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A B S T R A C T   

The adverse outcome pathway (AOP) is a conceptual construct that facilitates organisation and interpretation of 
mechanistic data representing multiple biological levels and deriving from a range of methodological approaches 
including in silico, in vitro and in vivo assays. AOPs are playing an increasingly important role in the chemical 
safety assessment paradigm and quantification of AOPs is an important step towards a more reliable prediction of 
chemically induced adverse effects. Modelling methodologies require the identification, extraction and use of 
reliable data and information to support the inclusion of quantitative considerations in AOP development. An 
extensive and growing range of digital resources are available to support the modelling of quantitative AOPs, 
providing a wide range of information, but also requiring guidance for their practical application. A framework 
for qAOP development is proposed based on feedback from a group of experts and three qAOP case studies. The 
proposed framework provides a harmonised approach for both regulators and scientists working in this area.   

Introduction 

The Adverse Outcome Pathway (AOP) concept was proposed in 2010 
as an organisational framework to facilitate integration and interpreta
tion of mechanistic toxicity data, to be included as an important 
component of a more predictive chemical safety assessment paradigm 
[1–3] and as a flexible and practical tool supporting 21st century toxi
cology [4]. An AOP is a chemical-agnostic theoretical construct, 

representing a sequence of measurable “events”. These events describe 
the progression from the initial perturbation of a biological system by a 
stressor (a molecular initiating event [MIE]) to an eventual adverse ef
fect on the health or survival of an organism or population (an adverse 
outcome [AO]). AOPs are developed and evaluated based on the 
consideration of multiple lines of evidence in a weight of evidence 
(WoE) approach, centred on establishing a causal connection between 
measurable biological events [5–9]. AOPs describe the key events (KEs) 
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and key event relationships (KERs) from the initial interaction of a 
stressor with its biological target(s), through the intermediary steps in 
the biological pathway, to a final AO. KERs serve as a type of biological 
“if, then” statement. If event A is observed at sufficient magnitude, then 
event B can be expected to occur. The support for the “if, then” statement 
is provided in terms of the biological plausibility and patterns of 
empirical support for the relationship. The quantitative understanding 
of the KERs should define the specific conditions under which event A 
will cause event B, and the magnitude or probability of change in event B 
as a function of event A. Several examples of AOPs developed for 
different adverse effects (such as cancer, damage to specific organs, 
immune responses and many others) in humans and environmental or
ganisms are available in the AOP wiki (aopwiki.org) [10–12]. 

While the AOP framework provides a systematic approach for 
qualitatively organising knowledge, mathematical models of the key 
event relationships (at various scales) provide the means and platform to 
quantitatively integrate current biological understanding to facilitate 
interpretation and extrapolation [13] and address data gaps. Mathe
matical models enable quantitative prediction of KERs and AOs taking 
into account available biological data and their relationships. Conolly 
et al. [14] defined a quantitative Adverse Outcome Pathway (qAOP) as 
an AOP for which the quantitative understanding of the relationship that 
underlie transitions from one KE to the next, and critical factors that 
modulate those relationships, are sufficiently well defined to allow quanti
tative prediction of the probability or severity of the AO for a given level of 
perturbation of the MIE. Where this level of understanding can be ach
ieved, AOPs can be used not only to support hazard identification and 
characterisation, but also to evaluate risk when posed with an appro
priate exposure scenario and complementary information on the bio
kinetic properties of a stressor. Quantification is necessary for a more 
reliable prediction of stressor (including chemical) specific effects, 
including potency, which is a prerequisite for risk assessment. 

Predictions from models that incorporate information on complex 
biological relationships, may have greater biological fidelity to support 
hazard and risk assessment than models with simplified assumptions 
[14]. Perkins et al. [15] described qAOPs as mathematical constructs 
that model the response-response relationships of KERs in an AOP. 
Quantitative AOP models can incorporate complex biological mecha
nisms, such as feedback loops, thresholds, and signalling cascades that 
are generally embedded in the KE or KER of descriptive AOPs. To be 
useful in a quantitative context, the factors impacting relationships be
tween KEs must be sufficiently understood. AOP modelling methodol
ogies range from statistical/machine learning approaches to 
mechanistic approaches using ordinary differential equations to 
individual-based models, and should be chosen according to the ques
tions being asked and the data available [15,16]. Thus, there is a need to 
identify, extract and utilise reliable sources of data and information to 
inform these quantitative considerations in AOP development. 

An extensive and growing range of electronic, digital resources 
(hereafter named e-resources) are available to support the modelling of 
qAOPs [17,18]. Digital resources can be defined as web tools/interfaces, 
datasets/databases, mathematical models that have been conceived and 
created digitally or by converting chemical and biological data and in
formation to a digital format. These should follow the principles of 
findability, accessibility, interoperability, and reusability (FAIR data 
principles) [19]. 

E-resources capture data related to the toxicological effects of 
chemicals at a range of levels of biological organisation and provide 
access to a broad range of predictive software tools (e.g., QSAR tools), to 
support predictive chemical risk assessment. However, these resources 
build from diverse heterogenous sources and are not tailored specifically 
to qAOP development. Consequently, there is a demand for a mapping 
exercise as well as better description of the resources to develop qAOPs 
that could facilitate their interoperability. In addition, it is known that, 
“a good experiment reported badly is worthless”, therefore the lack of Good 
In Vitro Reporting Standards (GIVReSt) can make the use and 

interoperability of generated data occasionally difficult [20,21]. The 
Guidance Document on Good In Vitro Method Practices (GIVIMP), 
published by Organisation for Economic Co-operation and Development 
(OECD) in 2018, is a first step to generate quality data, this guidance 
provides direction for the development and implementation of in vitro 
methods and tackles key elements to ensure resulting data are repro
ducible and well- reported [22]. The role of e-resources and the capa
bility to enhance the development of quantitative AOPs is currently 
underutilised. These resources might enrich current and future AOP 
development. To this end a workshop entitled “e-Resources to Revolu
tionise Toxicology: Linking Data to Decisions”, was held at the Lorentz 
Center (Leiden, The Netherlands) in October 2019 with EURL ECVAM, 
the Dutch National Institute for Public Health and the Environment 
(RIVM, NL) and Liverpool John Moores University (LJMU, UK) as co- 
organisers. The main objectives of this workshop were:  

1. to map e-resources and identify how they could enhance the AOP 
framework; 

2. to design and establish a workflow for quantitative AOP develop
ment based on available data and e-resources. 

This paper highlights the main outcomes of this workshop including 
a general workflow to guide the quantification of an AOP, enabling the 
development of qAOP models. 

Key learnings when exploring qAOP development for three 
different adverse outcomes 

During the one-week workshop, three case studies were elaborated 
covering different AOs, namely skin sensitisation, neurotoxicity and 
carcinogenicity. The AOPs were used to analyse and model selected 
KERs of the three different AOs. First, the participants mapped out 
available resources (datasets, modelling methodologies) to build quan
titative KERs between KEs, including their typical applications and data 
requirements (a full list of these resources is available in the Supple
mentary Material). Additional discussions focused on which consider
ations should be taken into account for assessment of confidence (i.e. 
weight of evidence) in the supporting data and its relationship with 
quantification. With regard to potential regulatory applications, the role 
of transparent documentation of the proposed approach was also dis
cussed. As such, these case studies provided a proof-of-principle to 
address critical questions in the development and use of AOP-informed 
mathematical/computational models, or qAOP models. In Table 1 we 
summarise the main lessons learned when elaborating these three case 
studies, including: i) AOP description; ii) data collection, curation and 
harmonisation (datasets and e-resources); and iii) modelling 
approaches. 

Case study 1: Skin sensitisation 

AOP description 
The AOP “Covalent Protein binding leading to Skin Sensitisation” 

(AOP40, aopwiki.org) is well studied and documented and has been 
endorsed by the OECD [23]. AOP 40 is built on four KEs, where the 
molecular initiating event (MIE or KE1) is the covalent binding to skin 
proteins (termed haptenation), by electrophilic stressors. KE2 is the 
activation of epidermal keratinocytes, and the activation (maturation) 
and mobilisation of Langerhans and dermal dendritic cells (DC) is KE3. 
KE4 corresponds to the activation/proliferation of antigen-specific naïve 
T cells by DC-mediated antigen presentation (KE4) (Fig. 1). Thus, the 
well-defined linear nature and status of the KEs makes it a useful target 
to attempt quantification. 

Datasets & e-resources 
In this case study the wealth of freely available data related to skin 

sensitisation was considered. They span human data, in vivo data from 
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regulatory studies as well as data from in chemico and in vitro alternative 
methods. Several datasets with skin sensitisation data from human, local 
lymph node assay (LLNA), and individual methods representing KEs are 
available in the literature. To investigate the development of the qAOP, 
the dataset published by Urbisch et al. [24] and evaluated by Hoffmann 
et al. [25] was investigated. This was the largest dataset available pre
senting a full data matrix across the AOP including information for more 
than 120 chemicals, i.e. human data characterising KE1, KE2, and KE3, 
and LLNA data to investigate the AO. Studies on skin sensitisation 
endpoints for several chemicals are also available in curated e-resources 
such as OECD QSAR Toolbox (links in Table 1). 

Several limitations in the data for skin sensitisation to support qAOP 
development were highlighted. The first limitation was the lack of dose 
response information for each of the KEs measured in either in vivo or in 
vitro. The second limitation was the lack of comparability of reported 
results for each KE between different studies. These may vary from a 
concentration causing a specific effect (e.g. the LLNA endpoint: con
centration at which the induced proliferative responses in draining 
lymph nodes is three-fold (EC3)) to a percentage effect (e.g. direct 

peptide reactivity assay (DPRA): percentage of peptide depletion). Thus, 
even where dose–response information is available for multiple KEs, 
those data are often not reported in units that are easily interconverted 
and compared. Thus, from the outset, effort is required to standardise 
and scale data and responses from various assays for use in qAOP 
development. 

Modelling approaches 
Among the several modelling methods considered to model the 

qAOP, the Bayesian approach was favoured as it allows the combination 
of diverse datasets, provides confidence scores of the predictions, and 
can assess the added value of including additional measured data. In 
addition, the structure of the Bayesian network itself may provide an 
answer to whether all assays are required to predict the AO, or only a 
small number of them. 

Table 1 
Summary of key learnings from the three case studies.   

Key learnings 
Adverse outcome AOPs or AOP 

networks 
Reference AOP description Datasets e-resources Modelling approach 

Skin sensitisation “Covalent Protein 
binding leading to 
Skin 
Sensitisation” – 
AOP 40 

https:// 
aopwiki.org/ 
aops/40  

• Linear AOP  
• OECD endorsed  
• Good level of 

documentation for 
all KEs and KERs  

• Data-rich AOP: several 
datasets available in 
literature e.g. dataset by 
Urbisch et al. [24] and 
evaluated by Hoffmann 
et al. [25]  

• Data available for in vitro, in 
chemico and in vivo studies. 
Full matrix for ≥ 120 
chemicals. Human data also 
available for most of the 
chemicals  

• Diversity of measurement 
units between sources (e.g. 
% of effect at a fixed 
concentration and time 
exposure vs. concentration 
at which effect is 3-fold). 
Need to normalise data 
points. 

OECD QSAR toolbox [33] Bayesian networks that 
allow combination of 
diverse datasets 

(Developmental) 
neurotoxicity 

AOPs for 
neurotoxicity - 
AOP 3, 12, 13, 17, 
42, 48, 54, 134, 
260 

[17]AOP- 
Wiki (http 
s://aopwiki. 
org/) for the 
single AOPs  

• Network of AOPs  
• AOPs at different 

level of development 
(from under 
development to 
OECD endorsed)  

• Focus on 
intermediate and 
interconnected KEs 
and KERs  

• Data limitations: 
availability of precompiled 
datasets. Literature reviews 
needed to extract 
quantitative relevant 
information about KEs from 
literature  

• Data available from in vitro 
and in vivo studies  

• Need to convert different 
data points to the same unit 
of measurements, apply the 
same weight to individual 
studies or data points in a 
single study 

Developmental 
NeuroToxicity Data 
Integration and 
Visualization Enabling 
Resource (DNT-DIVER)  
[34] 

Bayesian networks that 
can be used with 
relatively sparse data 
or when multiple 
pathways can affect the 
AO 

Carcinogenicity “Cyp2E1 
Activation 
Leading to Liver 
Cancer” – AOP 
220 

https://a 
opwiki.org 
/aops/220  

• Linear AOP  
• Under final stage of 

OECD review  
• Focus on late KEs 

and KERs predictive 
of AO  

• Good data availability: 
datasets available from 
literature and regulatory 
dossiers  

• Available data mainly 
originated from in vivo 
studies  

• Importance of well- 
designed studies of 
dose–response relationships 
for KEs at several levels of 
biological organisation at 
relevant time points 

OECD eChemPortal [35] 
EFSA OpenFoodTox 
database [36]PubMed 
(keywords used: substance 
name, CAS N., proliferation, 
tumour) [37]EFSA 
publications (e.g. EFSA’s 
Peer Review Conclusions on 
Pesticides) [38]Health 
Canada’s Assessment 
Reports [39] 

An equation (similar to 
Zgheib et al. [31]) 
describing dose 
response relationship 
was applied and data 
were also normalised 
using PBK modelling  
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Case study 2: (developmental) neurotoxicity 

AOP description 
The second case study addressed an AOP network for developmental 

neurotoxicity described by Spinu et al. [17]. Briefly, the network con
nects nine AOPs (AOP 3, 12, 13, 17, 42, 48, 54, 134, 260 available in the 
AOP-Wiki https://aopwiki.org) by means of shared KEs (Figs. 1 & 2). 
The status of these AOPs within the OECD programme ranges from 
“under development” to “TFHA/WNT endorsed”3. The AOPs within the 
network contain adjacent KERs and share three neurotoxicity-related 
AOs defined as neurodegeneration, Parkinsonian motor deficits and 
impairment of learning and memory/decrease or cognitive function 
[17]. 

KERs which connect KEs centrally located in the network and rep
resenting nodes of convergence of many AOPs, were prioritised for 
quantification. The KE “cell injury/death” represented the most highly 
connected node/intermediate KE in the network. However, it was 
considered too non-specific with respect to the (developmental) neuro
toxicity network to facilitate collection of data relevant for development 
of a quantitative model. Therefore, reduction of Brain-Derived Neuro
trophic Factor (BDNF) leading to the subsequent decrease of synapto
genesis and decrease in neural network function were selected as set of 
KEs suitable for KER quantification (Fig. 2). The choice of common KEs 
for modelling represents a pragmatic decision, based not only on the 
topological analytics indicating the most centrally connected common 
KEs, but also on the availability of existing data and cost-effectiveness of 
obtaining new experimental data. For example, the cost of performing 
imaging experiments on cell cultures (synaptogenesis) may be different 
than the cost of electrophysiological (microelectrode array) studies 
(neural network activity). Irrespective of the choice of common KEs, a 
residual uncertainty concerns the potential impact of excluded path
ways. Further details of this qAOP and the underlying modelling 
approach are provided in Spînu et al (submitted) and [26]. 

Datasets & e-resources 
In this case study, it was noted that an extensive data collection 

exercise would be required due to the limited availability of pre
compiled data. Quantitative data extracted from literature needed to be 
compiled, annotated and organised in a structured and appropriate 

format to ensure compatibility with a suitable modelling technique. The 
Developmental NeuroToxicity Data Integration and Visualization 
Enabling Resource (DNT-DIVER) by National Toxicology Program pro
vides a web-based curated collection of datasets from multiple DNT 
assays (link in Table 1). In this e-resource, benchmark concentration 
analysis was applied to compare data obtained in assays using different 
species (e.g. human-based cell assays or animal models such as zebrafish 
and planaria) and addressing various endpoints (e.g. neuron outgrowth, 
protein accumulation and behaviour in fish) [27]. The assessment of 
variability between different assays was identified as a major obstacle. 
The same endpoints can be investigated in different test systems (e.g. 
animal models or human samples) or by using different experimental 
techniques. For example, synaptogenesis can be assessed by using im
aging techniques or measuring protein content. Therefore, it is useful to 
have access to the experimental protocols to understand how data were 
generated. Moreover, as part of the data processing, data points have to 
be converted to the same unit of measurement (e.g. BDNF concentration 
as % of control). Another important consideration is the weight to be 
assigned to individual studies or data points in a single study, for 
example, where multiple concentrations are tested in different test 
systems. The inclusion of concordance tables in the AOP-Wiki [28] 
would support the development of harmonised and structured datasets 
for quantitative modelling. Datasets could be extended over time to 
include additional data. Ideally, quantitative datasets would be 
compiled in a machine-readable format to support their reusability and 
comply with FAIR data Principles. 

Modelling approaches 
As for Case study 1, the Bayesian network was identified as the most 

suitable approach for quantitative modelling of literature data of 
neurotoxicity-related AOPs. Moreover, Bayesian networks allow com
plex scenarios to be modelled by a relatively simple approach with little 
requirement for parameterisation. They can be built on expert knowl
edge as well as training data sets. In particular, they can be used with 
relatively sparse quantitative data and when multiple pathways can 
affect the AO. BNs can be tested for different network architectures and 
also for various combinations of events. 

Case study 3: Carcinogenicity 

AOP description 
The third case study focused on carcinogenicity and the AOP on 

“Cyp2E1 Activation Leading to Liver Cancer” (AOP 220 in the AOP- 

Fig. 1. Schematic description of the 
AOPs selected for the three case studies. 
Case Study I: AOP 40, “Covalent Protein 
binding leading to Skin Sensitisation”, 
covering the skin sensitisation endpoint. 
Case study II: set of KEs derived from 
network of (developmental) neurotox
icity AOPs (see Fig. 2). Case study III: 
AOP 220, “Cyp2E1 Activation Leading 
to Liver Cancer” as example of a 
pathway underlying carcinogenicity. 
Boxes circled in green indicate molecu
lar initiating events (MIEs), in blue key 
events (KEs) and in red adverse outcome 
(AO). (For interpretation of the refer
ences to colour in this figure legend, the 
reader is referred to the web version of 
this article.)   

3 Task Force on Hazard Assessment / Working Group of the National Co
ordinators for the Test Guidelines Programme 
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Wiki) (Fig. 1). At the time of writing, this AOP is in the final stage of 
OECD review and approval. AOP 220 presents the chronic CYP2E1 
activation (MIE) leading to liver cancer, which induces a series of 
cascade events. Oxidative stress (KE1) caused by CYP2E1 activation can 
induce hepatotoxicity (KE2), leading to liver cancer. The liver has a 
regenerative capacity through cellular proliferation (KE3) that is pro
tective against injury. However, uncontrolled cellular proliferation 
resulting from chronic CYP2E 1 activation promotes hepatocarcino
genesis (AO) [29] through fixation of spontaneous mutations. In this 
case study, the late KERs linking upstream cellular toxicity leading to 
downstream regenerative cellular proliferation leading to the AO (liver 
cancer) were selected as starting point for quantification. Selection of 
these KERs from AOP 220 was based on the extent of data available as 
basis for quantification and on consideration that proximity to the AO to 
facilitate predictive application in hazard characterisation for regulatory 
purposes. 

Datasets & e-resources 
The first step in data collection was to identify (chemical) stressors 

that are relevant for the AOP of interest. For the selected KEs and KERs of 
AOP 220, most of the quantitative data were retrieved from chemical 
assessment reports from regulatory agencies, which included peer- 
review of relevant toxicological studies. Alternatively, data could be 
derived directly from the scientific literature, provided that results are 
sufficiently documented, and the study is adequately designed (prefer
ably conducted according to relevant OECD Test Guidelines). Robust 
tumour incidence data were relatively easily available, while data on 
histopathological measurements of cell toxicity and data on regenera
tive proliferation, at relevant time periods were more difficult to iden
tify. This was partly due to the fact that regenerative proliferation is not 
a requirement in the cancer bioassay [30]. Briefly, quantitative data for 
a list of chemical stressors, associated with a possible cancer adverse 
outcome, were collected from several tools and databases, including 
some of the e-resources identified in the workshop, such as OECD’s 
eChemPortal and EFSA’s OpenFoodTox database (links in Table 1). In 
addition, PubMed, EFSA’s Peer Review Conclusions on Pesticides and 
Health Canada’s Assessment Reports, were also taken into account. In 
this investigation, most of the quantitative data were retrieved from 
chemical risk assessment reports, where a peer-review evaluation of 
toxicological studies was already conducted, and therefore the related 

data quality was assumed to be high. Thus, for the quantification of the 
AOP, the relevant dose–response data for quantitative characterisation 
of the response-response function between different KEs and the AO 
were collated. Since all datasets were from animal studies (due to the 
selection of KERs for quantification), the study design and associated 
dataset were carefully reviewed. 

The relevance of having well-defined inclusion criteria for studies to 
be used for quantification was acknowledged. Another key learning was 
the type of dose–response information to be used: preferably, quantifi
cation of KERs should be based on datasets that include KEs at multiple 
levels of biological organisation and with significant increases over 
controls for at least two doses/concentrations. Finally, species/sex and 
strain, differences in exposure period and exposure routes was recom
mended. The case study made very clear the lack of uniformity in data 
reporting among the different data sources, contributed to significant 
gaps and consequent uncertainty. 

Modelling approaches 
For modelling of the carcinogenicity pathway, an empirical dos

e–response model as described in Zgheib et al. [31] was applied. In 
addition, a physiologically based kinetic (PBK) model was used to ac
count for different routes of exposure between different animal studies 
[32]: application of the PBK model for calculating the internal dose 
allowed for comparison of the different datasets. 

Workflow to support qAOP development 

Based on the key findings and learnings from the three case studies 
(Section 2, Table 1), a generic workflow consisting of six steps is pro
posed (Fig. 3) to support qAOP development. The workflow is intended 
to be applied in an iterative manner until sufficient confidence in the 
development of the qAOP is achieved. 

Before entering the workflow to design a qAOP, the scope and pur
pose (problem formulation) should be defined. The problem formulation 
is an iterative process involving risk assessors and risk managers who 
determine the need for, and the extent of, a risk assessment [40]. It is 
important to ensure that the question(s) are clear, specific and agreed 
upfront before developing the qAOP. Relevant considerations include 
the decision context, critical issue(s) that need to be addressed, and the 
required level of confidence in outcome, including any quantitative 

Fig. 2. Case Study II. AOP network covering (AOP 3, 12, 13, 17, 42, 48, 54, 134, 260) developmental neurotoxicity (based on Spînu et al. [17]) was used to derived a 
linear chain of KEs (see right side and Fig. 1). 
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Fig. 3. General stepwise approach proposed for qAOP development.  
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modelling [41]. In this context, “intended use” refers to the scientific 
purpose of the model (e.g., generation of a dose-metric and its use in a 
risk assessment), while the “decision-making context” (or context of use) 
refers to relevant considerations (e.g. acceptable uncertainty, risk 
management consequences of making a decision, availability of existing 
data, possibilities to generate new data, restrictions/bans on animal 
testing) [42]. Once the problem formulation is defined, the workflow 
can be executed to address specified objectives. 

The first step, of the workflow (Fig. 3) consists of identifying the basis 
for qAOP development, i.e. a single AOP (in the case of skin sensitisation, 
and carcinogenicity for example) or an AOP network (in the case of 
neurotoxicity for example) [2,43]. According to what is considered the 
required functional unit of prediction (step two), the modelling challenge 
is simplified by selecting the “more important or more relevant” nodes in 
the AOP or AOP network. The choice of nodes (KEs) in a simplified 
network can be informed by network analytics. The degree of connect
edness and centrality of KEs can express the extent to which the KEs 
represent important nodes of convergence of the pathway, in the context 
of the problem formulation [17]. Information on highly-connected KEs 
from network analytics needs to be weighed against the availability and 
quality of data, as well as the cost-effectiveness of generating new exper
imental data. Step three consists of identifying sources of information 
(from the literature and/or databases) that contain potentially useful data 
for quantifying the KERs that will be derived from pairs of KEs. The 
datasets should meet the FAIR data principles [19] and interventions at 
both data and metadata level could support this FAIRification process for 
newly created or existing datasets (https://www.go-fair.org/fair-princi 
ples/fairification-process/). 

The fourth step consists of reviewing the information and extracting 
that considered to be reliable and relevant. At present, this is a manual 
and time-consuming process, but this could eventually be partially 
automated. For example, steps 3 and 4 could be facilitated by using 
online e-resources such as Abstract Sifter [44], Swift Review [45], Dis
tillerSR [46] (see [47] for additional examples). Easy access to the 
protocols underlying the data and the definition of the inclusion and 
exclusion criteria for studies and associated datasets would also facili
tate the review and extraction of the data. In the OECD programme, the 
value and potential modification/application of tools for the systematic 
consideration of available data are being considered as a basis to in
crease efficiency and transparency in AOP development, paving the path 
for new Artificial Intelligence tools to be developed to facilitate data 
extraction. Recent activities are oriented to promote the use ontology- 
based annotations of KEs and establish semantic mapping of AOP 
Wiki, to facilitate the extraction of AOP content, support computational 
analysis and allow better interoperability with other resources [48–51] 
(see Supplementary Material). 

In the fifth step, the (manually) extracted data are codified and 
annotated in a machine-readable format, suitable for modelling. 
Attention should be paid to relevant meta data, including the correct 
units of measurement. 

The sixth step consists of building and running the mathematical 
model (i.e. the qAOP). The choice of modelling approach will depend on 
the amount, quality and comparability of the data on incidence, prev
alence of the KEs, whereas the choice of software platform will depend 
on the preferences of the modeller. Moreover, the selected model may 
depend on the required degree of parametrisation, considering that data 
may not always be sufficient or data processing could be resource- 
intensive. Model credibility should be considered. Several guidance 
documents illustrate how to make mathematical models more credible 
[40–42,52]. 

Finally, the model outputs are reported. Depending on the un
certainties in the model simulation, the model results will either be used 
directly to inform the hazard assessment, or there will be a further 
iteration to generate data or refine the model to reduce the uncertainties 
and build more confidence in the qAOP. It is important that the model 
outputs are useful for decision making (in the sense that they provide 

information hat meaningfully informs the decision context. 
The overall process should be reported in a transparent way, indi

cating the assumptions and limitations for each step. The application of 
a framework for qAOPs would provide the basis for deciding when the 
model is adequate for the intended purpose (Section 5). 

Qualitative and quantitative understanding of AOPs 

This section presents elements of AOP description and assessment 
that are relevant to the workflow proposed for qAOP development. 
Qualitative weight of evidence considerations and quantitative under
standing of the KERs in an AOP facilitate early focus on the generation of 
data, considerations of e-resources and their possible applications to 
quantification in early stages of development and assessment of AOPs. 

Weight of evidence considerations 

The Weight of Evidence (WoE) analysis in AOP development is a 
transparent judgment concerning the extent of the supporting evidence. 
This analysis is based on guidance outlined in the OECD guidance and 
Handbook for AOP development, drawing upon well-established con
siderations in the assessment of mechanistic data on chemicals by reg
ulatory agencies [5,7,9,28] (https://aopwiki.org/). The WoE analysis 
communicates the extent of supporting knowledge for AOPs in a format 
which supports quantitative and regulatory application and promotes 
better common understanding within and between the research and 
regulatory communities on the types of data or studies that are most 
informative. WoE analysis is based on a subset of modified Bradford Hill 
(B/H) considerations, which were introduced in 1965 to assess the 
causality of associations in epidemiological studies [53]. These consid
erations have evolved based on international experience in applying 
Mode of Action (MOA) analysis for regulatory applications [54,55]. 

The modified or tailored B/H considerations for AOP analysis are 
“expert informed” and application driven, reflecting additional evolu
tion taking into account experience in the OECD AOP development 
programme. They focus on those aspects that are considered most crit
ical to ensure adequate documentation for regulatory application, while 
recognising the needs of developers for simplicity in communicating 
their critical knowledge of biology. The relevant subset of considerations 
are, in rank order of importance, biological plausibility, essentiality and 
empirical support [5–7]. Delineation of relative confidence in the sup
porting evidence for each of these considerations for KEs, KERs and the 
overall AOP informs the extent of the robustness of AOPs for application 
(for example, in the development of testing strategies and/or as a 
component of priority setting or hazard characterisation). 

Concordance tables that summarise critical information pertinent to 
the expected patterns between the upstream and downstream event(s) 
can be very effective in facilitating WoE evaluations (Fig. 4). They are 
also critical in identifying the information relevant to subsequent 
quantification of the KERs (Fig. 5). These WoE determinations 
contribute to the consistency and transparency of AOP descriptions. 
They are also helpful in characterising uncertainty, including the nature 
of gaps in biological knowledge of relationships between KEs and limi
tations in the extent of investigation of empirical support for KE essen
tiality and for KERs. 

As a result, the WoE considerations increase common understanding 
among the research and regulatory communities of the elements and 
types of data or studies which increase confidence for regulatory 
application of AOPs. They constitute the essential bridge between 
development and application of AOPs. While these considerations are 
qualitative in nature, empirical support (i.e., expected patterns of 
quantitative relationships across the KERs) focuses early attention on 
dose–response information for KEs that have potential to contribute to 
the quantification of KERs, as a basis for developing quantitative 
response-response models (i.e., to characterise how much change in an 
upstream KE is needed to evoke some unit of change in a downstream 
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KE). For cases where there is a preponderance of high and/or moderate 
confidence determinations for empirical support, it is likely that data are 
sufficient to support development of quantitative models. 

Extension of qualitative characterisation of relative WoE for AOPs 
based on specified considerations has also been proposed, with the aim 
of establishing a quantitative approach for WoE evaluation of AOPs (for 
example, [6,56]). This would allow for WoE analysis of complex datasets 
with multiple criteria and metrics and would be particularly useful for 
more complex AOPs or AOP networks. Such analysis is potentially more 
relevant in chemical hazard characterisation where there may be a need 
to consider more quantitatively the extent of supporting evidence for 
different hypothesised modes of action in the induction of adverse 
outcomes. Quantitative WoE approaches are based directly on the rank 
ordering of the qualitative WoE considerations through assignment of 
relative scores. While the assignment of specific scores to the various 
considerations is necessarily arbitrary, it should be sufficient to char
acterise the extent of supporting data in a relative rather than absolute 

context. As a result, quantitative scores for AOPs or their components 
can only be interpreted in the context of their magnitude relative to 
scores for other components or AOPs, respectively. It should be noted 
that careful consideration should be given to the extent to which the 
components of the AOP have been studied. Lower relative scores do not 
necessarily indicate a lower probability of an event occurring, but may 
reflect a simple data gap. 

Qualitative WoE provides, then, a measure of confidence in AOP 
elements and the overall AOP, based on the extent of the supporting 
data. The considerations are rank ordered with biological plausibility 
being most important, followed by the essentiality of key events. 
Empirical support is the least influential of the three considerations 
related to correlation contributing less to consideration of causation. 
Rather, empirical support contributes, along with biological plausibility 
and essentiality. A small amount of empirical support can provide high 
confidence, if there is high confidence in biological plausibility of the 
KERs and essentiality of the KEs. However, if there is weak support for 

Fig. 4. Dose-Response and Temporal 
Concordance Table illustrating empirical 
support for a hypothesised AOP. Data are 
considered independently for different 
stressors (Chemicals A and B) and different 
species (rats and mice) and presented by 
increasing duration of exposure (for both rats 
and mice). Chemicals A and B are thought to 
act on the same MIE. Benchmark doses for 
key events are presented to see if they align, 
based on the expected pattern. In this 
example, the empirical data fully support 
expected relationships across KERs for the 
hypothesised AOP (i.e. increasing values 
from the upper left corner to lower right 
hand corner, illustrated by the redlined 
circles).   

Fig. 5. Relationship between empirical 
support for a hypothesised AOP and 
quantification of the KERs. The dos
e–response and temporal concordance 
table at the top addresses severity over 
time, in contrast with Fig. 4, which ad
dresses benchmark doses. Dose-response 
and temporal concordance tables 
address various measures of dos
e–response, depending upon the nature 
of the data reported. The number of plus 
signs indicates the degree of severity of 
the observed effect - + = low, + + =

moderate, + + + = high. The lower 
table addresses the incidence of the ef
fect at a specified dose, and provides 
information relevant for the quantifica
tion of KERs. Chemicals A and B are 
thought to act on the same MIE.   
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plausibility and essentiality, much more empirical support is required 
for predictive confidence. While qualitative consideration of empirical 
support is distinguished from quantitative modelling of response- 
response relationships that form the basis for predictive dose–response 
models, they are based on the same or similar data. In particular, specific 
studies identified in the concordance tables or text summaries for 
empirical support for each of the KERs and AOP overall should be 
helpful in the quantification of response-response relationships. Indeed, 
an extension of the concordance tables to include additional detail 
relevant to quantification of the dose–response relationships is likely to 
be helpful in informing quantitative modelling of the KERs (Fig. 5). 

Within qualitative consideration of WoE for hypothesised AOPs, 
empirical support takes into account “patterns” of quantitative re
lationships for KERs (i.e., the extent to which temporal and dos
e–response patterns align with what would be anticipated for key 
events). These patterns are normally considered on the basis of analysis 
of dose–response relationships for KEs across different levels of biolog
ical organisation following exposure to stressors which perturb the 
pathway. This differs from quantification of the KERs, i.e., the quanti
fication of the extent of change in an upstream KE (KEup) needed to 
evoke some unit of change in a downstream KE (KEdown). It is quan
tification of these KERs which lends itself to development of predictive 
response-response models. 

The extent of development and required accuracy of such models is 
necessarily dependent on the purpose-specific application, as framed in 
the problem formulation. Although not yet formally addressed, it can be 
anticipated that the evolution of predictive quantitative modelling of 
AOPs will include the development of guidance for the description and 
application of purpose-specific quantitative models of KERs and AOPs, 
consistent with principles outlined in previous initiatives, for example, 
on PBK models [40,42,57]. Key considerations in the description of such 
models, beyond the qualitative consideration of the extent of supporting 
evidence for AOPs addressed above, are discussed in Section 5. 

Quantitative understanding of key event relationships 

There are four types of information that AOP developers are 
encouraged to document to support quantification of KERs; each of these 
is discussed in more detail below. The information required is often 
included in studies considered in assessment of empirical support for the 
KERs. 

The first (i), and arguably most important of these, is a quantitative 
response-response relationship. A quantitative response-response rela
tionship can be viewed as a mathematical function or model that allows 
one to address the question – how much change in KE (A) is needed to 
evoke some defined level or magnitude of response in downstream KE 
(B) [58]? A quantitative response-response relationship is analogous to 
the concept of dose–response familiar to most toxicologists. However, 
rather than identifying dose (concentration) of a stressor as the inde
pendent variable, the magnitude of change in key event A is the inde
pendent variable, and the magnitude of change in downstream key event 
B is the dependent variable. In the case of quantitative response- 
response relationships, there is no expectation that this function will 
follow the typical sigmoidal shape of a dose–response curve. Rather, it 
may be described by a wide range of functions that may range from 
simple linear or non-linear regressions, to rather complex biologically- 
based models employing systems of ordinary differential equations 
that may capture non-intuitive behaviour and even stochasticity (e.g., 
[14,15,59,60]). 

The second (ii) aspect of quantitative understanding of a KER is an 
understanding of the time-scale over which key event A can be expected 
to impact key event B. Generally speaking, the time-scales of biological 
events tend to increase as one moves to higher levels of biological 
organisation, with most events on the molecular and cellular level 
happening on scales of seconds to minutes, events at the tissue and organ 
level happening on scales of days or weeks, and effects on individuals or 

populations manifesting on scales of months or even years. Under
standing the time-scale of a transition from one key event to the next is 
important for many applications. For example, it may inform what 
measurements are practical to make experimentally, versus those that 
may be best addressed through modelling (i.e., happen very rapidly or 
on the scale of years). It can provide critical insights when evaluating 
evidence that may support or reject the empirical concordance between 
two key events, as described above. Furthermore, it can inform both the 
type of evidence one might expect to find in relation to the KER and how 
one would design an experiment to evaluate the response-response 
relationship defined for a given KER. For example, if the transition 
from one KE to the next in a KER occurs on the scale of years, epide
miological lines of evidence may be far more tractable than experi
mental lines of evidence. Consequently, the time-scale of the transition 
is viewed as another important component of the quantitative under
standing of any KER. 

The third (iii) aspect of quantitative understanding of a KER is 
identification of known modulating factors. A critical question involved 
in applying the quantitative response-response relationship identified 
for a KER is “how generalisable is this relationship?” Is the relationship 
valid for just a single species under very specific test conditions, or can it 
be extended to other organisms? Does it apply to all life stages, or only to 
a specific life stage? In part, these questions are addressed in the domain 
of applicability of a KER, which seeks to define the species, sexes, and 
life stages for which a given relationship between key event A and key 
event B is expected to hold up. However, in a quantitative sense, other 
factors come into play: it also entails defining how different factors 
intrinsic to the organism and its biology, as well as extrinsic factors 
acting on the organism (collectively termed modulating factors), may 
alter the response-response relationship defined for the KER. Modu
lating factors may include genetic background, diet, pre-existing disease 
states, environmental stresses, social stresses, and many others. 

Some modulating factors may make event B much more sensitive to 
changes in event A. Other modulating factors may make event B less 
sensitive or even completely insensitive to event A. Still others may 
dramatically alter the shape of the function describing event A’s effect 
on event B. Whatever the case, where this information is known, AOP 
developers are encouraged to summarise and support information on 
these modulating factors and their influence on the response-response 
relationship for the KER, where possible. However, AOP developers 
are discouraged from merely speculating as to the role of various 
modulating factors. Identification and characterisation should be foun
ded on empirical scientific support, not just plausibility. 

The fourth (iv) and final consideration in documenting the quanti
tative understanding of a KER is the consideration of any feedback re
lationships, positive or negative, that may exist between events A and B. 
In the typical box and arrow diagram used to depict an AOP, the up
stream event (event A) is assumed to cause a change in the downstream 
event (event B). The conceptual representation implies that the state of 
event A is independent of any change event B. However, biologically it is 
understood that event A may indeed be impacted by changes in event B. 
For example, in a series of studies examining the relationship between 
aromatase inhibition (a MIE) and decreases in circulating concentrations 
of 17β-estradiol (E2), it was consistently shown that decreases in 
circulating concentrations of E2 are followed by increased expression of 
mRNA transcripts coding for aromatase, and subsequent partial recov
ery in E2 concentrations as exposure persists [61–64]. Behaviours 
associated with this feedback relationship between events A and B were 
incorporated into the models used to derive a response-response rela
tionship linking aromatase inhibition to reduced circulating E2 [14]. 
The publication by Knapen et al. [65] provides another example in 
which a downstream event not only influences the mRNA expression 
related to an upstream event, but the feedback mechanism itself involves 
a biological object represented in other AOPs. Thus, capturing feedback 
can be critical not only to quantitative application of individual AOPs, 
but also the use of AOP networks in predictive toxicology [65]. Where 
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this kind of quantitative understanding can be assembled for KERs that 
span across the KEs and levels of biological organisation represented in 
an AOP, the AOP may support a much broader range of applications and 
decision-making [2,59,60]. 

Four groups of e-resources 

A wide variety of electronic resources that may contribute to the 
development of qAOPs are available. Spinu et al. [16] published an 
extensive review of tools and resources to support qAOP development. 
These resources can be categorised into four primary types: knowledge, 
data, modelling, and resources to perform hazard and safety assessment 
(Fig. 6). For each step, relevant e-resources have been mapped. A 
comprehensive but not exhaustive list of e-resources provided by the 
experts during the workshop are available in the Supplementary mate
rial (Supplementary Table 1). 

Knowledge 

Quantitative AOPs are knowledge-based algorithms and models, 
with the supporting descriptions being documented in frameworks of 
mechanistic toxicology. The workshop considered a number of knowl
edge sources to support the development of qAOPs, from the AOP-Wiki 
providing AOP descriptions to the underlying literature and data sour
ces. Abstract Sifter [44] is one such example, along with a variety of 
other text mining tools (see Supplementary Table 1), that could aid 
extraction of biological and toxicological knowledge. 

Data 

Data are required to populate qAOPs, ranging from in vitro data 
through to in vivo toxicity and observations of adverse effects. There are 
numerous resources and data compilations. For example, Pawar et al. 
[18] reported nearly 1,000 toxicological data resources that may assist 
in modelling. Fundamental issues that must be considered when using 
literature data are the quality of the information in terms of the veracity 
of chemical structure, intrinsic quality and relevance of the original 
study and that data have been captured correctly, i.e. no errors in 
transfer. Thus, the quality and accuracy of the data must be checked by 
the user. There is need for adoption of FAIR data sharing principles, 
along with the provision of (meta)data that accurately describe biolog
ical and toxicological relevant endpoints of the studies. Some of the key 

data resources can complement the qualitative description of AOPs 
available through the AOP-Wiki (https://aopwiki.org/) and may be 
utilised to populate qAOPs, for example, JRC EURL ECVAM datasets 
[66], the OECD QSAR Toolbox [33], OpenFoodTox [36], eChemPortal 
[35], US EPA AOP-DB [49] and [81], US EPA CompTox Chemicals 
Dashboard [67] or PubChem [68] (see Supplementary Table 1 for 
additional information). 

Modelling 

Implementation of a computational qAOP model generally requires 
some form of modelling software to assist with the mathematical 
description and analysis (see Supplementary Table 1 for details on 
software and availability). A variety of resources for quantitative 
modelling of KERs is available. These include freely available resources 
and those that require commercial licenses. 

Software environments such as R (https://www.r-project.org/) and 
Python (https://www.python.org/) are readily usable and provide 
packages which are transferable for the purpose of developing qAOPs. 

The workshop also considered several other bespoke resources which 
have been developed for modelling in systems biology, biokinetics and 
for decision analysis such as DART (Decision Analysis by Ranking 
Techniques) [69]. Freely available software (such as KNIME [70]) can 
incorporate these statistical models into usable computational work
flows. There are also resources that can assist with the evaluation of 
literature and more efficient mining of text information. Other resources 
were also considered such as reported by Madden et al. [71] who pro
vided a detailed overview of computational resources for the parame
terisation of PBK models. PBK models are mathematical description of 
the adsorption, distribution, metabolism and excretion of chemicals in 
the body and are usually described by ordinary differential equations. 
This is complementary to a qAOP model which is a mathematical 
description of the mechanistic downstream events/mode of action of the 
chemical after the kinetic process has taken place. 

Hazard and safety assessment 

The translation of qAOPs to usable tools to assist in hazard and safety 
assessment is essential for their uptake in the broader scientific com
munity. Currently there is no platform that provides a systematic inte
gration of qAOPs for use in hazard and safety assessment. However, the 
workshop noted some existing resources, such as the OECD QSAR 

Fig. 6. Graphical summary representing the elements described in the present paper, from qAOP model purpose, through knowledge of biology and quantification of 
the KE by measured data to modelling predictions driven by regulatory application. For each step e-resources are mapped. 
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Toolbox [33], EFSA Knowledge Junction [72] and Euromix Toolbox 
[73], as useful now and in the future for this purpose. 

Several different software tools (Supplementary Table 1) are avail
able and although the choice mostly depends on the modeller’s prefer
ences, it is advisable to use open-source applications that increase 
transparency, transferability and acceptance of the model. Confidence in 
qAOP models may increase through iterative refinement of the model for 
example by developing more comprehensive datasets, which many 
imply the need to conduct additional studies. It is also possible that the 
inclusion of additional data will result in the need to refine the original 
model (choice of KEs and KERs). In addition, challenging the model with 
reference compounds that were not used for the initial model calibration 
increases confidence in the results. An electronic infrastructure such as 
the Adverse Outcome Pathway Knowledge Base (AOP-KB, https://a 
opkb.oecd.org/background.html) provides a perfect host platform to 
implement automated qAOPs in a user-friendly, open access 
environment. 

The suggested modelling strategy is to consider the question of in
terest and then search the AOP-Wiki for KERs of relevance, considering 
that quantitative data are more likely to exist or to a larger extent for 
KERs for which empirical support in qualitative weight of evidence calls 
is “High”, and also that KERs at higher levels of biological organisation 
(i.e., closest to the adverse outcome) are likely to be of greatest interest 
currently for the regulatory community for hazard characterisation. In 
fact, later key events are less chemical specific and more often an ex
pected consequence of progression of earlier key events (e.g., regener
ative proliferation resulting from cytotoxicity). Focus on human health 
risk assessment has traditionally been on (typically late) key events that 
provide quantitative information relevant to intraspecies and interspe
cies extrapolation and life stage susceptibility for dose–response analysis 
[55]. For development of integrated approaches to testing and assess
ment, earlier key events are also important. 

In addition, effort will need to be placed into better understanding of 
the level of uncertainties that may be appropriate and or acceptable to 
make a regulatory decision based on the qAOP, thus interpretation of the 
information is essential. There are several sources of uncertainties, from 
the input experimental data, to the modelling parameters and equations. 
These sources of errors should be listed and evaluated when considering 
the final results. However, questions regarding model uncertainty in 
qAOP are still underexplored, highlighting the need to develop a 
rational framework for evaluating this uncertainty. At the present 
moment, these uncertainties should be documented and reported by 
following available guidance [40–42]. 

Towards an assessment framework for qAOPs 

An important discussion point during the workshop concerned the 
challenges involved not only in developing qAOPs, but also in promoting 
their acceptance and use, especially for regulatory decision making. 
While a qualitative AOP may be sufficient for hazard identification, an 
adequate qAOP (or at least modelling of certain KERs) will be needed for 
hazard characterisation and risk assessment [15]. The question however 
is what constitutes an “acceptable” or “credible” qAOP. Recognising that 
model credibility is the “willingness of others to use predictions to inform 
decisions” [74], it was argued that model credibility is ultimately sub
jective, depending on the end-user and a range of contextual factors. In 
addition to the inherent scientific validity of a model, contextual factors 
include context of use, as well as social, economic and political factors. 
The context of use would include the regulatory purpose and constraints 
(e.g. ban on animal testing) under which decision making is made, but 
also whether the qAOP model is used on its own, or in the context of a 
tiered assessment strategy, such as that proposed by Berggren et al. [75]. 

Hence, there is a need to guide qAOP developers, scientists and 
regulators by laying out a modelling workflow and assessment frame
work for qAOPs. During the workshop, it was argued that a harmonised 
assessment framework will be needed to support the regulatory 

applications, acknowledging however that not all of the contextual 
factors can be included in the framework. Fig. 7 shows several elements 
of a possible assessment framework for qAOP development, challenged 
by the three AOPs with a different basis (linear/network) for different 
endpoints at different stages of OECD endorsement. Three types of ele
ments – Weight of evidence, quantitative understanding of KERs and e- 
resources - support quantification of AOPs at different steps of the pro
posed workflow (Section 4). 

Logically, the credibility of a qAOP model will depend on the con
fidence in the underlying AOP (or AOP network), as well as the confi
dence in the mathematical modelling approach. In turn, confidence in an 
AOP can be deconstructed into confidence in the data quality for the KEs 
as well as confidence in the causality of the KERs (Section 4.1). A 
starting point for the data quality of key events could be the potential 
application of the OECD GIVIMP [22] and reporting of mechanistic data 
using the OECD harmonised template (OHT) on intermediated effects 
(OHT 201, [76]). While confidence in the KERs could be established by 
using the evolved Bradford Hill considerations [7,54]. A standard 
reporting template or guidance for reporting should be created and 
shared among regulatory bodies and companies to ensure harmonised 
reporting of the qAOP model and underlying data. As a basic indication, 
individual empirical data and associated statistics should be clearly re
ported. Empirical data should be generated for mechanistic key points, 
to supplement data for traditional (apical) endpoints. 

A challenge in establishing an assessment framework for qAOPs is 
the diversity of modelling approaches, which may include for example 
Bayesian models [77] or systems biology models [78]. It was further 
proposed that model-dependent elements of the assessment framework 
could be inspired by existing frameworks. In particular, probabilistic 
models could be assessed in essentially the same way as QSAR models (e. 
g [79]), while mechanistic models could be treated like PBK models 
[40,42,57,80]. Generally, models intended for use in regulatory decision 
making should be scientifically sound, robust, thoroughly tested and 
make valid predictions [41]. Meeting these expectations requires a level 
of accuracy that can only be guaranteed by using experimental data of 
sufficient quality and quantity to support the level of certainty required 
[78]. Key considerations in the description of such models, beyond the 
qualitative consideration of the extent of supporting evidence for AOPs 
addressed above, may include sufficient information to enable repro
duction of the input–output relationships, a mathematical description of 
the qAOP model and the methodology underlying its development, ev
idence of computational implementation and aspects of model verifi
cation and validation. 

Concluding remarks 

In the past decade there have been several innovations to improve 
chemical risk assessment, including new terms that have been coined to 
facilitate communication between scientists and the regulatory risk 
assessment community. One of these innovations is the AOP concept. It 
evolved from mode of action experience to provide a more predictive 
context leading to the development of a knowledge resource (AOP-KB) 
for information on biological pathways to disease including underpin
ning in vivo, in vitro, and in silico data. The next step is to provide an 
automated means of applying this knowledge to better inform hazard 
characterisation and risk assessment by mathematically modelling the 
KERs of an AOP. Quantification of an AOP can have two aspects, 
including not only the measurements for adjacent KEs (i.e., KERs) by 
biological methods (e.g. concordance of concentration response curves), 
but also the mathematical prediction of the function. Both aspects are 
needed to evolve the e-resource from a source of knowledge to an e-tool 
which will enable the execution of the full AOP, or parts of it, as an 
automated process. Understanding the assumptions and capabilities of 
different kinds of qAOP models is essential not only for those interested 
in modelling an AOP, but also for those interested in using the resulting 
qAOP models. The proposed framework will facilitate this uptake and 
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the workflow should be applied in an iterative manner until sufficient 
confidence in the development of the qAOP is achieved. 

In addition to providing the necessary e-resources, tools and guid
ance for qAOP development, a further challenge in transitioning to more 
predictive and efficient approaches in chemical risk assessment is to 
train the next generation of researchers, risk assessors and regulators to 
move away from the current animal testing based paradigm to one that 
is centred around knowledge, modelling and digital resources (e-re
sources) capturing biological responses at different levels of biological 
organisation. 
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