinates p(w)dw is

κ(ϑ) =
∫ wlim

0
dw p(w)κ(ϑ, w), (3)

where wlim is the limiting distance of the survey.
The power spectrum Pκ of the convergence (3) is given as〈

κ̂(s)κ̂(s′)
〉 = (2π)2 δD(s + s′)Pκ (s), (4)

where s is the modulus of a two-dimensional wave vector perpen-
dicular to the line of sight. Pκ can be written as a projection of the
power spectrum of dark matter Pδ along the line of sight, using the
approximation of Limber’s equation (Kaiser 1992), as defined in
Schneider et al. (1998)

Pκ (s) = 9 �2
mH 4

0

4 c4

∫ wlim

0
dw

G2(w)

a2(w)
Pδ

(
k = s

fK (w)
; w

)
. (5)

Here, G(w) is the lens efficiency,

G(w) =
∫ wlim

w

dw′p(w′)
fK (w′ − w)

fK (w′)
, (6)
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The bispectrum Bκ of the convergence is defined by the following
equation:

〈κ̂(s1)κ̂(s2)κ̂(s3)〉 = (2π)2δD(s1 + s2 + s3)

× [Bκ (s1, s2) + Bκ (s2, s3) + Bκ (s3, s1)] . (7)

Using again Limber’s equation, Bκ is related to the matter bispec-
trum Bδ .

To model the highly non-linear bispectrum Bδ on small scales,
we employ the hyper-extended perturbation theory (HEPT; Scocci-
marro & Couchman 2001). This framework provides functions to
interpolate between the linear regime, where the tree-level perturba-
tion theory is a good description of the bispectrum, and the strongly
non-linear regime. HEPT on these very small scales falls back on
the stable clustering hypothesis, where clustering is assumed to have
reached virialized equilibrium (Peebles 1980).

The original HEPT bispectrum is based on the non-linear power
spectrum fitting formulae from Peacock & Dodds (1996). Although
the HEPT bispectrum is expressed as a function of the non-linear
power spectrum, the HEPT coefficients have been fitted to the re-
duced bispectrum, minimizing the dependence on the power spec-
trum. Therefore, different prescriptions for the non-linear power
spectrum can be combined with HEPT, for example the widely
used HALOFIT (Smith et al. 2003). Recently, Sato & Nishimichi
(2013) have shown that HEPT provides a much better fit to the
convergence bispectrum when using the revised HALOFIT version of
Takahashi et al. (2012). These revised fitting functions also match
more closely the convergence power spectrum. Whereas the origi-
nal HALOFIT prescription underestimates power on small scales (e.g.
Takahashi et al. 2012), the revised HALOFIT overestimates it slightly
(Heitmann et al. 2014). An alternative prescription of the non-linear
power spectrum is given by the Coyote emulator (Heitmann et al.
2014). Furthermore, a revised version of HEPT was recently pub-
lished by Gil-Marı́n et al. (2012). In Appendix A1, we test those
different models for Pδ and Bδ on N-body simulations. We choose
the combination models of Takahashi et al. (2012) and Heitmann
et al. (2014) since it provides the best match to the CFHTLenS Clone
simulations (Harnois-Déraps, Vafaei & Van Waerbeke 2012). We
do not consider the effect of baryons on the power and bispectrum.
Their influence on the matter clustering is important, in particular on
small scales. This behaviour can be modelled using hydrodynam-
ical N-body simulations (Semboloni et al. 2011b). Their potential
influence is estimated in Section 5.3.

2.2 Second- and third-order functions

2.2.1 Correlation functions

The basic observables from a weak-lensing galaxy survey are the
ellipticities εi at galaxy positions ϑ i . From that it is possible to
create a map of the convergence κ̂ in Fourier space and to mea-
sure the power spectrum and bispectrum by taking moments. Such
a convergence reconstruction has been performed recently using
CFHTLenS data, and moments of the convergence up to order 5
have been measured (Van Waerbeke et al. 2013).

We choose a different approach, which does not require the treat-
ment of masks and smoothing of the shear field. From the galaxy
ellipticities, we directly estimate the shear second- and third-order
correlation functions, ξ± and �(0, 1, 2, 3), respectively. For the second-
order case two-point correlation functions (2PCFs), we update the
results from Kilbinger et al. (2013, hereafter K13), using 120 instead
of 129 fields, which are the fields that pass the systematics test on

both second- and third-order (Semboloni et al., in preparation). The
third-order correlation functions (3PCF) are given for a triangle,
and have eight components (Schneider & Lombardi 2003; Takada
& Jain 2003; Zaldarriaga & Scoccimarro 2003). We use the four
complex natural components as introduced in Schneider & Lom-
bardi (2003). Following the notation of JBJ04, for triangle vertices
X1, X2, X3, we define two triangle side vectors as s = X2 − X1,
t = X3 − X2. An unbiased estimator for the zeroth component is

�̂(0)(s, t) =
∑

ijk wi wj wk εi εj εk e−6iα∑
ijk wi wj wk

, (8)

where w is the weight of shear of each galaxy. As in JBJ04, we
choose the polar angle α of the triangle side s to be the projection
angle for all vertices. The sum is performed over triples of galaxies
i, j, k which form triangles that are close to (s, t) within the chosen
binning scheme. We use the tree-based code, kindly provided by M.
Jarvis, to perform this summation. The binning scheme is detailed
in JBJ04, see also Appendix A2.

The first component is estimated as

�̂(1)(s, t) =
∑

ijk wi wj wkε
∗
i εj εk e−2iα∑

ijk wi wj wk

. (9)

The other two components �̂(2,3) are obtained from �̂(1) by cyclic
permutations of the triangle parameters (Schneider & Lombardi
2003).

2.2.2 Aperture moments

The aperture mass, introduced by Kaiser et al. (1994) and Schneider
(1996), is a scalar quantity expressed in terms of convergence κ

inside an aperture centred at some point ϑ , filtered by a function
Uθ that depends on some characteristic smoothing scale θ . If Uθ

is compensated, i.e.
∫

dϑ ϑ Uθ (ϑ) = 0, the aperture mass can be
expressed in terms of the tangential shear component, γt(ϑ

′) =
−�[γ (ϑ ′) exp(−2iϕ)], where ϕ is the polar angle of the vector
ϑ ′ − ϑ ,

Map(θ, ϑ) =
∫

d2ϑ ′ Uθ (|ϑ − ϑ ′|) κ(ϑ ′)

=
∫

d2ϑ ′ Qθ (|ϑ − ϑ ′|) γt(ϑ
′). (10)

The filter function Qθ is given in terms of Uθ , see Kaiser et al. (1994)
and Schneider (1996). Correspondingly, M× is defined in terms of
the cross-component of the shear, γ×(ϑ) = −�[γ (ϑ ′) exp(−2iϕ)],
and is a measure of the B-mode,

M×(θ, ϑ) =
∫

d2ϑ ′ Qθ (|ϑ − ϑ ′|) γ×(ϑ ′). (11)

The aperture-mass dispersion can be calculated in terms of the
convergence power specturm Pκ ,
〈
M2

ap

〉
(θ ) =

∫
d� �

2π
Pκ (�)Û 2(θ�), (12)

where Û is the Fourier transform of Uθ . The third-order moment
of the aperture mass has been introduced by JBJ04 and Pen et al.
(2003). Its generalization involves the correlation of the aperture
mass for three different smoothing scales, which optimally probes
the bispectrum for general triangles has been defined in Schnei-
der, Kilbinger & Lombardi (2005, hereafter SKL05). It can be
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written as〈
M3

ap

〉
(θ1, θ2, θ3) ≡ 〈

Map(θ1)Map(θ2)Map(θ3)
〉

=
∫

d2�1

(2π)2

∫
d2�2

(2π)2
Bκ (�1, �2)

×
∑

(i,j ,k)∈S3

Û (θi |�1|) Û (θj |�2|) Û (θk|�1 + �2|), (13)

where S3 is the symmetric permutation group of (123). One of the
four integrals in equation (13) can be performed analytically using
the angular dependence of the bispectrum due to the statistical
isotropy of the convergence field. The result is given in Kilbinger
& Schneider (2005). The simplest expressions for the third-order
aperture-mass moment in terms of Bκ exist for a Gaussian-shaped
filter function Uθ ,

Uθ (ϑ) = 1

2πθ2

(
1 − ϑ2

2θ2

)
exp

(
− ϑ2

2θ2

)
. (14)

There are several advantages of using aperture moments instead
of n-point correlation functions. Most importantly, aperture mea-
sures are sensitive only to the E-mode of the shear field. They
filter out long-wavelength modes where an E-/B-mode separation
is not possible given the finite survey volume (Schneider, Eifler &
Krause 2010). They are therefore less susceptible to some type of
systematics in the data. Furthermore, a theoretical prediction from
the convergence bispectrum Bκ is much easier and faster obtained
for the aperture third moment than for the three-point correlation
function (SKL05). It is therefore more efficient to use in a Monte
Carlo sampling analysis.

2.3 Measurement of aperture moments

The direct measurement of the aperture-mass second and third mo-
ments by averaging over positions ϑ is not straightforward. Masks
and gaps in the data can cause biases in the estimation, or make
a lot of the area unused. Instead, these moments can be expressed
as integrals over the two- and three-point correlation functions, for
which unbiased estimators have been introduced in Section 2.2.1.

For second order, this relation was found by Crittenden et al.
(2002) and Schneider, Van Waerbeke & Mellier (2002),

〈M2
ap,×〉(θ ) = 1

2

∑
i

ϑi �ϑi

[
T+(ϑi) ξ̂+(ϑi) ± T−(ϑi) ξ̂−(ϑi)

]
, (15)

with the functions T±(x) = ∫ ∞
0 dt J0,4(xt) Û 2(t). Analytical expres-

sions corresponding to the Gaussian filter (14) can be found in Crit-
tenden et al. (2002), Schneider et al. (2002), and Pen et al. (2003).

Corresponding relations for the third-order aperture-mass mo-
ment have been derived in JBJ04, and, for the generalized case, in
SKL05. First, we define the complex quantity M(θ ) = Map(θ ) +
iM⊥(θ ). Next, third moments of M are calculated as integrals over
the 3PCF; from these moments, the E- and B-modes are formed as
linear combinations (see below). The integrals are performed over
all triangle configurations (s, t),

〈M3〉(θ123) = S

∫
sds

�2

∫
d2t

�2
e−Z �(0)(q123) T 0

123(s, t) (16)

and

〈M2 M∗〉(θ123) = S

∫
sds

�2

∫
d2t

�2
e−Z �(1)(s, t) T 1

123(s, t). (17)

Here, we have introduced the short forms θ123 ≡ (θ1, θ2, θ3), q123 ≡
(q1, q2, q3), and defined T i

123(s, t) = T i(s, t, θ123). For mathemat-
ical convenience, we write the 2D vectors q1, s, and t complex
quantities, with their real (imaginary) part being the x- (y-) compo-
nent. The triangle orientation in the integrand is chosen such that
t = t + 0i. The filter functions T i can be inferred from Schneider
et al. (2005), and are given as

T 0
123(s, t) = − 1

24

q∗2
1 q∗2

2 q∗2
3

�6
f ∗2

1 f ∗2
2 f ∗2

3 , (18)

T 1
123(s, t) = − 1

24

q2
1q∗2

2 q∗2
3

�6
f 2

1 f ∗2
2 f ∗2

3 + 1

9

q2
1 q∗

2q∗
3

�4
f1f

∗
2 f ∗

3 g∗
1

− 1

27

(
q∗2

1 g∗2
1

�2
+ 2θ2

2 θ2
3

�4

q∗
2 q∗

3

�2
f ∗

2 f ∗
3

)
(19)

with

fi = θ2
j + θ2

k

2�

(qj − qk)qi

qi

θ2
j − θ2

k

6�2
, (20)

gi = θ2
j θ2

k

�4
− (qj − qk)q∗

i

qi

θi(θ2
j − θ2

k )

3�4
. (21)

The vectors qi connect the vectices X i to the triangle centroid,
which are the same vectors as in JBJ04. Furthermore,

� =
(

θ2
1 θ2

2 + θ2
2 θ2

3 + θ2
3 θ2

1

3

)1/4

,

S = θ2
1 θ2

2 θ2
3

�6
,

Z = (
6�4

)−1 [
(−θ2

1 + 2θ2
2 + 2θ2

3 )q2
1

+ (2θ2
1 − θ2

2 + 2θ2
3 )q2

2 + (2θ2
1 + 2θ2

2 − θ2
3 )q2

3

]
.

As described in JBJ04, the 3PCF is only calculated for one of
the six possible permutations of triangle sides (s, t), given by s <

t < |t − s|. To cover the full range of triangles, equations (16) and
(17) have to be split up into six terms, by permuting the centroid
vectors qi , see equation 59 in JBJ04. In our case of the generalized
third moment, this implies permuting the smoothing angles θ i. The
result is

〈M3〉(θ123) = 6S

∫
sds

�2

∫
s<t<|t−s|

d2t

�2
e−Z �(0)(s, t) T 0

(123)(s, t), (22)

where the brackets around the indices denote permutations, i.e.

A(123) = 1

3!
(A123 + A213 + A312 + A132 + A231 + A321) . (23)

In equation (17), the permutations of the triangle sides result in a
change of the complex conjugated vertex. The result is

〈M2 M∗〉 = 2S

∫
sds

�2

∫
s<t<|t−s|

d2t

�2
e−Z

3∑
i=1

�(i)(s, t) T i
3(12)(s, t), (24)

which is symmetric under permutation of θ1 and θ2. For brevity, we
omitted the argument (θ123). Likewise, we have

〈MM∗M〉 = 2S

∫
sds

�2

∫
s<t<|t−s|

d2t

�2
e−Z

3∑
i=1

�(i)(s, t) T i
2(13)(s, t) (25)
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and

〈M∗M2〉 = 2S

∫
sds

�2

∫
s<t<|t−s|

d2t

�2
e−Z

3∑
i=1

�(i)(s, t) T i
1(23)(s, t). (26)

In the previous two equations, only the last two indices of the filter
functions T i are permuted, i.e. T i

j (kl) = 1
2 [Tjkl + Tjlk].

As in JBJ04 and SKL05, we combine equations (16)–(26) to
obtain the E- and B-mode components of the third-order aperture-
mass moment. The pure E- and B-modes are, respectively,

EEE: 〈M3
ap〉(θ123) = 1

4
R

[
〈M∗M2〉

+ 〈MM∗M〉 + 〈M2M∗〉 + 〈M3〉
]
(θ123); (27)

BBB: 〈M3
×〉(θ123) = 1

4
I
[
〈M∗M2〉

+ 〈MM∗M〉 + 〈M2M∗〉 − 〈M3〉
]
(θ123). (28)

The mixed E-/B-mode components are

EEB: 〈MapMapM×〉(θ123) = 1

4
I
[
〈M∗M2〉

+ 〈MM∗M〉 − 〈M2M∗〉 + 〈M3〉
]
(θ123); (29)

EBB: 〈MapM×M×〉(θ123) = 1

4
R

[
− 〈M∗M2〉

+ 〈MM∗M〉 + 〈M2M∗〉 − 〈M3〉
]
(θ123). (30)

Both mixed components have further permutations, which can be
obtained by permuting the smoothing scales.

The expectation value of the mixed components (29, 30) is
non-zero only if the E-and B-modes are correlated. For a parity-
symmetric shear field, only the last B-mode component (30) can
be non-zero (Schneider 2003). However in practise, noise sample
variance causes a given observed region to violate parity, and all
three B-mode components can be non-zero.

2.4 E-/B-mode mixing from incomplete coverage
of the shear correlation

To estimate the third-order aperture-mass moment from data, we re-
place the integrals in equations (22)–(26) by sums over the measured
triangle configurations. These estimators will be biased since both
on very small and very large scales triangles cannot be measured.
The former incompleteness occurs on the scales of around 10 arcsec,
which is the size of the CFHTLenS postage stamps around galaxies:
correlations between objects at separation below this scale are not
measured reliably (Miller et al. 2013). The large-scale limit is set
by the survey size.

For the Gaussian filter (14) and given smoothing angles θ123, the
functions T i

jkl decrease as a Gaussian with increasing triangle sides.
To reduce the bias from incomplete sampling at large scales, we
carry out the integrals to four times the maximal smoothing angle
(JBJ04).

Our smallest smoothing angle is θ = 2 arcmin. This corre-
sponds to a bias of around 1 per cent for the aperture-mass dis-
persion 〈Map〉 using the Gaussian filter (Kilbinger, Schneider &
Eifler 2006).

For third order, we expect a smaller bias: First, the functions T i
ijk

are proportional to the triangle sides to the sixth power, compared
to T±(x) ∝ x2, so small scales are more suppressed. Secondly, very
small triangles do not contribute much because the three-point cor-
relation functions tend to zero for decreasing triangle size. This is
because they filter the bispectrum with the first-kind Bessel func-
tions J6 and J2, respectively, which tend to zero for decreasing
angular scales, in contrast to the case of ξ+ which filters the power
spectrum with J0 approaching unity towards small arguments. A re-
cent publication shows that the leakage is indeed negligible below
1 arcmin (Shi, Joachimi & Schneider 2014).

3 DATA A N D C A L I B R AT I O N S E T-U P

3.1 Data

An overview of the weak-lensing data of the Canada–France–
Hawaii Lensing Survey (CFHTLenS) is given in Heymans et al.
(2012). See subsequent papers for details on the data reduction
(Erben et al. 2013), photometric redshifts (Hildebrandt et al. 2012),
and galaxy shape measurements (Miller et al. 2013).

CFHTLenS consists of 171 pointings covering 154 square de-
grees in five optical bands. For second-order cosmic shear, a sam-
ple of 129 fields was consistent with no remaining systematics
(Heymans et al. 2012). Semboloni et al. (in preparation) analysed
systematic contributions to third-order statistics and found signifi-
cant systematics in an additional 9 out of the 129 fields (see their fig.
5). We therefore choose for our combined second- and third-order
analysis the conservative sample of 120 fields.

As in K13, we select galaxies within the redshift range 0.2 < zp <

1.3. This leaves us with 4.2 million source galaxies, corresponding
to an effective number density of 14 galaxies per square arcmin.
For the model of the lensing signal, the redshift distribution is taken
as the sum of the redshift probability functions over all galaxies,
providing a mean redshift of 0.748 (see Hildebrandt et al. (2012)
for the tests on the reliability of the photometric redshifts used in
all CFHTLenS papers).

3.2 Shear calibration

We use the calibration of measured galaxy shapes from Heymans
et al. (2012), accounting for additive and multiplicative biases of
the estimated ellipticity,

εobs = (1 + m)εtrue + c. (31)

The additive bias for the first component of the ellipticity ε1 is
found to be consistent with zero, while it shows a bias at the level of
∼2 × 10−3 on average, which is subtracted from the second el-
lipticity component ε2 for each galaxy. The multiplicative bias m
is fitted as a function of the galaxy signal-to-noise ratio S/N and
size r, and applied globally (Miller et al. 2013). The 2PCFs ξ± are
corrected for as in Heymans et al. (2012) and K13. We calculate the
calibration function

1 + K2(θ ) =
∑

ij wiwj (1 + mi)(1 + mj )∑
ij wiwj

, (32)

where the sum is carried out over pairs of galaxies with separation
within a bin around θ .
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2730 L. Fu et al.

Analogously, the calibration factor 1 + K3 for the three point
shear correlation function �(i) is

1 + K3(s, t) =
∑

ijk wiwjwk(1 + mi)(1 + mj )(1 + mk)∑
ij wiwjwk

, (33)

where the sum goes over all triangles in a bin around (s, t). We divide
all eight components of the 3PCF by 1 + K3. The multiplicative bias
m is on average −0.08, so that the 2PCFs and 3PCF are divided by
1 + K2 and 1 + K3, respectively. We get corrections of the order of
1 + K2 ∼ 0.89 and 1 + K3 ∼ 0.85, virtually independent of angular
scale.

3.3 Data covariance

The covariance of the third-order aperture mass contains terms up to
sixth order in the shear. Semi-analytical expressions for those terms
in Fourier space exist using the halo model of dark matter (Kayo,
Takada & Jain 2013; Sato & Nishimichi 2013). However, we choose
a numerical approach as follows. We measure aperture-mass mo-
ments on realizations of dark-matter N-body and ray-tracing simula-
tions, and estimate the covariance from the field-to-field scatter. The
simulations are populated by galaxies, with spatial distribution in-
cluding masks, redshift distribution, and shape noise corresponding
to observed CFHTLenS characteristics, so that the obtained covari-
ance matrix includes shape noise and cosmic variance. The N-body
and ray-tracing method that underlies this CFHTLenS ‘Clone’ is
described in Harnois-Déraps et al. (2012). We measure the two-
point and three-point aperture-mass statistics from each of the 184
realizations over the same angular range as for the CFHTLenS
data (see Section 4.2). To obtain the correlation between second-
and third-order quantities, we measure both statistics simultane-
ously and calculate their field-to-field cross-covariance. The Clone
is based on the WMAP5 (+BAO+SN) cosmology. We do not take
into account the variation of the covariance with cosmology (Eifler,
Schneider & Hartlap 2009). This effect was found to be minor for
second-order cosmic shear (K13).

The largest available scale from the Clone is 280 arcmin. This
corresponds in principle to a maximum Gaussian smoothing scale
for the aperture mass of 70 arcmin. However, the S/N of 〈M3

ap〉 is
very small on large scales given the statistical power of CFHTLenS.
From the Clone we found no significant improvement when adding
scales larger than about 15 arcmin. For that reason, we calculate the
third-order aperture-mass moment up to only 15 arcmin.

The final covariance matrix is scaled with the ratio of the effec-
tive area 0.9 × 16 pointings divided by 120 MegaCam pointings
which have passed the systematics test (Heymans et al. 2012). This
rescaling is valid strictly only for Gaussian fields, and we are ne-
glecting couplings between small and large modes. The relatively
small scales of our data vector should not be affected too much by
this. Furthermore, to correct for the bias of the inverse covariance
estimator (Anderson 2003; Hartlap, Simon & Schneider 2007), we
multiply with the factor α = (n − p − 2)/(n − 1), where n = 184
is the number of simulated fields, and p is the number of angular
scales. The smallest correction factor, in the case of the combined
data vector with p = 51, is α = 0.72, which corresponds to a regime
where the trace of the de-biased inverse covariance is accurate to
a few per cent. The expected parameter error uncertainties are less
than 15 per cent (Taylor, Joachimi & Kitching 2013).

3.4 Cosmological parameter space

To relate the weak-lensing and external cosmological data to
theoretical models, we use a multivariate Gaussian likelihood

Table 1. The parameters sampled under the weak-lensing CFHTLenS
posterior. The second column indicates the (flat) prior ranges, for the three
models analysed in this work (flat �CDM, flat wCDM and curved �CDM).

Parameters Prior Description

CFHTLenS, �CDM
�m [0, 1.2] Total matter density
σ 8 [0.2, 1.5] Power-spectrum normalization
�b [0, 0.1] Baryon density
ns [0.7, 1.3] Spectral index of prim. density fluct.
h [0.4, 1.2] Hubble parameter

Additional parameter for wCDM
w0 [−3.5; 0.5] Const. term in dark-energy equation of state

Additional parameter for curved �CDM
�de [0, 2] Dark-energy density

function,

log L(d| p) = (d − y( p))t C−1( p) (d − y( p)) + const, (34)

where y( p) denotes the theoretical prediction for the data d for a
given m-dimensional parameter vector p. For the CFHTLenS data, y
is the vector of measured aperture-mass second and third moments,
or their concatenation, all as function of angular scales. For the
generalized third moment, which is a function of three smoothing
scales (θ i, θ j, θ k), we construct a vector in lexical order such that
θ i ≤ θ j ≤ θ k. We test and discuss the Gaussian approximation of
the likelihood in Appendix A3.

We use COSMOPMC3 to sample the CFHTLenS weak-lensing pos-
terior. For constraints from CFHTLenS combined with other probes,
we importance-sample the WMAP9 and Planck MCMC chain with
the CFHTLenS PMC sample. For Planck (Planck Collaboration
et al. 2014), we use the chain that samples the combination of
Planck temperature data and CMB lensing.

We run the PMC algorithm for up to 10 iterations, using 10 000
sample points in each iteration. To reduce the Monte Carlo variance,
we use larger samples with 100 000 points for the final iteration. For
the flat �CDM model, the base parameter vector for CFHTLenS
weak lensing is p = (�m, σ8, �b, ns, h). For dark-energy and non-
flat models, the parameter vector has one more parameter w0 and
�de, respectively. For the combination with WMAP9 and Planck,
the reionization optical depth τ and the Sunyaev–Zel’dovich (SZ)
template amplitude ASZ are added to the parameter vector. In this
case, we use �2

R as the primary normalization parameter, and calcu-
late σ 8 as a derived parameter. Moreover, when WMAP9 is added to
CFHTLenS, we use flat priors which cover the high-density regions
and the tails of the posterior distribution well. The priors of flat
�CDM, flat wCDM and curved �CDM models are summarized in
Table 1.

We choose and test the angular scale range together with the
theoretical model using the CFHTLenS Clone simulations. More
details can be found in Appendix A1.

4 C FHTLenS WEAK-LENSI NG RESULTS

In this section, we present the measurement of second- and third-
order aperture-mass measures from CFHTLenS. We show results
on the cosmological parameters �m and σ 8, the parameters that are

3 http://cosmopmc.info
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CFHTLenS: two- and three-point weak lensing 2731

best measured by weak cosmological lensing. We obtain constraints
from second- and third-order statistics, and from their combination.
With current surveys, these two parameters are near degenerate,
where the direction of degeneracy is approximately a power law,
given by the amplitude parameter �8 = σ 8(�m)α . We summarize
our results on this derived parameter at the end of Section 5.

4.1 Second-order measures

We report updates of the second-order measurements and result-
ing cosmological parameters compared to K13. First, we add a
measurement of the aperture-mass dispersion using the Gaussian
filter (14), which is the filter function we employ for the third-order
aperture-mass moment. The top panel of Fig. 1 shows the E-/B-
modes in the angular scale range 2–70 arcmin. This is to combine
measurements with the same smoothing function. Note that there is
no necessity for that: for combinations of second- and third-order
measures to obtain the most stringent cosmological parameter con-

Figure 1. Second-order shear functions measured from CFHTLenS mosaic
data. Black filled symbols: E-mode; red open symbols: B-mode. The results
are compared to the theoretical prediction using the WMAP9 cosmology
(dashed line), and the E-/B-mode from the Clone (dotted lines). Upper
panel: the aperture-mass dispersion using the Gaussian compensated filter,
as a function of smoothing scale θ . Lower panel: orthogonalized COSEBIs
(absolute values), ordered by increasing variance. as a function of orthogonal
mode number m.

Table 2. Marginalized 68.3 per cent constraints for the ampli-
tude parameter �8 = σ 8(�m/0.27)0.713 using the CFHTLenS
aperture-mass dispersion. We compare two models of the non-
linear power spectrum. The power-law index α = 0.713 is fixed.
The prior range in both cases is the domain of the Coyote emula-
tor, with �m ∈ [0.18; 0.48] and σ 8 ∈ [0.6; 0.9].

Model Reference σ 8(�m/0.27)0.713

Coyote Heitmann et al. (2014) 0.792+0.038
−0.045

Revised HALOFIT Takahashi et al. (2012) 0.785+0.038
−0.045

straints, we use the optimal second-order pure E-mode measure.
These are the so-called COSEBI (complete orthogonal shear E- and
B-mode integral) modes (Schneider et al. 2010) with the logarithmic
filter, for the full available range of angular scales, from 10 arcsec
to 250 arcmin. This measure was presented in K13. The COSEBI
modes are strongly correlated, which makes visual inspection of
the data and comparison to the prediction difficult. Therefore, we
show uncorrelated data points Eortho

m as orthogonal transformation
of the COSEBIs En, Eortho

m = SmnEn, where S is an orthogonal ma-
trix, SST = 1. The result is presented in the lower panel of Fig. 1.
Increasing modes m have larger error bars, which correspond to the
elements of the diagonal matrix �, obtained by diagonalizing the
COSEBIs covariance matrix C = S�ST.

The covariance matrices of both the aperture-mass dispersion
and the COSEBIs are the field-to-field dispersion from the 184
independent Clone simulation realizations including shape noise,
rescaled to the CFHTLenS area.

Secondly, we update our model of the non-linear power spectrum
with the extended Coyote emulator (Heitmann et al. 2014), which
provides more accurate estimates of P(k, z) over a wider range in
wavenumber k, redshift z, and cosmological parameters, compared
to the first version (Heitmann et al. 2009, 2010; Lawrence et al.
2010). We do not include baryonic effects to the power spectrum.
Our smallest scale is 5.5 arcmin, corresponding to a 3D Fourier scale
k of about 0.7 h Mpc−1 at redshift of maximum lensing efficiency
for CFHTLenS depth. The suppression of power due to the presence
of baryons in haloes is expected to be between 7 and 15 per cent,
depending on the feedback model (Semboloni, Hoekstra & Schaye
2013). Kitching et al. (2014) present a conservative 3D cosmic shear
analysis including this model for baryonic effects.

The Coyote emulation parameters are physical densities ωm =
�mh−2 and ωb = �bh−2. We sample from those parameters, and
calculate �m as deduced parameter for the final PMC sample. The
prior range in �m and σ 8 given by the emulator is relatively narrow.
This makes fitting a power-law σ8�

α
m to the degeneracy direction

difficult, resulting in an under-estimated value of α of around 0.4.
Instead, we fix α = 0.713, which we obtained by sampling the
full prior range of �m and σ 8 using the revised HALOFIT model
(Takahashi et al. 2012). The results are given in Table 2. Note that
the smaller prior range results in smaller error bars compared to
the full parameter range. The difference between the models is only
about 20 per cent of the statistical uncertainty.

4.2 Third-order measures

The upper panel of Fig. 2 shows the third-order aperture-mass mo-
ment measured from CFHTLenS data. This is the diagonal part for
three equal filter scales θ in the range 2–15 arcmin. The plot shows
the E-mode (EEE; equation 27). The three B-mode components
(28–30) are shown on a linear scale in the lower panel. All error

MNRAS 441, 2725–2743 (2014)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/441/3/2725/1133645 by guest on 24 July 2020



2732 L. Fu et al.

Figure 2. The third-order aperture-mass E- and B-mode components as
function of smoothing scale θ , measured from CFHTLenS data. Upper
panel: the EEE component is shown as blue filled circles. The prediction
from WMAP9 is shown as red solid line, the third moment measured from the
Clone is the black dash–dotted curve. Lower panel: the B-mode components
(EEB: green crosses; EBB: magenta circles; BBB: cyan squares), measured
from the full mosaic data. The shaded scales are not used for cosmological
constraints.

bars are calculated from the 184 independent Clone fields of view,
rescaled to the observed survey area, and contain Poisson noise and
cosmic variance.

There is good agreement of the E-mode signal with the theo-
retical model using the WMAP9 best-fitting parameters, and the

measurement from the Clone simulations. We note a non-zero B-
mode detection. The smallest scale of 2 arcmin shows two non-zero
B-mode data points. This scale may suffer from numerical integra-
tion imprecisions due to the small number of available triangles.
Furthermore, intrinsic alignment (IA) may create a B-mode sig-
nal on small scales (Semboloni et al. 2008, hereafter SHvWS08).
More thorough tests of systematics of the third-order aperture-mass
moment is performed in the companion paper Semboloni et al. (in
preparation). On larger scales, the BBB component is non-zero. This
component is not parity invariant and is only produced when the
observed shear field shows a parity violation. We discuss possible
origins of this contribution in Section 7.

A further consistency check is the comparison of the third mo-
ment from the mosaic catalogue to the one measured on single
MegaCam pointings individually. To obtain the error bars of the
latter, we subdivide the Clone fields into 3 × 3 parts, to account
for the smaller observed field size. This results in larger error bars,
in particular on large angular scales, where substantially fewer tri-
angles are available. As can be seen in Fig. 2, the two methods of
obtaining the third moment are consistent. As expected, the great-
est differences occur on large scales, where the relative number of
common triangles is smallest.

Figs 3 and 4 show examples of the generalized third-order
aperture-mass components for a few combinations of angular
smoothing radii (θ1, θ2, θ3). Except on the smallest scale, the
agreement of the CFHTLenS third-moment E-mode with WMAP9
predictions are very good. The B-mode is non-zero for a few data
points, similar to the diagonal case as discussed above.

4.3 E- and B-mode measurement significance

We perform χ2 null tests of the various E-/B-mode components.
The χ2 function is given as the Gaussian distribution (34) where
the model y is zero everywhere. Thus, the full Clone covariance
is taken into account for the significance test, accounting for the
correlation between angular scales. Contrary to the E-mode, the B-
modes covariance only contains shape noise and no cosmic variance,
since there is no cosmological B-mode signal in the Clone. The error
bars on the B-mode are therefore much smaller than for EEE. Since
there is no IA in the Clone simulations, the cosmic variance from
this contribution is therefore not included in our covariance, which
might over-estimate the χ2 significance.

Figure 3. The generalized third-order aperture-mass E-mode EEE(θ1, θ2, θ3) measured from the CFHTLenS mosaic catalogue (blue surface, with open circle)
is compared to the prediction from WMAP9 (red surface). In each panel, one angular scale θ1 is fixed, from left to right: θ1 = 2 arcmin, 5.477 arcmin, 15 arcmin.
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CFHTLenS: two- and three-point weak lensing 2733

Figure 4. The generalized third-order aperture-mass B-mode components EEB(θ1, θ2, θ3) (left-hand panel), EBB(θ1, θ2, θ3) (middle), BBB(θ1, θ2, θ3) (right),
measured from the CFHTLenS mosaic catalogue are shown for one fixed radius θ1 = 5.477 arcmin. The red grid is the zero surface.

Figure 5. Each box shows the value σ of a significance test, where the
number in the box denotes the significance in σ . The first and third (second
and fourth) columns correspond to the diagonal (generalized) third moments,
and are labelled ‘3d’ (‘3g’). The first two columns use Poisson error only, the
last two columns also include cosmic variance (which is not present in the
Clone for B-mode components). The first row is the cosmological detection
significance, for which higher numbers are better. All subsequent rows are
null tests, for which smaller numbers are better.

As for the cosmological analysis, we use scales between 5.5 and
15 arcmin. We also check the consistency of the E-mode signal
with theory, in which case the assumed model y is the WMAP9
prediction. Given the degrees of freedom 3 for the diagonal and 10
for the general third moment, the resulting χ2 is translated into a
significance level. The results are shown in Fig. 5.

The significance of the E-mode is about 2σ when we include
the cosmic variance. Using Poisson noise only, we obtain a much
higher significance of more than 8σ . This covariance would be the
correct one to use in case of absence of EEE, since in this case there
would be no cosmic variance. Thus, we can reject the hypothesis of
a null third-order lensing signal with 9σ .

The EEE signal is in very good agreement with the WMAP9 best-
fitting model. All diagonal B-mode components are less significant
than the E-mode, and their amplitude is below the E-mode. How-
ever, both the generalized EEB and generalized BBB components
are non-null at about 3σ .

At this time, we do not know the origin of those B-modes. Further
speculations are presented in Section 7.2. Note that for the joint
CFHTLenS+CMB constraints, presented in Section 6, we only use

Figure 6. Marginalized posterior density contours (68.3 per cent, 95.5 per
cent, 99.7 per cent) for the CFHTLenS third-order aperture mass. The diag-
onal third moment (‘3d’; orange lines) is compared to the generalized third
moment (‘3g’; blue contours). The model is flat �CDM.

the diagonal third moment, for which the B-mode significance is
lower.

4.4 Cosmological constraints

We test two predictions about third-order weak lensing statistics: (1)
the generalized third-order aperture-mass moment contains more in-
formation about cosmology than the ‘diagonal’ term (Kilbinger &
Schneider 2005; Schneider et al. 2005). (2) Combined with second-
order, parameter degeneracies are partially lifted, leading to signifi-
cantly improved joint constraints (Takada & Jain 2004; Kilbinger &
Schneider 2005). We have already explored these two predictions
using the CFHTLenS Clone simulations (Section A1).

In Fig. 6, we show the marginalized constraints for �m and σ 8,
the parameters that are best constraints from weak cosmological
lensing. Symbols used in the following figures are explained in
Table 3. The generalized third-order aperture mass covers indeed
a smaller part of parameter space compared to the diagonal one.
Adding the non-equal smoothing scale measurements of the gener-
alized third moment rules out those models with a very low σ 8 and
�m. The amplitude parameter �8 is larger than zero at more than
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Table 3. Second- and third-order measures and the corresponding
symbols used in plots.

Symbol Description

2 〈M2
ap〉(θ ), aperture-mass dispersion

2 COSEBis, a second-order E-/B-mode measure
(Schneider et al. 2010)

3da 〈M3
ap,diag〉 = 〈M3

ap〉(θ ), diagonal third-order
aperture-mass moment, evaluated for one filter scale

3g 〈M3
ap,gen〉 = 〈M3

ap〉(θ1, θ2, θ3), generalized third-order
aperture-mass moment, correlating three filter scales

SLC (diagonal) third-order aperture-mass moment from
source-lens clustering (Section 5.1)

IA (diagonal) third-order aperture-mass moment from
intrinsic alignments (Section 5.2)

aNote that the symbol ‘3d’ indicates the third-moment diagonal, and is
not to be confused with three-dimensional (3D) lensing, e.g. Kitching
et al. (2014).

3σ for both the diagonal and general third moment. This is at much
higher significance than the non-zero detection of EEE (previous
section). This result is stronger, since it involves parameter fitting
within the framework of an assuming theoretical model. In particu-
lar, the shape of the signal plays a role and adds information that is
not used in a simple χ2 null test. This result is consistent with what
we see in the Clone simulations.

Secondly, adding second-order measures reduces the allowed
parameter space, however, not by much as shown in Fig. 7. Third-
order lensing probes a shallower slope α of the parameter �8 =
σ 8(�m/0.27)α , in agreement with the theoretical prediction from
Kilbinger & Schneider (2004) and Vafaei et al. (2010). Mainly in
the region of extreme �m and σ 8 is where the 〈M2

ap〉- and 〈M3
ap〉-

constraints differ. The constraints orthogonal to the �m-σ 8 degener-
acy direction are reduced by 10 per cent (40 per cent) when adding
third-order to COSEBIs (aperture-mass dispersion). Here, we see
an example where a Fisher matrix analysis (Takada & Jain 2004;
Kilbinger & Schneider 2005) can provide overly optimistic predic-
tions (Wolz et al. 2012). Even though the slope of the constraints at
the fiducial model is different, the curved, non-linear shape of the pa-
rameter degeneracy directions of the two probes largely negates this
difference, leading to a larger overlap between the allowed regions.
This shows the necessity to explore the full likelihood function, in
our case with Monte Carlo sampling, to obtain realistic joint con-
straints. We explore extensions from the standard model �CDM
model, by adding (1) curvature, and (2) dark energy in the form of
a constant equation-of-state parameter w. For those extensions, the
results on �m and σ 8 are similar to the standard case, see Fig. 8.
For further parameters, we combine CFHTLenS with other probes,
see Section 6.

5 A STRO PHYSICAL WEAK-LENSING
C O N TA M I NA N T S

Third-order cosmic shear statistics suffer from two major contami-
nants of astrophysical origin: IA and source-lens clustering (SLC).
Contrary to second-order statistics, IA and SLC contribute to a much
higher level. The correlations they introduce can be comparable in
amplitude to the cosmological weak-lensing skewness.

Figure 7. Marginalized posterior density contours (68.3 per cent, 95.5 per
cent, 99.7 per cent) for �m and σ 8 from CFHTLenS. Second-order statistics
(magenta contours) are the aperture-mass dispersion (top panel) and the
COSEBIs (bottom). The blue contours correspond to the generalized third-
order aperture mass. Both second- and third-order measures are combined
to yield joint constraints (green). The model is flat �CDM.

5.1 Source-lens clustering

SLC, see Bernardeau (1998); Hamana et al. (2002), denotes the
fact that galaxies in a weak-lensing survey act both as sources and
lenses. More precisely, source galaxies are correlated to structures
that cause the lensing effect on other source galaxies. For a given
line of sight, this clustering gives rise to a modulation of the lensing
signal, since the source redshift distribution is changed with respect
to the average in a way that correlates with the lensing signal. This
introduces an additional variance, skewness, etc. of the convergence
field.

To model SLC, we have to use a locally varying source galaxy
density p(θ , w) instead of the mean distribution p̄(w), which are
related to each other as

p(θ , w) = p̄(w)
[
1 + δg(θ , w)

]
. (35)
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CFHTLenS: two- and three-point weak lensing 2735

Figure 8. Marginalized posterior density contours (68.3 per cent, 95.5 per
cent, 99.7 per cent) for �m and σ 8 from CFHTLenS. Second-order mea-
sures (magenta curves) and third-order generalized aperture mass (blue) are
combined to yield joint constraints (green). A flat wCDM Universe is used
in the top panel, and a curved �CDM model in the bottom panel.

We assume a simple linear, deterministic galaxy bias and write

δg(θ, w) = b(w)δ(θ, w). (36)

Inserting the modified galaxy distribution (35) into (3) leads to
higher order density correlations. These additional terms do not
contribute more than a few per cent to second-order statistics, since
they are proportional to the convergence bispectrum. They are how-
ever of more importance for the third-order functions: both cosmic
shear, for common models such as perturbation theory or HEPT,
and SLC depend on terms that are proportional to the power spec-
trum squared. Inserting that additional convergence term into (10)
yields the SLC contribution to the aperture mass,

MSLC
ap (θ,ϑ) =

∫
d2ϑ ′ Uθ (|ϑ − ϑ ′|)

×
∫ wlim

0
dw p̄(w)b(w)δ(ϑ, w)κ(ϑ, w). (37)

Note that we are not estimating the aperture-mass third moment
from local measures of Map, for example by placing apertures over
the survey and then computing the third moment of that distribu-
tion. Instead, we integrate over the 3PCF, which has been globally
computed by averaging over all galaxy triples. Any local estimator
would need to be normalized by the number of galaxies in that re-
gion, e.g. the aperture disc. That would include the SLC-corrected
p(w, θ ), partly off-setting the SLC contribution. In a perturbative
ansatz, this is represented by two contributing terms with oppo-
site signs (Bernardeau 1998). Our global estimators of the 3PCF
(8, 9) are instead normalized by the number of galaxy triples over
the whole survey. The SLC correction to that is very small com-
pared to the expectation value of the unperturbed number of triples.
Therefore, we can safely neglect this contribution (Valageas 2014).

We write the total aperture mass as M tot
ap = Map + MSLC

ap , and
expand the third moment up to linear terms in the SLC contribution
(37). The result is〈(

M tot
ap

)3
〉

(θ ) =
〈
M3

ap

〉
(θ ) + 3

〈
M2

apM
SLC
ap

〉
(θ ) + · · · (38)

The second term is the first-order SLC contribution. Inserting (37),
this term can be written as

3
〈
M2

apM
SLC
ap

〉
(θ ) = 9 �m

(
H0

c

)3

×
∫ wlim

0

dw

f 2
K (w)

G(w)p̄(w) b(w)

×
∫ w

0

dw′

a(w′)
G(w′)fK (w − w′)

×
∫ ∞

0

d��

2π
Û (θ�)Pδ

(
�

fK (w)
, w

)

×
∫ ∞

0

d�′�′

2π
Û (θ�′)Pδ

(
�′

fK (w′)
, w′

)
Q(�θ, �′θ ), (39)

with

Q(y, y ′) =
∫ 2π

0

dβ

2π
Û

(| y + y′|)

= 2y2y ′2Û (y)Û (y ′)
[(

1

y2
+ 1

y ′2

)
I0(yy ′) − 2

yy ′ I1(yy ′)
]

,

(40)

where Iν is the modified Bessel function of order ν. This expres-
sion corresponds to the first term of equation A17 in Hamana et al.
(2002). The latter was obtained for a top-hat filter function, for
which the two Fourier integrals separate. In our case of a compen-
sated Gaussian filter, the closed expression (40) describes the mode
coupling.

For the galaxy bias, we take the redshift-scaling from Moscardini
et al. (1998),

b(w) = 1 + (b0 − 1)/Dγ
+(w), (41)

where D+ is the linear growth factor. This implies a bias of unity
at high redshift, which well matches our magnitude-limited sample
(Giannantonio et al. 2014). At z = 0, the bias is b0.

5.2 Intrinsic alignment

To model the contamination of galaxy IA to third-order cos-
mic shear, we implement the model from SHvWS08. This work
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Table 4. IA parameter 1σ prior ranges from Semboloni et al. (2008).

Model AGII/(10−7 h Mpc−1) θGII/arcmin AGGI/(10−7h Mpc−1) θGGI/arcmin

Mixed (realistic) 0.05 ± 0.07 1.94 ± 1.88 −0.15 ± 0.11 2.36 ± 1.40
Elliptical (pessimistic) −0.04 ± 0.30 0.37 ± 2.02 −0.88 ± 0.09 4.39 ± 0.38

measured IA in a suite of N-body simulations, and modelled IA for
different redshift ranges and a few simple galaxy populations.

For second-order cosmic shear with a very broad source redshift
distribution as is the case in this work, IA plays a minor role. Its con-
tamination of the cosmological lensing signal is of the order of per
cent (Benjamin et al. 2013), which we neglect here. See Heymans
et al. (2013) for a measurement of second-order IA using narrow
redshift bins. For third-order shear, however, the contribution from
IA is much larger, and we will model it as follows.

Third-order galaxy shape correlations including shear (G) and
intrinsic shape (I) can be written schematically as a sum of the four
terms 〈GGG〉 + 〈GGI〉 + 〈GII〉 + 〈III〉. The first term, GGG, is a
pure lensing correlation. This is the quantity from which we deduce
cosmological parameters. The last term, III, is a pure intrinsic shape
correlation. We can safely neglect this term, since only physically
close galaxies give rise to this correlation. For our very wide redshift
bin, the number of such close triples is very small compared to the
overall number of galaxy triples. The expected III amplitude is more
than an order of magnitude smaller than GGG, an in fact consistent
with zero for CFHTLS-type surveys (SHvWS08).

The mixed terms, stemming from the correlation between intrin-
sic shape and shear, are produced by galaxy triples at all redshift
ranges, and can be very large compared to GGG. The redshift scal-
ing of these terms is easy to calculate, since it only depends on
the geometry of the Universe. For the angular scaling, we follow
SHvWS08 and assume a simple power-law dependence for the
third-order aperture mass.

Following Hirata & Seljak (2004), the redshift-dependence of
the shear-shape (GI) correlation is straight-forwardly calculated.
The lensing of a source galaxy at redshift zs by structures correlated
to a galaxy at lens redshift zl scales as fK[w(zs) − w(zl)]/fK[w(zs)].
For GGI and GII, we take into account the redshifts of the galaxy
triple, and integrate over the redshift distributions, neglecting the
clustering of galaxies as a higher order contribution. Using a simple
exponential scaling with angular distance (King 2005, SHvWS08),
we obtain

MGII = AGII × exp (θ/θGII)

zlim∫
0

dzl p
2(zl)

×
zl∫

0

dzs p(zs)
fK [w(zs) − w(zl)]

fK [w(zs)]
;

MGGI = AGGI × exp

(
θ

θGGI

) zlim∫
0

dzl p(zl)

×
zl∫

0

dzs1

zl∫
0

dzs2

2∏
i=1

p(zsi )
fK [w(zsi ) − w(zl)]

fK [w(zsi )]
. (42)

The IA model parameters are the amplitudes AGII, AGGI and the
characteristic angular scales θGII and θGGI.

We add MGGI and MGII to our theoretical third-order aperture
mass, and try to jointly sample cosmological and IA parameters.

Due to the relatively low statistical significance of the CFHTLenS
weak-lensing skewness and very limited redshift resolution, we
do not aim to obtain interesting constraints on very general IA
parameters. Rather, our goal is to use a realistic IA model to assess
the influence on our cosmological results.

We therefore use the results from SHvWS08 as priors on our IA
parameters. We use two models of the galaxy population: A realistic
one (mixed early- and late-types) and a pessimistic case (early-types
only). The redshift combinations tested in SHvWS08 closest to the
CFHTLenS range correspond to the case of lens galaxies at zl < 1
and source galaxies at zs = 1. This corresponds roughly to our mean
source redshift of z̄ = 0.75, and lens redshifts probed by a single
redshift bin. The best-fitting values and error bars for the four IA
parameters are given in Table 4. We translate those into Gaussian
priors with width equal to three times the 1σ error, while we exclude
unphysical negative scales θGGI and θGII.

5.3 Baryonic physics

The presence of baryons in dark-matter haloes in the form of stars
and gas changes halo properties compared to pure dark matter.
This has an influence on the total power spectrum and bispectrum
on small and medium scales. Prescriptions to quantify and model
this, e.g. with a halo-model approach, have been obtained by using
hydrodynamical N-body simulations (e.g. Jing et al. 2006; Rudd,
Zentner & Kravtsov 2008; Semboloni et al. 2011b; van Daalen
et al. 2011). The effect depends on the assumed details of baryonic
physics. In the most realistic case, the amplitude of the third-order
aperture moment at 5.5 arcmin is suppressed by 10–15 per cent
compared to dark matter only (Semboloni et al. 2013). Contrary
to IA or SLC, the relative effect strongly decreases towards larger
scales. At 15 arcmin, the dark-matter only prediction is biased high
by less than 5 per cent.

We do not include a model of baryonic effects for the power
and bispectrum in this work. Using a simple calculation, where we
model the decrease of 〈M3

ap〉 as a function of angular scale according
to fig. 1 of Semboloni et al. (2013), we find that �8 increases by
0.040 (0.022) for the model with larger (smaller) baryonic suppres-
sion. So our value of �8, ignoring baryonic suppression, might be
biased high by 3.1 to 5.5 per cent.

5.4 Results

Adding IA and SLC changes the amplitude parameter �8 within
the statistical uncertainty of CFHTLenS. The amplitude change is
comparable in size with the difference between the diagonal and
generalized third moments, see Fig. 9.

As expected, the total IA contribution (GGI plus GII) reduces the
skewness, and the amplitude parameter increases to compensate.
There is only a mild degeneracy between σ 8 and the IA amplitudes
AGGI and AGII. The same is true for the �8. The two IA amplitude
parameters are strongly anticorrelated, since they contribute to the
skewness with opposite sign. The posterior error bars on the IA
amplitude decrease by about 20 per cent with respect to the prior.
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CFHTLenS: two- and three-point weak lensing 2737

Figure 9. Marginalized posterior density contours (68.3 per cent, 95.5 per
cent) for �m and σ 8 from CFHTLenS. We use the aperture-mass diagonal
third moment which we model with the three cases of neglecting astro-
physical systematics (‘3d’; magenta lines), adding IA (‘3d+IA’; blue) and
source-lens clustering (‘3d+SLC’; green).

Table 5. Constraints from CFHTLenS orthogonal to the �m–
σ 8 degeneracy direction, using joint second-order COSEBIs
and the third-order diagonal aperture mass including SLC and
IA. The errors are 68 per cent confidence intervals. The three
columns correspond to the three different models.

Parameter Flat �CDM Flat wCDM Curved �CDM

�8 0.77+0.05
−0.07 0.77+0.09

−0.08 0.79+0.07
−0.12

α 0.64 ± 0.03 0.66 ± 0.02 0.65 ± 0.04

Using the purely elliptical model from SHvWS08 leads to a very
strong decrease of the third moments. This is the case within the
full prior range, which we take to be three times as large as the ±1σ

errors of SHvWS08. The resulting cosmic shear plus IA aperture-
mass skewness is not compatible with our measurement, and we
conclude that this model is not supported by the data.

SLC leads to an increase of the skewness contrary to IA, and
therefore the jointly fitted �8 is smaller compared to ignoring this
astrophysical systematic. We explored different bias models and
marginalize over a range of parameters. We found that the results
are not very sensitive within a reasonable model space. The results
presented in this paper correspond to a flat prior with b ∈ [0.5; 2].
The magnitude-limited sample of lensing-selected galaxies between
redshifts of 0.2 and 1.3 is expected to have a mean bias that is not
too far from unity.

When both IA and SLC are included in the joint second- plus
third-order lensing analysis, the resulting amplitude parameter is
marginally increased (Table 5).

6 J O I N T PA R A M E T E R C O N S T R A I N T S

We add CMB to CFHTLenS weak-lensing, to lift some of the pa-
rameter constraints. Throughout this section, the weak-lensing data
consists of the second-order COSEBIs combined with third-order
diagonal aperture mass. For the latter, we include IA and SLC (Sec-
tion 5). We do not include a model of the baryonic modification of
the power- and bispectrum. With the conservative choice of angular

Table 6. Cosmological parameter results with 68 per cent
confidence intervals. The first line for each parameters shows
CFHTLenS+WMAP9, the second line is CFHTLenS+Planck.
The three columns correspond to the three different models.

Param. Flat �CDM Flat wCDM Curved �CDM

0.268+0.013
−0.012 0.304+0.141

−0.096 0.266+0.024
−0.022

�m
0.290+0.011

−0.013 0.187+0.081
−0.032 0.282+0.021

−0.017

0.812+0.014
−0.013 0.794+0.148

−0.120 0.817+0.028
−0.024

σ 8
�

0.812+0.008
−0.010 0.975+0.065

−0.109 0.823+0.021
−0.015

−0.949+0.355
−0.466

w0 −1 −1
−1.552+0.372

−0.203

0.733+0.018
−0.015

�de 1 − �m 1 − �m
0.714+0.012

−0.016

0.0011+0.0083
−0.0083

�K 0 0
0.0035+0.0074

−0.0074

0.709+0.013
−0.013 0.697+0.168

−0.116 0.715+0.042
−0.032

h
0.692+0.012

−0.009 0.878+0.079
−0.128 0.706+0.033

−0.027

0.0452+0.0013
−0.0012 0.0516+0.0240

−0.0168 0.0447+0.0048
−0.0044

�b
0.0468+0.0009

−0.0010 0.0299+0.0127
−0.0052 0.0449+0.0037

−0.0043

0.976+0.012
−0.012 0.978+0.014

−0.013 0.975+0.011
−0.012

ns
0.967+0.009

−0.005 0.964+0.006
−0.006 0.965+0.009

−0.006

scales, we limit the influence of small-scale model uncertainties,
see also Section 5.3.

It is well known (Contaldi, Hoekstra & Lewis 2003) and has
recently been demonstrated again in K13, that the �m–σ 8 lensing
degeneracy in a flat �CDM model can be lifted by the addition
of CMB anisotropies, since the latter shows a near-orthogonal cor-
relation between those two parameters. In this paper, we combine
second- and third-order CHFLTenS weak lensing with WMAP9 and
Planck measurements. The results are shown in Table 6.

The Planck constraints are much tighter than the ones from
WMAP, and do therefore dominate the combined confidence re-
gion. The Planck error region is around a slightly higher �m but
there is no significant tension.

For a non-flat cosmology, the difference between WMAP9 and
Planck is much more pronounced, since Planck alone measures the
curvature of the Universe to a high precision due to the addition of
CMB lensing (Smith, Hu & Kaplinghat 2006). Moreover, the small
size of the joint constraints for CHFLTenS + Planck comes partially
from the fact that the two confidence regions have a smaller overlap.
We do not consider this to be a tension: both probes are consistent
at 95 per cent confidence.

The density of the cosmological constant, �de is not well con-
strained by 2D lensing. However, the strong degeneracy for CMB
alone, which is close to the direction of constant curvature, can be
lifted when adding both probes (Fig. 10). This is also true for Planck,
where the degeneracy is smaller due its sensitivity to CMB lensing,
but the joint CHTLenS+Planck constraints are smaller by 43 per
cent. Note that the joint CFHTLenS+Planck contour is shifted to
lower values of �m compared to Planck alone, due to the differ-
ences for σ 8 between the two probes, see Fig. 11. For a given σ 8,
CFHTlenS prefers a lower �m.
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Figure 10. Marginalized posterior density contours (68.3 per cent, 95.5 per
cent) for �m and �de for curved �CDM models from CFHTLenS using
joint second-order measures (COSEBIs) and third-order diagonal aperture
mass (3d) (magenta curves). The constraints from WMAP9 and Planck are
shown in blue and green, respectively. The joint constraints from CFHTLenS
and WMAP9 and Planck are shown in black and orange.

The CFHTLenS+Planck constraints are shifted towards smaller
�m compared to Planck alone (Figs 10 and 11). It was already seen
from second-order cosmic shear (K13; Benjamin et al. 2013; Hey-
mans et al. 2013) that CFHTLenS prefers a lower �m. Furthermore,
over the range of �b allowed by Planck, lensing puts a lower limit
on h. Because of the strong CMB degeneracies between h and both
�b and �m, the joint Lensing+Planck constraints rule out larger
values of �m and �b (Fig. 12).

For a flat CDM model with a free, constant w parameter, the
CMB shows the same degeneracy as weak lensing in the space of
�m and σ 8 as shown in Kilbinger et al. (2009). Adding WMAP9 to

CFHTLenS does not reduce the allowed parameter space by much –
to lift the degeneracy efficiently, one would have to further add BAO
and/or Hubble constant priors. The combined CFHTLenS+Planck
contours are dominated by Planck. Compared to the flat case,
the allowed parameter space moves towards lower �m and
higher σ 8.

7 D I SCUSSI ON

7.1 Diagonal and generalized third moments

The generalized third-order aperture mass contains more informa-
tion about cosmology than the diagonal one (Kilbinger & Schneider
2005). This is because the former probes a wide range of triangles
of different shape of the bispectrum in Fourier space. The latter
is restricted to mainly equilateral triangles. This can be inferred
from equation (13): if all filter scales θ i are equal, the filter func-
tions Û all peak at the same scale �i = √

(2)/θi , and the bispectrum
contribution comes mainly from equilateral triangles.

We confirm this prediction with CFHTLenS, where the error bar
on the amplitude parameter �8 = σ 8(�m/0.27)α is reduced to about
half the size (Fig. 13, Table 7). Most importantly, the generalized
third moment excludes a good part of the low-amplitude region
in the �m–σ 8 parameter space (Fig. 6). Interestingly, despite this
information increase, the detection significance of the generalized
third moment is lower than for the diagonal case (Fig. 5). That
shows that the χ2 null test is sensitive to different properties of the
measurement than the Bayesian parameter fit. In particular, there
is extra information in the shape of the signal, and not only in the
amplitude. Only the latter plays a role for the χ2 null test.

This increase in information for the generalized third moment is
also seen in the Clone simulation, albeit less pronounced. Despite
our attempt to create simulations as realistic as possible, there are
differences which might influence the third-moment measurement
in the Clone in a different way compared to the data. This could
be the noise, but also the underlying cosmological skewness which
might be affected by the finite field and discretization in the Clone.

Figure 11. Marginalized posterior density contours (68.3 per cent, 95.5 per cent) from CFHTLenS (joint second-order COSEBIs and third-order diagonal
aperture mass; magenta lines), WMAP9 (blue), Planck (green), CFHTLenS + WMAP9 (black), and CFHTLenS + and Planck (orange). The model in the
left-hand panel is a flat cosmology, the right-hand panel shows the case of free curvature.
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CFHTLenS: two- and three-point weak lensing 2739

Figure 12. Marginalized posterior density contours (68.3 per cent, 95.5
per cent) for �b and h (upper panel), and �m and �b (lower panel), from
CFHTLenS (magenta contours), Planck (black lines) and their combination
(orange). The model is curved �CDM.

Figure 13. Left-hand panel: 68.3 per cent constraints for the amplitude
parameter �8. Right-hand panel: best-fitting values of α with 1σ errors.
The model is a flat �CDM universe. The numerical values of this graph are
given in Table 7. See Table 3 for a description of the symbols in the middle
column.

Table 7. Fig. 13 in table form. We print for
a flat �CDM universe the parameter �8 =
σ 8(�m/0.27)α with mean and 68.3 per cent con-
fidence intervals, and the best-fitting value with
1σ error of α. The probes and their symbols are
described in Table 3.

Probe �8 α

2 0.78+0.08
−0.08 0.72 ± 0.02

2 0.79+0.06
−0.06 0.70 ± 0.02

3d 0.73+0.09
−0.19 0.58 ± 0.02

3g 0.77+0.07
−0.10 0.57 ± 0.02

2 + 3d 0.77+0.05
−0.06 0.69 ± 0.02

2 + 3g 0.77+0.05
−0.06 0.66 ± 0.03

2 + 3d 0.78+0.05
−0.06 0.68 ± 0.02

2 + 3g 0.76+0.05
−0.07 0.65 ± 0.03

3d + SLC 0.70+0.09
−0.20 0.56 ± 0.02

3d + IA 0.77+0.09
−0.16 0.56 ± 0.02

3d + IA + SLC 0.74+0.09
−0.15 0.56 ± 0.02

2 + 3d + IA + SLC 0.77+0.05
−0.06 0.68 ± 0.02

2 + 3d + IA + SLC 0.76+0.05
−0.07 0.64 ± 0.03

The mean value of �8 is larger for the generalized third moment
compared to the diagonal case. The difference is not significant due
to the relative large error, but we see the same trend with the Clone
simulation. This may be because the bispectrum model is not well
calibrated on non-equilateral triangles. Another reason could be that
the numerical integration over the 3PCF performs more poorly for
non-equal aperture radii, and gives biased results. This possibility
has to be explored in the future with larger simulations.

7.2 E- and B-modes

We obtained a 2σ measurement of the cosmic shear third-order
correlations from CFHTLenS data, but also three cases of B-mode
combinations that are inconsistent with zero at >1.5σ . One of these
detections, the generalized BBB, signifies a violation of parity in-
variance. It is not very likely that an astrophysical source is at the
origin of this mode, since it would require a model with a preferred
orientation.

We tested the algorithm to calculate the third-order aperture
on the Clone simulations, and did not find a significant B-mode.
It is however possible that numerical issues are at the root of
the B-mode, such as the discreteness of the triangle binning
of the 3PCF, or of the numerical integration of the 3PCF to obtain
the aperture quantities, or incomplete available integration range.
The fact that the significance of two of the B-mode components
(EBB and BBB) is larger for the generalized third moment is com-
patible with this view, since the integration kernels are different for
the case with three different filter scales. More work is however
required to scrutinize this hypothesis.

Undetected PSF correction residuals could be responsible for
this B-mode. Third-order PSF-shear correlations were tested and
the 120 fields used in this work were statistically found to be free of
systematics (Semboloni et al., in preparation), based on error esti-
mates using CFHTLenS Clone simulations, which includes Poisson
noise and cosmic variance. As in Heymans et al. (2012), these tests
were done in a cosmology-blind way, and therefore did not include
E- and B-mode decompositions. A full analysis of E- and B-modes
from PSF residuals is left for future work.

MNRAS 441, 2725–2743 (2014)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/441/3/2725/1133645 by guest on 24 July 2020



2740 L. Fu et al.

Furthermore, the lack of IA in the Clone simulations might lead
to an under-estimation of the covariance matrix, if IA produces
B-modes, which is very plausible: Capranico, Merkel & Schäfer
(2013) obtain E- and B-mode IA power spectrum from a generic
angular momentum model. SHvWS08 calculate the B-mode III
term using simple halo-galaxy ellipticity correlations in N-body
simulations, and find a similar amplitude compared to the E-mode.
IA generates cosmic variance for the B-mode components, which
our covariance estimate does not include. This might lead to an
over-estimation of the B-mode significance. To test this hypothesis
requires a realistic IA model that produces B-modes.

7.3 Astrophysical systematics

We included simple models of two major astrophysical contamina-
tions to the third-order shear observables. Both IA and SLC depend
on the relation of galaxies and dark matter, and are therefore noto-
riously difficult to model.

Both IA and SLC modulate the lensing third-order statistics, but
the change on �8 is smaller than the 68 per cent statistical error in
both cases. The error bars on this parameter do not increase when
adding those systematic contributions.

IA consists of two relevant components (GGI and GII) with op-
posite sign. Even though the amplitude of each component can be
large, their sum cancels out to a large part. The total contribution to
the third moment is negative. Our adopted galaxy model consists of
a mixture of early- and late-type galaxies. A pure elliptical sample
would produce a very large IA skewness, which is ruled out by our
cosmic shear data.

The SLC contribution is proportional to the galaxy bias. We
found that the resulting constraints are not very sensitive to the bias
model. However, for future precision measurements the bias of the
lensing galaxy sample has to be known very well. This is true in
particular for tomographic weak lensing, where galaxies at different
redshifts create an SLC signal that depends on the bias as a function
of redshift.

We do not include the effect of baryons on the power and bis-
pectrum. With the conservative choice of angular scales, we limit
the influence of small-scale model uncertainties. Following the re-
sults from N-body simulations from Semboloni et al. (2013), we
estimate that the lensing amplitude parameter �8 from third-order
alone might be biased high between 3.1 and 5.5 per cent.

7.4 Binning of the three-point correlation function

We obtain the third-order aperture-mass moment from the shape
catalogue by integrating over the measured and binned three-point
shear correlation function (3PCF). The computation time, even us-
ing a fast tree code, limits us in the use of very small bins. We
explore a range of bin sizes using the Clone simulations, and find
convergence of the results for a reasonable computation time. How-
ever, we do see larger differences in the resulting amplitude of 〈M3

ap〉
from the data as a function of bin size (Appendix A2). The differ-
ences are well within the statistical uncertainty of the data, and we
leave a more detailed exploration of the 3PCF calculation for future
work.

7.5 Limitations of cosmology from third-order shear statistic

Currently, there are limitation for the use of weak-lensing skewness
measures for precision cosmology. These include the following.

(i) Model predictions of the bispectrum. Current fitting formulae
of the bispectrum are accurate to only 10 per cent on small scales
(Gil-Marı́n et al. 2012). Moreover, these models have been cali-
brated to only a few basic cosmological models such as �CDM.
More accurate models are needed, spanning a larger parameter space
including dark-energy cosmologies. We tested several models in
Appendix A1.

Furthermore, the effect of baryons has to be studied and quanti-
fied, for which it is necessary to run large hydrodynamical N-body
simulations. Predictions based on the halo model have already been
made for third-order statistics (Semboloni et al. 2013). On small
scales, our lack of knowledge of baryonic physics become the dom-
inant uncertainty for weak lensing cosmological results.

(ii) Astrophysical systematics are not well understood. In par-
ticular, IA models are too simplistic for future large-area surveys.
Alternatively, IA can be largely removed via nulling, at the price of
significant loss of constraining power (Shi, Joachimi & Schneider
2010). SLC is easier to model, since it only involves the bias of
the lensing galaxy sample, which can be obtained with independent
observations, for example using galaxy clustering.

(iii) The Gaussian approximation of the likelihood function will
not be sufficient for future surveys. Numerical simulations can be
used to explore and estimate the true likelihood function for a limited
parameter set (Hartlap et al. 2009; Pires et al. 2009). In Appendix
A3, we calculate the distribution of the third-order aperture-mass
measurements.

In this work, we tested and used simple approaches to mitigate
those limitations in the view of current state-of-the-art weak lensing
data. Different models of the bispectrum were compared, IA was
modelled and jointly constrained with cosmology, and the Gaus-
sianity of the data was measured, and, in the companion paper
Semboloni et al. (in preparation), a non-Gaussian likelihood model
was employed.
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APPENDIX A : C LONE SIMULATION TEST S

In this appendix, we discuss various tests involving the CFHTLenS
‘Clone’ N-body simulations (Harnois-Déraps et al. 2012). These
tests include the validity of the theoretical model, and the accuracy
of the 3PCF algorithm.

A1 Theoretical model and angular scales

To check the accuracy of our theoretical model as well as the nu-
merical algorithms involved to obtain the third-order aperture-mass
moments, we measure 〈M3

ap〉 from the Clone simulation and try to
recover the input cosmology using the sampling method and like-
lihood function as described in the previous two sections. We im-
plemented various combinations of prescriptions of the non-linear
power and bi-spectrum as described at the end of Section 2.1. A com-
parison of those predictions with the Clone simulations are shown
in Fig. A1. The difference between the original HALOFIT (Smith et al.
2003) and its revised version is minimal for third order. The differ-
ence with Heitmann et al. (2014) is larger but still small compared
to our error bars. Since the validity of the latter is restricted in pa-
rameter space, k-, and redshift range, we chose the revised HALOFIT

prescription for the power spectrum. The model from Gil-Marı́n
et al. (2012) overpredicts the Clone simulations, and we choose
Scoccimarro & Couchman (2001) for the bispectrum model.

We try different combinations of minimum and maximum aper-
ture radii under the assumption of a flat �CDM model. The pa-
rameter combination (�m/0.279)α , which is the direction along the
�m−σ8 degeneracy, is consistent with the input value of σ 8 = 0.817.
The best recovery of the input parameters is obtained using the aper-
ture angular range [5 arcmin; 15 arcmin]. We therefore choose this
range for the cosmological analysis of CFHTLenS, using three filter
scales. The number of distinct data points for the generalized third
moment (combinations with repetitions) is 10.

The generalized third moment yields only slightly smaller error
bars compared to the diagonal case, thereby only partially confirm-
ing the predicted strong increase of information from Fisher matrix
analyses (Kilbinger & Schneider 2005). In Section 4.4, we see that
the CFHTLenS data shows a larger difference between diagonal

Figure A1. Upper panel: the third-order aperture mass predicted from
Clone cosmological parameters using the combinations of bispectrum mod-
els and non-linear power models. The models for the power spectrum models
are T12 (Takahashi et al. 2012) and H13 (Heitmann et al. 2014). The bispec-
trum fitting formulae are SC01 (Scoccimarro & Couchman 2001) and GM12
(Gil-Marı́n et al. 2012). The four combinations of models are T12+SC01
(solid red lines), T12+GM12 (dashed green), H13+SC01 (blue dotted),
and H13+GM12 (magenta dashed–dotted curve). The third moment (EEE)
measured from the Clone are shown as open circles, whereas EBB are neg-
ative shown as open squares. Lower panel: marginalized posterior density
contours (68.3 per cent, 95.5 per cent, 99.7 per cent) for �m and σ 8 from
the Clone mean data vector, using the models T12+SC01. Shown are the
dispersion (magenta), the diagonal third-order aperture mass (blue curves),
and the generalized third order (green). The open circle presents the input
cosmology.

and generalized third moment. This is further elaborated in the
discussion (Section 7).

We compare third-order constraints with the aperture-mass dis-
persion 〈M2

ap〉(θ ), the latter ranging between 2 to 70 arcmin. The
direction of degeneracy for �m and σ 8 is very similar in both cases,
but the slope α of the elongated ‘banana’ σ 8(�/0.279)α is slightly
steeper for the dispersion than for the third moment, in agreement
with theoretical predictions (Kilbinger & Schneider 2005; Vafaei
et al. 2010).

Our smallest angular scale for second- (third-) order is
2 (5) arcmin. This corresponds to a Fourier scale � of about
2000 (900). Since the filter functions decay exponentially, we are
not sensitive to � > 10, 000 (3000). At the redshift of peak lens-
ing efficiency (z = 0.4), this corresponds to 3D Fourier scales
of k/[h/Mpc] of 6.6 (2). At redshift of z = 0.1, below which the
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Figure A2. Upper panel: the third-order aperture-mass moment using 20
out of 184 simulated Clone fields with three different size of the binning of
triangles: 0.05 (blue), 0.1 (red), and 0.2 (green), with (open symbols) and
without (lines) noise. The theoretical prediction with the WMAP5 cosmology
is shown as blue line. The error bars are the dispersion of 20 Clone sim-
ulations fields. Lower panel: the aperture-mass skewness from CFHTLenS
data. The lines for three different triangle bin sizes are the same as in the
upper panel. The error bars are calculated from the 184 independent Clone
fields of view, rescaled to the observed survey area, and contain Poisson
noise and cosmic variance.

large-scale structure contributes less than 10 per cent to the overall
lensing signal, the corresponding k-mode is 25 (7) h Mpc−1.

A2 Calculating the 3PCF and binning of triangles

We obtain the third-order aperture-mass moment from the shape
catalogue by integrating over the measured and binned three-point

Table A1. Skewness and kurtosis of 〈M3
ap〉(θ ) for three different

smoothing scales, measured from 184 lines of sight of CFHTLenS
Clone simulations. The errors assume a Gaussian distribution.

Scale θ 1 arcmin 10 arcmin 20 arcmin

Skewness 0.68 ± 0.55 0.12 ± 0.55 − 0.058 ± 0.55
Kurtosis − 0.14 ± 1.1 − 1.4 ± 1.1 − 1.4 ± 1.1

shear correlation function (3PCF). The computation time, even us-
ing a fast tree code, limits us in the use of very small bins. The tree
code from JBJ04 uses equidistant bins of size b in the logarithm
of the triangle side lengths. We explore various bin sizes b = 0.2,
0.1, 0.05, 0.04 using a subsample of 20 out of 184 simulated Clone
fields. As shown in the top panel of Fig. A2, large bin sizes under-
estimate the signal. However, we find convergence of the results for
bin sizes smaller than b = 0.1. Based on these findings, we choose
the conservative bin size b = 0.05 for the CFHTLenS data.

When applying bin sizes b = 0.1 and 0.05 to CFHTLenS data,
we do see slightly larger differences in the resulting amplitude of
〈M3

ap〉 (see the bottom panel of Fig. A2). The differences are well
within the statistical uncertainty of the data, and we leave a more
detailed exploration of the 3PCF calculation for future work.

A3 Distribution of the third moment measurements

We use a Gaussian likelihood function (34) of our data as an ap-
proximation of the true likelihood function. Semboloni et al. (2014)
consider a non-Gaussian treatment of the likelihood function us-
ing an independent component analysis with the help of numerical
simulations. They found that the effect on cosmological parameters
is minor. Thus, the Gaussian likelihood functions still represents a
good approximation.

To further test this assumption, we compute the distribution of
the aperture-mass skewness 〈M3

ap〉(θ ) from n = 184 realizations of
the Clone including intrinsic galaxy ellipticity noise. The results are
printed in Table A1. The rms of the skewness and kurtosis from a
Gaussian distribution with unknown mean are

√
6/n and

√
24/n,

respectively. There is a marginal detection of a negative kurtosis at
large scales. The skewness is consistent with zero. We conclude that
the assumption of a Gaussian distribution for 〈M3

ap〉(θ ) is sufficient
for our purpose.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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