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Abstract — A novel strong physical unclonable function 
(PUF), called Probability-based PUF (Prob-PUF), is proposed 
using the stochastic process of trap emission in nano-scaled 
transistors. For the first time, the information of trap emission 
probability is used in the PUF design. This new approach 
offers ideal immunity to machine learning (ML) attacks.  Since 
Prob-PUF only stores a mathematical model, it naturally 
avoids the dilemma between the requirement of a large 
number of challenge-response pairs (CRPs) and the limited 
storage space, making it a potential solution for future secure 
storage. 

Index Terms — Physical unclonable functions (PUFs), 
electron defects, Charge trapping, security, authentication 

I. INTRODUCTION 
nformation security is one of the foundational requirements 
for the future society thriving on digital connectivity [1]. 

Compared with a traditional system that stores the algorithm-
generated challenge-response pairs in non-volatile memories, 
physical unclonable functions (PUFs) provide low-cost and 
lightweight solutions. Although many PUF designs have been 
proposed, most of them only provide a limited number of 
challenge-response pairs (CRPs). Therefore, they are 
considered weak PUFs [2]. Examples include ring-oscillator 
PUF [3], SRAM PUF [4], and current-mirror PUF [5]. Since it 
is infeasible to exhaust all the CRPs, the extracted PUF features 
are mainly used as hardware fingerprints for anti-counterfeiting.         

On the contrary, a strong PUF with a large number of CRPs 
can unlock more versatile applications like secure 
communications for the internet of things (IoTs). Therefore, the 
realization of strong PUFs has attracted attention from both 
academia and industry in recent years. Several structures have 
been proposed. For example, Jeloka et al. [6] modified a 
traditional SRAM PUF by adding an order of rows, achieving 
expanded CRP space. Xi et al. [7] proposed an SCA-PUF, 
which exploits the nonlinearity behaviors of MOSFETs in the 
subthreshold region. Their design achieved a CRP space of 265.  

However, one major challenge for those strong PUFs is their 
vulnerability to machine learning (ML) attacks [2]. Moreover, 

key management is another challenge for strong PUFs, which 
has not received much attention in the past. Considering that 
these PUFs are to be implemented in a client-server 
environment, the increase in CRP space can make it more 
challenging to manage using conventional table-based solutions. 
This limits system scalability. 
 In this work, a strong PUF, named Probability-based PUF 
(Prob-PUF), is proposed to tackle the challenges mentioned 
above. The new design exploits the stochastic electron emission 
process, widely observed in commercial nano-scaled transistors. 
Unlike the state-of-art PUFs that either discard the uncertain 
outputs with error correction [8] or convert them into 
deterministic values using algorithms [9], our design makes use 
of the information from emission probability and thus achieves 
the strong immunity to ML attacks with an ideal prediction 
error of around 50%. In addition, the proposed Prob-PUF stores 
a mathematical model rather than a large CRP table and thus 
provides a secure and storage-efficient solution.  Fig. 1 shows 
the feature of the proposed PUF in comparison with prior art. 
 

 
II. PROBABILITY-BASED PUF 

A. Basic Principle 
In recent years, the detrapping process for individual traps in 

nano-scaled transistors has been studied extensively [10]. Fig. 
2(a) demonstrates the typical test procedure. After applying a 
high gate voltage to ensure the charging of one electron trap 
(Charging), the voltage is lowered to sense the detrapping event 
(Sensing). If detrapping occurs, an abrupt increase of the drain 
current can be detected. By repeating this charging-and-sensing 
procedure on one nMOSFET with 28nm technology node, the 
time-to-emit of the same trap varies as shown in Fig. 2(b) due 
to its stochastic nature. The probability of emitting the trapped 
charge after elapsed time t can be described in Eqn (1), wherein, 
𝜏!	is the emission time constant of the trap. 

𝑃!(t) = [1 - exp ("#
$!
)]                 (1)  

Since both the energy and spatial locations of the trap are 
randomly distributed, 𝜏! measured in each transistor is different. 
Moreover, 𝜏! of the trap in each transistor does not change with 
time [11]. Therefore, it has been considered as the fingerprint 
of a transistor [12]. Recently, the trap-based PUF design has 
been proposed. For example, Chen et al. constructed a weak 
PUF by judging whether there is a pre-existing trap in the 
transistor [13]. In this work, we show that a strong Prob-PUF 
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Fig. 1. Comparison between major PUFs and the proposed design.  
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with high ML immunity can be achieved by further utilizing the 
information of the emission probability. 

  
B.  Challenge-response-pairs and authentication 

The challenge of Prob-PUF specifies the position of the 
transistor that is to be stimulated. Assuming that a group of 
transistors are selected in the PUF circuit, the charging-and-
sensing voltage pattern is repeatedly applied onto each of these 
selected transistors 10 times. For each transistor, if no emission 
events are detected within the pre-set time window (𝑡%) for all 
these 10 times, a ‘0’ bit is created. Similarly, if the emission can 
be detected all these 10 times, a ‘1’ bit is created. When there 
are both ‘0’ and ‘1’ in these 10 repeats, a random bit (either ‘0’ 
or ‘1’) is generated. What is worth noting is that such repeated 
measurements are not for minimizing the unstable output bits 
like temporal majority voting methods [14, 15]. Instead, this 
procedure is to determine whether the output bit is stable or not. 
Both the stable and random bits will be used in the response, as 
illustrated on the left side of Fig. 3. 

On the server side, given the pre-stored 𝜏! for each selected 
transistor, the emission probability (𝑃!) at the end of the pre-set 
time window 𝑡%  can be calculated with Eqn (1). Since we 
repeat 10 times for each transistor in the client circuit, in 
principle, any trap with emission probability lower than 10% or 
higher than 90% can trigger an all- ‘0’ or ‘1’ bit stream, which 
in turn creates ‘0’ or ‘1’ as one output bit of the PUF. Since such 
bit is deterministic, we define it as the stable bit. Such 10% and 
90% is the low 𝑃! threshold (P!&) and high 𝑃! threshold (𝑃!'). 
Considering its stochastic nature, in practice, we can select PeL 
and PeH of 10 times larger (e.g. 1% and 99%). If the calculated 
𝑃! is within the range between P!& and 𝑃!', the output bit of the 
PUF is random, and such output bit is defined as the random bit.  

We only compare the stable bits between the PUF circuit 
output and the calculated value when running the authentication 
process. The PUF output bits that the server considers as 
random bits will not be used in the authentication, as illustrated 
in the middle of Fig. 3. Such benefits are two-fold: 1) Given 
each challenge (C), since the apparent response (R) contains 
both random and stable bits, even for C-R pairs that are 
collected by the attacker, they are difficult to be used for 
training in ML. 2) there is no need to save CRP tables on the 
server. Instead, only 𝜏!  of each transistor needs to be saved. 
This can be highly efficient for key management.  

C. Debiasing of the response bit 
Considering that the response of the proposed PUF includes 

both the stable and random bits, the following two actions have 
been taken to ensure the balance between ‘0’s and ‘1’s.  

l For the stable bits: We can measure multiple transistors 
used in the PUF and determine the distribution of the 
trap emission time. Then a time window can be selected 
to ensure the stable bits with 50% probability for being 
‘0’ or ‘1’. Since the emission time variability is specific 
to the fabrication process, the stable bit generation with 
50% probability of ‘0’ and ‘1’ can be ensured regardless 
of the type of transistors selected. 

l For the random bits: For any bit detected unstable in our 
proposed PUF, a true random number generator (TRNG) 
is triggered. This unstable bit is then replaced with the 
output of the random number generator. This ensures 
that the unstable bits also exhibit 50% probability of 
‘0’s and ‘1’s. 

D. Circuit structure for the Prob-PUF  
The overall structure of the Prob-PUF design consists of 

several circuit blocks. The Charging and Biasing block creates 
the charging-and-sensing voltage to the specified transistors in 
the transistor matrices, while the Sense and Digitization block 
amplifies and processes the received signal. The voltage pattern 
will repeat 10 times. The output bit is detected as a stable or 
random bit by judging whether there is a current change in the 
time window. To increase reliability, the current sensing 
scheme [16] with Beta-Multiplier [17] can be used to suppress 
voltage variation. The soft dark-bit masking method [18] or 
designing specific rules in selecting transistors for random or 
stable bits can help suppress the temperature sensitivity. The 
transistors can also be stressed first to suppress the impact of 

 
Fig. 2. (a) The Charging-Sensing Procedure to detect trap emission.(b) 
Typical measurement result with 10 repeating times. (on a 270nmx27 
nm device with 0.5V high gate voltage and 0.05V low gate voltage) 
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Fig.3. The authentication process of the proposed Prob-PUF. The server and client generate calculated and circuit response separately. After 
discarding the unstable bits in the response, the stable bits are left to be compared for authentication. 
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aging [11]. To increase the security of the PUF, the XOR-mixed 
network [19] is used to combine the independent bits from the 
output of each transistor matrix. The bit ‘0’ is used to replace 
the random bit before being fed into the XOR network using 
multiplexers (MUXs) to ensure the response at the output is 
always predictable, as shown in Fig. 4. At the outputs of the 
XOR network, MUXs are also added. If any bit is detected 
unstable, the mixed bit is replaced with a true random number 
to balance ‘0’s and ‘1’s.  

  
E.  CRP Space and Security Evaluation 

An ideal strong PUF provides a change-response space that 
grows exponentially with the number of challenge bits [20]. For 
Prob-PUF, the transistors can be divided into K matrices, and 
each matrix consists of N transistors. Therefore, the whole CRP 
number can reach 𝑁(, suggesting an exponential increase with 
challenge width. For CRP storage on the server side, Prob-PUF 
adopts the model-based solution [20] rather than typical table-
based solution [21]. Therefore, for applications that require a 
large number of CRPs, the storage can be significantly reduced.  

CRP space is only related to the number of unique challenges 
that the PUF can process [20]. Whether or not there are random 
bits in the response, the CRP space will not be affected. In the 
registration stage after fabrication, a portion of the CRPs can be 
randomly chosen for future authentication. The huge CRP space 
can effectively remove the potential threat that an attacker gets 
access to PUF hardware and tries to record all the CRPs, but 
this attack is infeasible due to the exponential number of CRPs.  

To demonstrate the robustness and uniqueness of Prob-PUF, 
we constructed the circuit with the structure proposed in Section 
D. The simulation flow for stochastic process of traps is adopted 
[22], wherein, the energy and spatial distributions of the trap 
measured in transistors are used [11]. 64 transistors are 
randomly selected, and the authentication process is repeated 
for 4 times. This is to mimic the case that one challenge is to be 
applied on the same PUF for multiple times. The corresponding 
responses are shown in Fig. 5, where the stable and random bits 
are marked with different colors. As we can see, the stable bits 
keep the same, providing the deterministic authentication. 
When another batch of 64 transistors is selected to mimic the 
same challenge applying on different PUFs, Fig. 5 shows that 
the stable bits do not change with time when comparing with 

measurements from the same PUF, but they change with 
different PUFs. This supports the uniqueness of our design.  

Fig. 6(a) evaluated the normalized inter-hamming distance. 
1280k bits across 100 PUFs are used in the simulation. No 
matter whether the response contains random bits or not, the 
median of inter-hamming distance is close to 50% with a tight 
variation of 2%, suggesting the desired uniqueness of our PUF 
design. The intra-hamming distance is evaluated in Fig. 6(b) 
using 100 PUF instances. Without unstable bits, its mean value 
is close to 5%, and with unstable bits, the mean value reaches 
about 15%. This suggests the good reproducibility of each PUF. 

 The ability of a strong PUF to maintain unpredictability 
under ML attacks is an important measure of its security. Due 
to the stochastic nature of the trap emission, the random bits in 
the response could poison the training data to hinder the 
effective construction of the model [23]. The ML resistance of 
Prob-PUF is evaluated by using three widely-used methods: 
logistic regression (LR), support vector machines (SVM), and 
neural networks (NN) [24]. The arbiter PUF, 4-XOR PUF, and 
4-XOR lightweight (LW) PUF were implemented by following 
previous work [25]. For a fair comparison, all the PUFs are 
provided with 64-bit challenges.  

As shown in Fig. 6(c), the prediction error drops below 0.01 
when training samples are more than 105. This agrees with the 
results in the literature [25], suggesting the effectiveness of our 
ML setup. Using the same setup, our PUF exhibits an ideal 
prediction error of 50% even when the training set approaches 
one million, suggesting its good immunity to the ML attack.  

To strengthen security against physical attacks, the e-fuse 
based circuits can be designed [26,27]. After manufacturing and 
before selling, the e-fuse is used by a trustworthy party to access 
the PUF responses for test and diagnosis. When PUFs are ready 
for deployment, the fuse is burned so that nobody can directly 
access the PUF responses through the fuse anymore. 

 
III. CONCLUSION 

This letter proposed a novel strong PUF design, called 
Probability-based PUF (Prob-PUF). Prob-PUF uses the 
probability of stochastic charge emission events in nano-scaled 
FETs. The proposed design provides a large CRP space that 
increases exponentially with circuit size and shows excellent 
inter- and intra- hamming distance. The uniqueness and 
robustness of the proposed PUF are also demonstrated. The 
PUF response is mixed with stable and random bits and thus 
achieves strong ML-immune capability. In addition, instead of 
managing the CRP table, the new PUF architecture stores the 
mathematical models at the server side. It thus can be efficient 
for key management in future large scale PUF systems. 

 
Fig.4. The circuit architecture of the XOR-mixed output network. The 
select signals 𝑆!…𝑆" are generated in the proposed test process. 

 
Fig.5.The variation of response bits in two different PUFs when the 
same Challenge was repeatedly applied. 
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