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Abstract

Recent years have seen a substantial growth in the adoption of machine learning

approaches for the purposes of quantitative structure-activity relationship (QSAR) develop-

ment. Such a trend has coincided with desire to see a shifting in the focus of methodology

employed within chemical safety assessment: away from traditional reliance upon animal-

intensive in vivo protocols, and towards increased application of in silico (or computational)

predictive toxicology. With QSAR central amongst techniques applied in this area, the emer-

gence of algorithms trained through machine learning with the objective of toxicity estima-

tion has, quite naturally, arisen. On account of the pattern-recognition capabilities of the

underlying methods, the statistical power of the ensuing models is potentially considerable–

appropriate for the handling even of vast, heterogeneous datasets. However, such potency

comes at a price: this manifesting as the general practical deficits observed with respect to

the reproducibility, interpretability and generalisability of the resulting tools. Unsurprisingly,

these elements have served to hinder broader uptake (most notably within a regulatory set-

ting). Areas of uncertainty liable to accompany (and hence detract from applicability of) toxi-

cological QSAR have previously been highlighted, accompanied by the forwarding of

suggestions for “best practice” aimed at mitigation of their influence. However, the scope of

such exercises has remained limited to “classical” QSAR–that conducted through use of lin-

ear regression and related techniques, with the adoption of comparatively few features or

descriptors. Accordingly, the intention of this study has been to extend the remit of best

practice guidance, so as to address concerns specific to employment of machine learning

within the field. In doing so, the impact of strategies aimed at enhancing the transparency

(feature importance, feature reduction), generalisability (cross-validation) and predictive

power (hyperparameter optimisation) of algorithms, trained upon real toxicity data through

six common learning approaches, is evaluated.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0282924 May 10, 2023 1 / 29

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Belfield SJ, Cronin MTD, Enoch SJ,

Firman JW (2023) Guidance for good practice in

the application of machine learning in development

of toxicological quantitative structure-activity

relationships (QSARs). PLoS ONE 18(5):

e0282924. https://doi.org/10.1371/journal.

pone.0282924

Editor: Hilal Tayara, Jeonbuk Natiomal University,

REPUBLIC OF KOREA

Received: October 11, 2022

Accepted: February 26, 2023

Published: May 10, 2023

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0282924

Copyright: © 2023 Belfield et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript, Supporting Information files

and the public repostiory GitHub (https://github.

https://orcid.org/0000-0002-6532-2532
https://orcid.org/0000-0003-0319-1407
https://doi.org/10.1371/journal.pone.0282924
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0282924&domain=pdf&date_stamp=2023-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0282924&domain=pdf&date_stamp=2023-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0282924&domain=pdf&date_stamp=2023-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0282924&domain=pdf&date_stamp=2023-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0282924&domain=pdf&date_stamp=2023-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0282924&domain=pdf&date_stamp=2023-05-10
https://doi.org/10.1371/journal.pone.0282924
https://doi.org/10.1371/journal.pone.0282924
https://doi.org/10.1371/journal.pone.0282924
http://creativecommons.org/licenses/by/4.0/
https://github.com/LJMU-Chemoinformatics/Best-Practice-Supplementary


1. Introduction

Use of computational (in silico) approaches supporting the prediction of toxicological effect

has become standard practice within modern chemical safety assessment. Quantitative struc-

ture-activity relationships (QSARs) are amongst the most well-established of the available in
silico techniques and, as such, have been used extensively in order to identify potential hazard

and predict potency [1]. QSAR models attempt to formalise the relationship between descrip-

tors (quantities derived from the structural features and physico-chemical properties of mole-

cules) and an endpoint property of interest [2]. Traditional QSAR was based predominantly

upon regression analysis. However, as far back as the 1980s, a variety of other multivariate sta-

tistical approaches were being applied–with the uptake of neural networks following during

the early 1990s [3,4]. The past decade has seen a greater shift towards employment of machine

learning (ML) strategies in the development of predictive toxicology models [5]. There is no

one reason for the increased use of ML: however, factors including heightened availability of

data, more easily accessible informatics and statistics tools, and greater computational power

have all contributed [6].

ML methods originated in the early to mid-20th century from mathematical considerations

of data matrices, and have since developed primarily within the field of computer science.

Emerging from pattern recognition studies and the concept of computational learning, ML

algorithms can adapt and update during the process of training without explicit programming

to do so–in turn improving predictive accuracy in an automated manner [7]. As such, they are

now identified as one of the most vital and rapidly evolving areas in chemoinformatics [8,9].

Broadly, two overarching classes of ML may be distinguished: supervised or unsupervised. In

this regard, the majority of QSAR applications adopt supervised learning approaches–whereby

substances are labelled with the investigated property of interest (i.e., toxicological potency),

and combinations of trends amongst a matrix of chemical descriptors are sought which might

best relate to it. This stands in contrast to unsupervised techniques, through which patterns

are identified from unlabelled data (generally useful in clustering exercises) [10,11]. Many dis-

tinct ML methodologies have been reported: some applicable solely to supervised tasks, some

solely to unsupervised, and others to both. The major ML strategies relevant towards QSAR, as

identified within the review of Lo et al., are outlined through Fig 1 (and further discussed in

Section 2.3) [11]. Amongst these are the neural network (both deep and shallow), decision

tree-derived ensemble learning (random forest and gradient-boosted trees), support vector

machine and k-nearest neighbour approaches.

In ensuring the acceptability of a QSAR for use in prediction of toxicity, it is essential that

model output be established as fit for a given purpose [12]. In practice, QSARs may be

employed for tasks ranging from the rapid screening of large chemical libraries and invento-

ries, to the identification of potential hazards relevant to risk assessment within individual sub-

stances (i.e., replacement for a specified test or else contribution to a weight of evidence

evaluation). Legislation such as EU Regulation on Registration, Evaluation, Authorisation and

restriction of CHemicals (REACH) states that a prediction should provide the same informa-

tion as the test that it is replacing (the “adaptation of testing” requirement). To achieve this,

amongst other criteria, the model must be demonstrated “scientifically valid”. At present,

assessment protocols such as the OECD Principles for the Validation of QSARs are applied in

order to evaluate whether or not this is the case [13]. ML-based toxicity models can be chal-

lenging to appraise through these principles–a factor which has, unsurprisingly, led to reluc-

tance amongst regulators to approve their broad acceptance. When related, for instance, to

traditional regression analysis, they are commonly perceived to lack a defined and transparent

algorithm (in violation of OECD Principle 2). Such opacity serves to obscure mechanistic

PLOS ONE Good practice in application of machine learning for toxicology QSAR

PLOS ONE | https://doi.org/10.1371/journal.pone.0282924 May 10, 2023 2 / 29

com/LJMU-Chemoinformatics/Best-Practice-

Supplementary).

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0282924
https://github.com/LJMU-Chemoinformatics/Best-Practice-Supplementary
https://github.com/LJMU-Chemoinformatics/Best-Practice-Supplementary


interpretability (OECD Principle 5)–whilst their general complexity may hinder provision of

conclusive documentation (hence obstructing replicability) [14,15]. It is furthermore noted

that generalisability of predictions may be called into question, on account of the tendency of

the adopted techniques to overfit training data [16].

A 2022 review authored by Lin and Chou serves to highlight the potential versatility of ML

as applied to toxicological modelling–outlining the construction of algorithms within a wide

assortment of endpoints, each demonstrating a promising level of performance [17]. However,

it is apparent that aforementioned challenges with respect to the reproducibility, ease-of-inter-

pretation and capacity for generalisation in such methods must be appropriately addressed if

their wider credibility (and by extension their uptake) is to be ensured. Recent work focusing

upon the assessment of uncertainties associated with application of QSAR (itself drawing from

the OECD QSAR Principles) could provide valuable insight into means through which this

goal might, in practice, be realised [18]. Although the evaluation scheme devised by Cronin

et al. for uncertainty appraisal is, in its present form, readily applicable towards a vast range of

QSAR practices, additional supplemental guidance offering specific consideration of ML

methodology will undoubtedly provide greater confidence in instances where such approaches

are to be encountered.

Fig 1. Overview of machine learning approaches as generally applied within in silico toxicology.

https://doi.org/10.1371/journal.pone.0282924.g001
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The aim of this investigation was to identify aspects of best practice accompanying the

development of ML methods for predictive toxicology application–an exercise facilitated

through consideration of key areas of uncertainty both common and unique to them, as char-

acterised within the Cronin et al. scheme [18]. To achieve this, two toxicity datasets of varying

complexity and consistency were modelled using an assortment of standard ML approaches.

The influence of state-of-the-art parameter optimisation and feature importance-detection

techniques upon the predictive performance, generalisability and interpretability of the result-

ing algorithms was assessed–with focus placed upon ascertaining the benefits and potential

shortcomings associated with adoption of each. In light of considerations arising from this

exercise, extensions and amendments to Cronin et al. protocol were offered. It is intended that

the following of the suggested principles should ultimately assist in improving the broader

acceptability of ML within this field.

2. Materials and methods

Datasets and Python source code employed for and in the processes of model construction,

optimisation and performance assessment are each freely accessible through the link: https://

github.com/LJMU-Chemoinformatics/Best-Practice-Supplementary.

2.1. Sourcing and curation of toxicological data

Each of the two datasets adopted in this study were subject to preliminary curation, in order to

ensure their suitability for use within the training of QSAR. Only discrete organic molecules

with defined structure were eligible for inclusion: as such, inorganic substances, mixtures,

polymers and those of ambiguous identity were excluded–as were duplicate entries. Salts and

secondary fragments were, in addition, stripped. Structural information was expressed in the

form of Simplified Molecular Input Line Entry System (SMILES) strings (www.daylight.com;

[19]), canonicalised through use of OpenBabel software (v. 2.4.0; http://openbabel.org; [20]).

2.1.1. Tetrahymena pyriformis growth inhibition dataset. Data relating specifically to

the acute toxicity of compounds towards the aquatic ciliated protozoan Tetrahymena pyrifor-
mis was extracted from the publication of Ruusmann and Maran [21]. In total, data describing

2,072 substances was retrieved–a number which reduced to 1,995 following performance of

curation as outlined above. Explicitly, the endpoint examined was T. pyriformis population

growth inhibition, expressed as the inverse logarithm on the millimolar concentration causing

50% inhibition in growth following 40 hours of treatment (for a general description of experi-

mental protocol, please refer to work of Schultz) [22].

2.1.2. Rat acute oral lethality dataset. Data describing acute oral lethality towards the rat

(LD50, expressed as mmol/kgbw and subsequently log-transformed), as presented in Gadaleta

et al., were utilised [23]. This had been originally sourced by the National Toxicology Program

(NTP) Interagency Centre for the Evaluation of Alternative Toxicological Methods

(NICEATM) and United States Environmental Protection Agency (US EPA). Upon curation

(again following aforementioned procedure), the number of substances was reduced from

8,488 to 8,186.

2.2. Calculation and selection of molecular descriptors

Physico-chemical and structural descriptors for the chemicals in both datasets were

acquired using PaDEL software (v. 2.21; [24]). In total, 1,441 1D and 2D molecular descrip-

tors were calculated. Uninformative or unsuitable (and hence redundant) descriptors were

removed–including those containing missing values, or else exhibiting low variance

(<0.01) as defined using VarianceThreshold from the feature_selection module within the
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Python (v. 3.7.6; www.python.org) scikit-learn (v. 0.22.1; www.scikit-learn.org; [25])

library. Subsets of the original data were created through the exclusion of descriptors dis-

playing excessive collinearity. To identify such, pairwise correlation coefficients were deter-

mined between each–with thresholds set either to 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, or 0.3. The

descriptor within the pair which reported weakest general correlation to the target quantity

was omitted. Resultant subsets were granted identifiers in the form TH_XX (relating to T.

pyriformis) or LD_XX (rat lethality), whereby “XX” denotes the exclusion threshold

adopted: by way of illustration, TH_90 describes the subset of T. pyriformis data resulting

from the application of threshold 0.9 (i.e., from the dropping of one feature within each pair

displaying greater than 90% collinearity). Parent datasets are in turn referenced respectively

as TH_Full and LD_Full. When training non-decision tree-based algorithms, feature values

were standardised (through use of StandardScaler, from scikit-learn preprocessing module).

2.3. Training of machine learning models

This analysis saw the comparison of six established ML techniques applicable to QSAR.

Through each of the approaches, regression models characterising both datasets were con-

structed within Python. Random forest, support vector machine and k-nearest neighbours

were developed using scikit-learn, extreme gradient boosting with the package XGBoost (v.

1.2.1; https://xgboost.ai; [26]) and neural networks (shallow and deep) through the libraries

Keras (v. 2.4.0; www.keras.io; [27]) and TensorFlow (v. 2.3.1; www.tensorflow.org; [28]). Shal-

low and deep neural networks were differentiated on account of the number of hidden layers

incorporated into their architecture (one and two respectively). Both forms were nevertheless

trained through use the stochastic optimiser Adam and the rectified linear unit (ReLU) activa-

tion function [29,30]. Each ML form examined is introduced briefly below (please refer to cor-

responding publications cited for more detailed perspectives).

2.3.1. Random forest. Random forest (RF) is an ensemble learning method which

ascribes prediction based upon the outcomes of a collection of (typically several hundred) deci-

sion trees, each of which is constructed through application of bootstrap aggregation (“bag-

ging”) [31]. Respective trees are, as such, trained upon a random subset of samples, defined by

a random selection of features–in turn ensuring that dissimilarity is likely to be present

amongst them. Final outcome is determined by consideration of output from each: either

through means of averaging (in instances of continuous data) or majority voting (categorical)

[32]. The presence of many trees, all of which are derived in accordance with bagging, serves

to greatly mitigate the risks of overfitting inherent within the classical, lone decision tree

approach.

2.3.2. Extreme gradient boosting. Whilst RF rests upon concurrent generation of mutu-

ally-independent decision trees, the process of gradient boosting sees trees developed sequen-

tially–each constructed with the primary intention of minimising residuals/misclassifications

arising from its predecessor [33]. Such trees are typically shallower than those trained through

the RF algorithm, and are thus considered a form of “weak learner”. As an ensemble approach,

ultimate prediction is (similar to RF) determined through the consensus of individual learner

output (albeit weighted in accordance with its accuracy)–either by means of averaging or by

voting. Extreme gradient boosting (XGB) represents an advancement over traditional gradient

boosting techniques, incorporating modifications aimed at the minimisation of overfitting (for

example, penalising excessive complexity) and the enhancement of scalability [26].

2.3.3. Support vector machine. The support vector machine (SVM) seeks to fit a hyper-

plane through n-dimensional feature space, serving either to best-fit continuous data, or else

(when applied to categorical data) most efficiently separate between classes [34]. Integral to the
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generation and alignment of the hyperplane across higher dimensions is the utilisation of ker-

nel functions [35].

2.3.4. k-Nearest neighbours. k-Nearest neighbours (k-NN) represents a comparatively

simple distance-centred approach, whereby the properties of a test object are inferred from

those of the k (a quantity freely definable by the model builder) training set members posi-

tioned closest to it within n-dimensional feature space [36]. Such distance is determined

through application of an appropriate metric–of which several (including the Chebyshev,

Cosine, Euclidean, Manhattan and Minkowski methods) find common usage [37]. In the han-

dling of continuous data, a prediction is attributed to the target object through an averaging of

the corresponding values held by its k neighbours. When categorising, the class dominant

amongst these neighbours is ascribed.

2.3.5. Neural network. The concept of the neural network (NN) draws inspiration from

those neuronal frameworks forming key functional units within the central nervous systems of

biological organisms. At the most fundamental level, actions of organic neurons are simulated

through nodes: mathematical operators connected in series, each of which applies a non-linear

“activation function” so as to transform inputs from its predecessors–subsequently generating

a single output fed to successors [38]. Influence of one node upon another is dictated by the

weighting of any connection present between the pair–a quantity optimised during the process

of training, typically through application of a “back-propagation” algorithm.

A functioning NN consists of a sequence of layers, each of which is formed from a string of

parallel nodes. Those within an input layer feed those constituting an intermediate “hidden

layer”, which in turn connects to a terminal output layer. No theoretical limit exists as regards

the number of hidden layers which may be integrated into a setup: those NN incorporating

only one may be identified as “shallow” (SNN), and those with greater than one as “deep”

(DNN) [39]. The additional complexity intrinsic to the deep network lends itself, in principle,

to the generation of the more sophisticated model [40,41].

2.4. Statistical performance metrics and evaluation of model predictivity

Quality of model performance was evaluated using the standard metrics R2, MSE, RMSE and

MAE.

2.4.1. Predictivity against test data. In order to assess model performance against unseen

data, cross-validation was employed [42]. As such, the impact of fold quantity, k (not to be

confused with parameter k specific to k-NN), as relates to the apparent predictivity of models,

was assessed. Algorithms were trained though use of each ML technique (adopting default, un-

optimised hyperparameter sets) upon the T. pyriformis TH_90 data subset. Values of k ranging

from two to 25 were analysed for their influence upon two fields: R2
CV (cross-validated R2, rep-

resenting average of the acquired R2 figures relating to each fold during its hold-out) and

inter-fold R2 variability (disparity between minimum and maximum in fold-wise R2). Inter-

play between each outcome was examined, in order that the figure of k offering optimal bal-

ance between both could be determined. As such, this k value was adopted in all modelling

procedures. For details concerning average size of dataset fold (i.e., number of compounds

contained) in accordance with k, please refer to S1 File.

2.4.2. Estimation of overfitting liability. So that the extent to which a model was liable to

overfit towards training data could be ascertained, the acquired R2
CV (representing predictivity

upon test data) was subtracted from corresponding R2
train (quality of algorithm fit relative to

training set)–with a larger residual value (R2
over) indicating greater overfitting potential.
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2.5. Hyperparameter optimisation for enhancement of model predictivity

Influence of the variation of hyperparameters (those distinct tuneable quantities governing

algorithm learning processes) upon model predictive performance was examined in all

adopted ML techniques. For this purpose, the T. pyriformis data subset TH_90 was employed.

A list of evaluated parameters is presented within Table 1, together with outlines of the value

ranges assessed. Definitions of each property may be accessed through official scikit-learn

(https://scikit-learn.org/stable/supervised_learning.html; accessed 5th July 2022) and XGBoost

(https://xgboost.readthedocs.io/en/stable/parameter.html; accessed 5th July 2022) package

documentation.

The search for the combination of hyperparameter properties granting optimal perfor-

mance was initially conducted manually. To facilitate this, each variable was adjusted in a step-

wise manner over a pre-defined range–all others being held constant at default values (details

of both are listed in Table 1). Resulting alteration in predictivity was noted, with those parame-

ter quantities associated with highest R2
CV (at k = 10) taken to be preferred. Subsequently,

these figures were combined into sets so as to produce the “manually optimised” forms corre-

sponding to each respective modelling approach. Parameter variations associated with induc-

tion of significant predictivity drop-off during the aforementioned series of stepwise

assessments were noted. Such knowledge was used to inform the boundaries of ranges exam-

ined within the automated protocols adopted following.

Two such approaches were employed: the randomised search algorithm (Randomized-
SearchCV available through the model_selection module as present within scikit-learn) and the

Bayesian optimisation software Optuna (v. 2.2.0; www.optuna.org; [43]). Whilst a traditional

grid search sees rigorous testing of all possible alignments in permitted hyperparameter values

in order to identify definitively the combination most favourable, a randomised search instead

assesses only a selection, drawn at random, from amongst them (offering a reduced intensity

in terms of computational load) [44]. Bayesian techniques again examine a subset of all possi-

ble arrays. However, these are not taken on an arbitrary basis–rather, preferred values are

reached through an iterative process whereby prior and posterior performances actively influ-

ence the areas of parameter space explored [45]. Automated procedures were run over a series

of 50 trials, with Optuna employing error minimisation for purposes of direction.

2.6. Feature Importance and model interpretability

In order to examine the contribution of individual descriptors towards influencing algorithm

output, models were evaluated through each of two methodologies enabling inference of fea-

ture importance: permutation feature importance and SHapley Additive exPlanations. Models

were themselves trained upon T. pyriformis subset TH_90 in accordance with procedures out-

lined in Section 2.3 –albeit with adoption of optimised hyperparameter sets identified through

application of Optuna (a process described within Section 2.5).

2.6.1. Permutation feature importance. Permutation feature importance (PFI) repre-

sents a model-agnostic approach, freely applicable to all ML techniques. In brief, importance is

determined through evaluation of the decrease in model predictivity which results following

random shuffling in the values of a sole feature [31,46]. As such, relationship between feature

and output are separated, in a manner which offers insight into the (global-scale) significance

of former towards latter. Assessment was performed through employment of the permutation
importance function within scikit-learn.

2.6.2. SHapley Additive exPlanations. SHapley Additive exPlanations (SHAP) represents

an application of Shapley values (a concept originating from within the field of cooperative

game theory), in order to provide definition of feature importance at the level of the individual
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Table 1. Information relating to hyperparameters applicable in each algorithm. Title of parameter is listed, alongside the default quantities present within the adopted

training software. Value ranges examined during processes of manual and automated optimisation (where appropriate) are listed–as are their preferred quantities, as iden-

tified through each tuning approach.

Modelling

approach

Hyperparameter Default

quantities

Quantity ranges examined Optimised quantities

In manual

optimisation

In automated

optimisation

Manual Automated

Random

search

Optuna

RF max_depth Automaticb 1–50 10–30 15 30 27

n_estimators 100 50–500 100–500 490 490 499

min_samples_splita 2 2–20 - 3 - -

min_samples_leafa 1 1–100 - 1 - -

max_leaf_nodesa Automaticb 2–202 - Automatic - -

max_samplesa Automaticb 0.1–0.99 - 0.99 - -

SVM Gamma scaled 0.0001–0.01 0.0012–0.003 0.00168 0.0012 0.00121

Cc 1 0.5–50 1–10 5 8.58 9.39

Epsilon 0.1 0.001–1 0.001–0.02 0.418 0.018 0.00852

k-NN n_neighbors 5 1–20 1–15 6 3 3

P 2 1–5 1–3 1 1 1

XGB Eta 0.3 0.005–0.5 0.1–0.15 0.107 0.1 0.103

min_child_weight 1 1–20 1–10 7 4 2

max_depth 6 1–50 2–8 4 4 5

Gamma 0 0–3 0–0.3 0.103 0.1 0.00145

n_estimators 100 50–500 100–250 250 250 205

Subsample 1 0.1–1 0.8–1 1 0.8 0.816

colsample_bytree 1 0.1–1 0.5–1 0.6 0.9 0.962

max_delta_stepa 0 0–10 - 0 - -

lambdaa 1 0–1 - 0.778 - -

alphaa 0 0–10 - 3 - -

SNNe Neurons 512 50–1000 50–1000 400 550 601

dropout_rate 0 0–0.5 0–0.5 0.1 0.2 0.444

Epochs 100 50–500 50–500 100 250 236

batch_sizef 128 32–512 32–512 64 64 197

learn_rate 0.001 0.0001–0.003 0.0001–0.001 0.001 0.0003 0.000376

DNNg neurons (hidden layer 1) 512 50–1000 50–1000 750 650 944

neurons (hidden layer 2)h 512 50–1000 50–1000 750 50 784

dropout_rate (hidden layer 1) 0 0–0.5 0–0.5 0.2 0.3 0.161

dropout_rate (hidden layer 2)h 0 0–0.5 0–0.5 0.2 0.4 0.494

Epochs 100 50–500 50–500 100 500 498

batch_sizef 128 32–512 32–512 64 32 75

learn_rate 0.001 0.0001–0.003 0.0001–0.001 0.001 0.0003 0.000321

a. Parameters not subject to automated optimisation.

b. Value of parameter defined by algorithm should the term “None” be entered (please refer to official scikit-learn documentation, linked within Section 2.5).

c. Within automated procedure, range 1–10 applicable to randomised search only (1–20 instead examined in Optuna).

d. Value of parameter defined automatically by algorithm (please refer to official scikit-learn documentation, linked within Section 2.5).

e. Incorporates single hidden layer.

f. Within automated procedure, range 32–512 applicable to randomised search only (10–500 instead examined in Optuna).

g. Incorporates two hidden layers.

h. For each iteration of manual optimisation (only), parameter value adopted at layer 2 is identical to that corresponding in layer 1 (within automated protocols, the two

are each fully independent).

https://doi.org/10.1371/journal.pone.0282924.t001
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prediction (i.e., local interpretability) [47]. Its essential function lies in assessing the influence

that the removal of a feature holds upon the Shapley quantities assigned to those which remain.

Unique SHAP values are in turn generated, describing the magnitude of the contribution held

by features towards a prediction: strong positive or negative values indicating that the property

has a definitive impact upon output–eliciting either definitive increase or decrease (respec-

tively) in the measurement modelled. Such individual contributions may, if desired, be

summed so as to create a perspective on global importance. Two primary variants of the SHAP

algorithm have been reported: Kernel SHAP (model-agonistic), and Tree SHAP (applicable

specifically to tree-derived techniques) [47,48]. Analysis of models was conducted through use

of the SHAP Python package (v. 0.39.0)–adopting Tree SHAP within RF and XGB, and Kernel

SHAP for all others.

2.7. Supplementation of QSAR uncertainty scheme in order to enhance

relevance towards ML

The scheme for the evaluation of QSARs developed by Cronin et al., consisting of 49 assess-

ment factors, was applied to ML-constructed models (as considered in general) [18]. Existing

criteria were examined in order to ascertain which of those stood as insufficient with regards

to the handling of concerns specific in deployment of ML. To facilitate this, factors were cate-

gorised in accordance with their relationship to the broad areas of model reproducibility,

interpretability, and generalisability. Where appropriate, criteria were updated with supple-

mentary guidance, so as to directly enhance ML-relevance.

3. Results and discussion

3.1. Impact of descriptor quantity upon model performance

It is known that selection of model features may have a key impact upon general predictive

performance. The presence of excess, redundant, descriptors has tendency to introduce

“noise” into a dataset [49–51]. For purposes of clarification, we define “noise” as representing

elements within data which serve to confound and obstruct the detection of those legitimately

meaningful trends and relationships–some of which may be of key importance in informing

interpretability. The processes relating to feature reduction–by which the quantity of descrip-

tors employed in training is lessened through the increasingly rigorous exclusion of collinear

forms–are outlined within Section 2.2. Table 2 illustrates the dimensionality of the training

data (in terms of descriptor numbers remaining) following application of each collinearity

threshold–accompanied by the predictive quality of the models derived therefrom. By way of

example, it is seen that unfiltered T. pyriformis (TH_Full) and rat lethality (LD_Full) datasets

comprise 936 and 1087 descriptors respectively. With the exclusion of single features amongst

those pairs exhibiting mutual collinearity of 90% or greater (TH_90, LD_90), these quantities

fall to 447 and 546 (and so on).

As demonstrated within Table 2, the performance of all considered models (in this instance

trained built using their default hyperparameter values) exhibited general increase in line with

quantity of descriptors available for their construction. However, growth both in R2
CV (k = 10)

and R2
train (properties each defined within Section 2.4), was seen to plateau far in advance of

upper limit in feature number (~ 1000). Whilst slight variation was noted method-to-method,

the latter metric could approach its maximal in data subsets containing fewer than 100 descrip-

tors, and the former (as illustrated within Fig 2) in those composed of beneath 250. The obser-

vation relating to R2
CV is, of course, of greater practical relevance–indicating as it does that

moderate exclusion of features can be undertaken with a minimal resulting impact upon
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algorithm predictivity against test data. It is notable that near-identical performance in this

metric is obtained through use of the TH_Full/TH_90 and LD_Full/LD_90 dataset variants–

despite the reduced forms containing roughly half of the descriptor total of the unfiltered (an

absolute deficit of approximately 500 in each instance). Indeed, even the shrinking of the

descriptor pool by a factor of ten (as in TH_60 and LH_50) leads to a fall in R2
CV averaging

only 0.04. A point shall inevitably come, nevertheless, whereby feature quantity falls to levels

insufficient for capturing complexity inherent within the data. This may be exemplified

through the markedly inferior performance of the TH_30 and LD_30 subsets (comprising 18

and 30 descriptors respectively).

Therefore, it is clear that an ideal balance must be struck between the twin concerns of

model predictivity and transparency: if solely the former is sought, then feature exclusion may

be deemed unnecessary. Within the sphere of toxicological QSAR (and elsewhere), however, it

is likely that some degree of interpretability shall be considered desirable [52]. In this case, the

sacrificing of descriptors, even at the cost of a minor drop in performance, may be judged an

appropriate compromise (for a practical example of this, please refer to data presented within

Section 3.5.2) [53]. With regard to the selection of features for retention/exclusion, calculation

of pairwise correlations between descriptors is a standard approach. However, the decision of

which feature to drop from a collinear pair may cause difficulty. A logical approach is to retain

that which correlates most reliably to overall output. Nevertheless, it remains possible that

descriptors not as statistically relevant towards the outcome, when considered individually,

may yet have greater impact when modelling alongside an entire dataset [54].

Table 2. Predictivity of algorithms trained upon T. pyriformis growth inhibition/rat acute lethality parent and feature-reduced subsets (with corresponding descrip-

tor totals relating to each further displayed). Performance is presented in terms of R2
train, R2

cv (k = 10) and R2
over. Highest- and lowest-scoring models in former two

metrics shaded green and orange respectively. Highest- and lowest-scoring in the latter (representing extent of overfitting) conversely coloured orange and green

respectively.

Data

subset

n.

Descriptors

Modelling approach and predictivity

RF SVM k-NN XGB SNN DNN

R2
train R2

cv R2
over R2

train R2
cv R2

over R2
train R2

cv R2
over R2

train R2
cv R2

over R2
train R2

cv R2
over R2

train R2
cv R2

over

T. pyriformis (n. substances = 1,995)

TH_Full 936 0.965 0.751 0.214 0.899 0.758 0.141 0.796 0.681 0.115 1.00 0.757 0.243 0.929 0.767 0.162 0.956 0.800 0.156

TH_90 447 0.964 0.750 0.214 0.902 0.746 0.156 0.782 0.660 0.122 1.00 0.778 0.222 0.953 0.792 0.161 0.968 0.806 0.162

TH_80 256 0.964 0.748 0.216 0.903 0.742 0.161 0.776 0.652 0.124 1.00 0.776 0.224 0.961 0.779 0.182 0.969 0.802 0.167

TH_70 150 0.964 0.740 0.224 0.895 0.726 0.169 0.758 0.618 0.14 0.999 0.758 0.241 0.959 0.748 0.211 0.969 0.781 0.188

TH_60 101 0.961 0.726 0.235 0.885 0.716 0.169 0.754 0.613 0.141 0.999 0.748 0.251 0.955 0.731 0.224 0.971 0.768 0.203

TH_50 69 0.961 0.722 0.239 0.873 0.720 0.153 0.755 0.625 0.13 0.998 0.748 0.25 0.943 0.745 0.198 0.971 0.767 0.204

TH_40 35 0.961 0.719 0.242 0.822 0.700 0.122 0.756 0.609 0.147 0.992 0.725 0.267 0.871 0.709 0.162 0.943 0.732 0.211

TH_30 18 0.944 0.600 0.344 0.633 0.552 0.081 0.682 0.513 0.169 0.966 0.585 0.381 0.639 0.528 0.111 0.748 0.569 0.179

Rat acute oral lethality (n. substances = 8,448)

LD_Full 1,087 0.940 0.567 0.373 0.736 0.559 0.177 0.684 0.511 0.173 0.968 0.549 0.419 0.903 0.517 0.386 0.968 0.583 0.385

LD_90 546 0.939 0.563 0.376 0.759 0.562 0.197 0.684 0.508 0.176 0.967 0.546 0.421 0.926 0.507 0.419 0.978 0.583 0.395

LD_80 353 0.940 0.567 0.373 0.764 0.565 0.199 0.689 0.517 0.172 0.962 0.538 0.424 0.935 0.502 0.433 0.980 0.578 0.402

LD_70 231 0.939 0.563 0.376 0.754 0.556 0.198 0.683 0.508 0.175 0.953 0.537 0.416 0.930 0.492 0.438 0.981 0.577 0.404

LD_60 141 0.938 0.564 0.374 0.744 0.547 0.197 0.678 0.506 0.172 0.938 0.530 0.408 0.926 0.475 0.451 0.982 0.565 0.417

LD_50 98 0.936 0.542 0.394 0.713 0.519 0.194 0.668 0.482 0.186 0.918 0.520 0.398 0.908 0.444 0.464 0.980 0.544 0.436

LD_40 59 0.930 0.504 0.426 0.619 0.450 0.169 0.635 0.435 0.2 0.882 0.467 0.415 0.839 0.370 0.469 0.975 0.470 0.505

LD_30 30 0.914 0.381 0.533 0.407 0.316 0.091 0.549 0.304 0.245 0.724 0.349 0.375 0.507 0.281 0.226 0.755 0.290 0.465

https://doi.org/10.1371/journal.pone.0282924.t002
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Fig 2. Variation in predictivity of algorithms constructed upon T. pyriformis growth inhibition/rat acute lethality data subsets

(expressed as R2CV, where k = 10), in accordance with quantity of training features present.

https://doi.org/10.1371/journal.pone.0282924.g002
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3.2. Quality and consistency of training data

Although the general trends with respect to influence of descriptor quantity upon model per-

formance (as described within Section 3.1) remained consistent across both datasets, promi-

nent differences in absolute performance nevertheless separated the pair. As such, average

disparity between corresponding T. pyriformis and rat lethality R2
CV (for example SVM in

TH_90 and LD_90, or XGB in TH_70 and LD_70) stood at +0.212. Such notable variation can

be accredited to the contrast present between the quality and consistency of both data collec-

tions, alongside the inherent complexity of the endpoint examined. Quality of input data (i.e.,

the associated error towards each datapoint) is a factor key in determining the capacity of algo-

rithms to identify generalisable patterns–and thus by extension to formulate appropriate pre-

dictions relating to unfamiliar substances. Data curation and standardisation in form

accordingly represent essential steps ahead of model training [55].

Considering the two data collections examined within this study, it is evident that the set

representing T. pyriformis toxicity is the more amenable towards modelling application. T. pyr-
iformis itself is a comparatively simple, unicellular organism–and mechanisms underlying the

adverse effects of substances towards it are well characterised. Hydrophobicity-dependent nar-

cosis (as modelled using logarithm of the octanol/water partition coefficient), and intrinsic

chemical reactivity, are acknowledged in particular as being key influences [56–58]. The qual-

ity and consistency of the original data within this collection has been reported as high,

acquired as it was following standardised procedures performed in a single laboratory, with

experimental variability lying between 0.2–0.5 log units [59]. A rigorous curation workflow

was followed in the course of its collation [21]. Furthermore, it contains few specifically acting

compounds such as pesticides and pharmaceuticals–thus ensuring that a single mode of action

(the aforementioned narcosis) is expected to predominate. By comparison, rat acute oral

lethality stands as complex and poorly-characterised. This particular dataset had been com-

piled from a wide array of sources, and contains, in all, greater than 8,000 substances [23]. Due

to its scale and the uncertain origins underlying many of the results within (issues discussed in

detail by Karmaus et al., who quantified a margin of uncertainty of ±0.24 log units), the collec-

tion can be considered as carrying a higher degree of noise [60]. A broad range of chemical

classes are covered, including natural products and specifically-acting substances such as pesti-

cides–with generally limited knowledge present as relates to their potential modes and mecha-

nisms of toxic action.

3.3. Cross-validation and the identification of model overfitting potential

An issue almost integral in supervised ML is that of overfitting–the phenomenon whereby a

developed algorithm is attuned so acutely to the intricacies of its training set, that its subse-

quent capacity to generalise unseen data is compromised [61,62]. The presence of large devia-

tion between training and test set predictive performance is indicative of an overfit model: one

which displays weak generalisation ability, and one which accordingly generates external pre-

dictions of potentially questionable validity [63]. In order to simulate predictivity against non-

training data in a rigorous manner, the technique of cross-validation is routinely employed

[42]. As such, and in line with protocols described within Section 2.4.1, analysis was under-

taken so as to assess the influence that quantity of folds (i.e., number of smaller sets into which

the original had been divided) had upon performance of models as regards characterisation of

unseen data. Fold numbers, k, ranging from two to 25 were investigated through each ML

approach–with outcomes (expressed as R2
CV and inter-fold R2 variability) illustrated in Fig 3.

Across all methods, predictivity was poorer at lowest k values (i.e., k < 5). As k increased past
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five, performance was seen to rapidly approach its maximal. Further beyond, only variability

in inter-fold R2 (as represented by blue bars) about the mean was observed to grow.

Fig 3. Variation in parameters relating to apparent predictivity of models trained upon TH_90 subset, in accordance with number of folds, k, into which data was

split ahead of cross-validation. R2
CV describes average of R2 values acquired from individual folds during their respective hold-outs. Ranges corresponding to maximal/

minimal hold-out R2 are, in each instance, displayed as vertical blue bars. Denoted in red is absolute mean of R2
CV values obtained, model-by-model, over all quantities of k.

https://doi.org/10.1371/journal.pone.0282924.g003
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When splitting, consideration must be given to the seeking of balance between two ele-

ments: firstly, that diversity within the dataset as a whole is appropriately captured within the

training selection–and secondly that the hold-out (evaluation) set is large enough such that sig-

nificant variation in the nature of the substances represented across each division does not

arise [64]. Mean performance is influenced generally by the former factor, and degree of vari-

ance by the latter. Results from this exercise indicate that ten-fold validation tends to provide

an optimal medium between the pair–combining maximum predictivity with an acceptable

degree of variability. This observation accords with common practice noted within literature,

whereby k = 10 is often employed (and furthermore noted for production of statistically unbi-

ased outcomes) [65]. Although not explored through this study, the potential merits of worst-

case training-validation split approach for application in toxicological QSAR (granting a con-

servative estimate of model predictivity) are acknowledged [66].

The extent to which each modelling technique, and data subset, exhibited liability towards

overfitting was inferred through determination of R2
over (as defined in Section 2.4.2). These

values are presented in the appropriate columns within Table 2. Whilst the magnitude of the

figure exhibited no consistent relationship with subset size within-dataset (instead varying

more reliably between respective ML approaches), a mean disparity between analogous T. pyri-
formis and rat lethality models was again discernible–standing at -0.146 (thus indicating

greater tendency towards overfitting in the latter). Again, as considered within Section 3.2, this

is attributable to the deviation in general data quality and uniformity between each collection:

the enhanced level of noise present within the rat lethality set impeding the detection of appro-

priate patterns necessary for development of a broadly-applicable algorithm. As an illustration,

the contrast between the magnitude of the average drops in R2
CV and R2

train from T. pyriformis
to the parallel rat lethality models (a moderate 0.212 and a small 0.0664, respectively) should

be noted.

3.4. Hyperparameter optimisation for enhancement of model predictivity

Optimisation of model hyperparameters was undertaken using three alternative techniques,

with details relevant to each (including a summary of underlying theory) described within Sec-

tion 2.5. Default values as present within the software packages applied were adopted in order

to provide a performance baseline. Parameter influences upon predictivity were subsequently

explored through simple manual adjustment–then by means of two automated approaches:

the first being the scikit-learn randomised search function (RandomizedSearchCV), the second

the Bayesian-rooted Optuna algorithm [43].

Impact of these procedures upon the performance of models trained through use of the

TH_90 data subset is presented within Table 3. Metrics describing absolute predictivity of

“default” algorithms are first listed, with the strength of the “optimised” forms expressed rela-

tive to these. Corresponding hyperparameter quantities themselves may be found listed within

Table 1 –with additional details relating to each of the tuning processes accessible within S2

File (manual), S3 File (randomised search) and S4 File (Optuna). Results indicated that the

more computationally-intensive protocol tended to provoke the stronger improvement in

external predictivity: Optuna outperforming randomised search, and both besting manual

efforts (average increases in R2
CV across models, relative to default, standing respectively at

0.0283, 0.0252 and 0.0183). The simplicity of the manual optimisation routine adopted, by

which the influence of variation in each parameter from default was considered only in isola-

tion, ensured that favourable alignments resulting from the concurrent alteration of two or

more were to remain unexplored. Randomised search was able to offer advances on this–per-

mitting all parameters to be tuned simultaneously, and hence widening the areas of accessible
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space. A key shortcoming of this methodology lies precisely in its randomness: whilst favour-

able combinations are likely to uncovered, it is further possible that many may be overlooked.

Through integration of Bayesian principles, Optuna offers a means of addressing such con-

cerns–enabling focused examination around already-promising parameter arrays, as identified

across prior iterations [45]. Although complexity of each approach increases in comparison to

that of the previous, both time and degree of expert judgment required for application

reduces.

Not all algorithms saw equivalent performance growth: although SVM R2
CV increased sub-

stantially by 0.058 following application of each automated approach, corresponding opera-

tions upon RF saw the metric barely influenced (advanced only by 0.003). Whilst any upturn

within R2
CV (however small) may at first sight be welcomed, it is necessary to draw attention

to those increases in overfitting potential (signified by heightened R2
over) seen to accompany

optimisation in SVM, k-NN, SNN (this in randomised search only) and DNN. Clearly, these

emerge as growth in R2
trsin outstrips that of R2CV−in turn signifying that capacity to fit the

training data is simultaneously subject to improvement (a liability applicable in principle to all

ML techniques). Therefore, as promising as these automated procedures undoubtedly are in

Table 3. Influence of hyperparameter optimisation protocols upon predictivity (k = 10) of models trained using TH_90 data subset. Metrics (absolute) relating to

the performance of algorithms developed through default hyperparameter sets are described. Relative variations within these, emerging post-optimisation, are further pre-

sented: values shaded green indicate favourable impact, and orange unfavourable.

Optimisation approach Performance metric Modelling approach

RF SVM k-NN XGB SNN DNN

Absolute predictivity (default hyperparameter sets)

None

(default)

R2
train 0.964 0.902 0.782 1.000 0.953 0.968

R2
CV 0.750 0.746 0.660 0.778 0.792 0.806

R2
over 0.214 0.156 0.122 0.222 0.161 0.162

MSECV 0.271 0.276 0.368 0.241 0.225 0.209

RMSECV 0.521 0.526 0.606 0.490 0.475 0.458

MAECV 0.378 0.363 0.441 0.354 0.339 0.317

Optimisation-induced variation in predictivity (relative to default)

Manual R2
train -0.002 0.072 0.005 -0.026 0.01 -0.001

R2
CV 0.003 0.048 0.034 0.022 -0.007 0.01

R2
over -0.005 0.024 -0.029 -0.048 0.017 -0.011

MSECV -0.003 -0.053 -0.036 -0.025 0.009 -0.01

RMSECV -0.003 -0.054 -0.03 -0.025 0.008 -0.012

MAECV -0.002 -0.037 -0.025 -0.019 -0.01 -0.005

Randomised search R2
train 0.002 0.071 0.063 -0.014 0.028 0.019

R2
CV 0.003 0.058 0.036 0.03 0.008 0.016

R2
over -0.001 0.013 0.027 -0.044 0.02 0.003

MSECV -0.003 -0.063 -0.04 -0.033 -0.008 -0.016

RMSECV -0.004 -0.065 -0.033 -0.034 -0.009 -0.018

MAECV -0.003 -0.044 -0.031 -0.028 -0.019 -0.011

Optuna R2
train 0.002 0.075 0.063 -0.005 0.015 0.024

R2
CV 0.003 0.058 0.036 0.033 0.017 0.023

R2
over -0.001 0.017 0.027 -0.038 -0.002 0.001

MSECV -0.003 -0.063 -0.04 -0.036 -0.017 -0.023

RMSECV -0.004 -0.065 -0.033 -0.037 -0.019 -0.027

MAECV -0.003 -0.044 -0.031 -0.03 -0.025 -0.016

https://doi.org/10.1371/journal.pone.0282924.t003
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perfecting algorithm predictive aptitude (R2
CV), this as a side-feature should nevertheless be

borne in mind during their use.

3.5. Feature importance and model interpretability

The capacity to soundly interpret results obtained from a QSAR is essential to ensuring confi-

dence in its trustworthiness and validity. As such, “Mechanistic Interpretation” is present as

one of five original OECD Principles for the Validation of QSARs for Regulatory Assessment

[13]. Put briefly, mechanistic interpretability rests upon capacity to define a pathway of causal-

ity linking molecular properties (i.e. features) and modelled endpoint [52,67]. It is recognised,

however, that the nature of those methods adopted in ML lies generally at odds with the desire

that their outputs be readily understandable and rationalisable by humans [68]. Indeed, many

such techniques produce algorithms which are in effect a “black box”–their inner workings

hidden to the user, and the reasoning underlying their predictions largely opaque [69].

Elucidation of those features most important in influencing output is highly desirable–yet

in many instances challenging. The architecture of algorithms constructed through approaches

such as RF and XGB is such that “model-specific” parameters, quantifying the relative contri-

butions of the individual features, may by default be defined [70]. However, this is not so read-

ily the case in those trained through use of alternative techniques (for example, NN).

Accordingly, corresponding universally-applicable “model-agnostic” methodologies have been

sought [71,72]. Whereas the aforementioned RF/XGB “specific” quantities may offer only

“global” interpretability (describing impact of a feature upon the performance of the model as

a unit), it is possible that selected “agnostic” approaches may in addition support characterisa-

tion of interpretation at a “local” (i.e., individual prediction) level [73]. Ideally, both local and

global perspectives should be examined–and as such, models were subject to distinct forms of

feature importance analysis representative of each.

3.5.1. Permutation feature importance. An overview of the principles underlying PFI

(an agnostic approach offering model interpretability at the global level) is presented within

Section 2.6.1. The technique was applied to models trained, adopting Optuna-optimised

hyperparameters, upon the TH_90 data subset–with the ten highest scoring features identified

in each instance presented within Fig 4. Both tree-based ensemble methods (RF and XGB)

reported the descriptor SpMax2_Bhm (representing the largest absolute eigenvalue of Burden

modified matrix–n 2, weighted by relative mass), to be most influential. Indeed, seven of the

nine further features displayed appeared common to both.

Examination of output relating to each of the four additional models revealed routine pres-

ence of electrotopological state indices (exemplified by SHCsatu, SHdsCH and SHCHnX)

[74]. As such, it can be inferred that alignment with respect to both topological and electronic

properties constitutes a factor key in influencing the toxicological potency of molecules within

this endpoint. However, notable is the fact that the typical returned values of “mean accuracy

decrease”, relating to those most important features, were discernibly higher within both RF

and XGB than within SVM, k-NN, SNN and DNN. This indicated that the apparent impact of

even the most “important” descriptors towards performance in these latter four models was,

effectively, minimal. In any case (even as relates to RF and XGB), the means through which

correlations between the identified features and observed toxicity might be rationalised, in a

mechanistic sense, remain unclear. It should further be noted that a report by Hooker and

Mentch advocated against the use of traditional permutation importance methods, arguing

that they may be liable to produce misleading results–particularly when handling collections

of inter-correlated features [75].
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3.5.2. SHapley Additive exPlanations (SHAP). The theory upon which SHAP methodol-

ogy rests is outlined within Section 2.6.2. In practical terms, a key area of variance between it

and classical PFI lies in the capacity to produce output which is locally interpretable. Summing

Fig 4. Ordered listing of those ten features most prominent in influencing predictions issued by algorithms trained upon TH_90 data subset, as identified

through application of permutation feature importance.

https://doi.org/10.1371/journal.pone.0282924.g004
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of feature contributions across all predictions can, nevertheless, be used to present a global per-

spective as regards their significance [76]. Fig 5 provides illustration of the ten most-relevant

descriptors, model-by-model (TH_90 data subset), as identified through SHAP. Within these

plots, points correspond to individual predictions: position on x-axis indicates extent to which

the feature has served either to increase (positive direction) or else decrease (negative direc-

tion) the absolute numeric value of the modelled characteristic. Colour scale describes the

influence that the magnitude of the descriptor value itself holds upon the output quantity. By

way of example, it can be seen, within the RF algorithm trained, that it was generally the case

that a lower (blue) molecular weight (MW) was associated with reduced predicted toxic

potency. For simplified expression of the generalised global importances of these features

within their respective models, please refer to S5 File. Whilst it is clear that the level of insight

offered by SHAP is considerable, it is nevertheless the case that methodological imperfections

have been highlighted: some associated broadly with the application of Shapley values in the

field of ML, and some concerning more the specifics of their implementation within the pack-

age [77,78]. The extent of overlap between features identified concurrently through SHAP and

through PFI is variable across models–with figures extending from those in XGB (ten shared

from ten) and RF (nine from ten), through to SVM, SNN and DNN (six) and finally k-NN

(none).

Within RF and XGB it was further noted that identified descriptors possessed a definitive

influence upon the majority of predictions offered–that is, that SHAP values other than zero

were routinely observed (as is best exemplified through SpMax2_Bhm and MW). By contrast,

it was common within those four alternatives (SVM, k-NN, SNN and DNN) that the great

bulk of predictions instead registered SHAP scores of zero. This again suggested that contribu-

tion of these “most important” descriptors was, within such models, largely negligible–effec-

tively mirroring the pattern as discerned through PFI. The apparent centrality of these features

to performance in non-ensemble approaches appeared to arise only as a function of their

impression upon a small proportion of predictions–an observation hypothesised as owing

itself to the presence of an excessive quantity of inter-related descriptors, each serving to mini-

mise the effective contribution of the other.

In line with the concept of predictivity-transparency balance, as introduced within Section

3.1, modelling through a reduced descriptor pool (shedding closely collinear features) was pro-

posed as a route through which greater clarity might be achieved. Accordingly, the aforemen-

tioned analysis was repeated using the more compact TH_50 data subset: this being composed

of 69 descriptors (as opposed to the 447 of TH_90). Fig 6 depicts the outcomes of this exercise,

again displaying those apparent ten most-relevant features per each model (simplified expres-

sions once more available within S5 File). It can be observed that such reduction had the

intended effect of increasing the proportion of predictions definitively influenced by the iden-

tified descriptors (i.e., holding non-zero SHAP values)–thus indicating general greater engage-

ment of the retained features. Further contrast may be noted in the consistency of descriptors

returned–this being higher within the TH_50 cohort. As illustration, it was observed across all

six models that three features were to occupy positions amongst those top four most-promi-

nent: ETA_Alpha (sum of alpha values of all non-hydrogen vertices), nHBAcc (number of

hydrogen-bond acceptors) and AMW (average molecular weight).

ETA_Alpha functions essentially as a metric of molecular polarisability–a property which

itself correlates strongly alongside lipophilicity [79]. SHAP output suggests, in each instance,

that increase in the value of this parameter notably drives concurrent increase in predicted tox-

icity (and vice versa). This would accord with accepted understanding of the key determinants

of acute lethality in T. pyriformis–which posits extent of hydrophobicity to be perhaps most

dominant of all [56–58]. The prominence of nHBAcc, and its inversely-proportional
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relationship with estimated toxicity, can be interpreted as further representing this association:

hydrogen-bonding itself holding great influence upon tendency towards solubility in polar

medium. Promising as the identification of this link may be, it is important to draw attention

to the fact that these features account only (in a definitive sense) for toxic outcomes arising

through means of narcosis. As such, mechanisms mediated by way chemical reactivity, or else

specific receptor interactions, remain unaccounted for [58,80]. Furthermore, acquisition of

this insight came at the expense of model performance (average R2
CV, TH_90 = 0.750;

TH_90 = 0.721)–effectively illustrating management in the balance between transparency and

predictivity.

Fig 5. Ordered listing of those ten features most prominent in influencing predictions issued by algorithms trained upon TH_90

data subset, as identified through application of SHAP (please refer to S5 File for corresponding simplified expressions of

generalised global feature importance).

https://doi.org/10.1371/journal.pone.0282924.g005
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3.6. Assessment of uncertainty relevant within machine learning-derived

QSAR models

The identification and characterisation of uncertainties associated with predictions acquired

from a toxicological QSAR assists in demonstration of its acceptability for a given purpose of

interest [12,81]. A series of 49 assessment criteria, summarising the primary characteristics of

such models as relates to their creation, description and application, were developed by Cronin

et al., with intention of facilitating uncertainty evaluation [18]. It is acknowledged, however,

Fig 6. Ordered listing of those ten features most prominent in influencing predictions issued by algorithms trained upon TH_50

data subset, as identified through application of SHAP (please refer to S5 File for corresponding simplified expressions of

generalised global feature importance).

https://doi.org/10.1371/journal.pone.0282924.g006
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that in many regards, ML presents challenges lying beyond the remit of the guidelines as cur-

rently expressed. As such, we set out to evaluate the criteria in light of their suitability towards

assessment of ML models–identifying areas within which their amendment and extension

might be beneficial in enhancing general applicability. Three elements in requirement of par-

ticular attention were recognised, these being: reproducibility, interpretability and generalisa-

bility. Criteria relevant to each of these aspects were updated–with both the nature of the

alterations and the rationale underlying them discussed forthwith. It must be stressed that

such suggestions do not aim to discredit the ability of the scheme in its current state to evaluate

ML models, instead they provide recommendations for further analysis that ensures all aspects

of model uncertainty are understood by both the developer and user.

3.6.1. Reproducibility. Key to the validity and reliability of any experimental process is

the assurance that its procedures, and by extension its outcomes, are each readily replicable

[82,83]. To ensure the reproducibility of models, sufficient documentation is required, through

Table 4. List of those assessment criteria for individual areas of uncertainty, variability or bias within toxicity-

prediction QSAR (as presented by Cronin et al. [18]) updated in light of consideration of concerns specific to

application of ML. Each is grouped in accordance with its relevance either to the reproducibility, interpretability or

generalisability of models. Updates to text under heading “comment or other information” are displayed in italics.

Please refer to S6 File for presentation in context of unabridged scheme.

ID Assessment criteria Comment or other information

Reproducibility

2.1a Definition and description of model (related to

assessment criterion 3.1a)

All terms e.g., descriptors, statistical values,

hyperparameters and ranges, algorithms should be

defined. The QMRF is a possible reporting format.

2.1c Transparency of the model A transparent model can be reproduced, and the model
output is (reasonably) interpretable, i.e., user can
understand the causation of a prediction.

3.1a Reproducibility of the model or QSAR (related to

assessment criterion 2.1a)

To determine reproducibility, the model is assumed to

be transparent (see assessment criterion 2.1c). Source
code should be provided, with computational
infrastructure detailed.

3.1b Reproducibility of the QSAR prediction To obtain reproducible predictions, all parameters

(descriptors) need to be available and controllable.

Seeds to control randomisation for certain algorithms
need to be specified.

Interpretability

2.1c As above As above

2.4c Relevance of descriptors to mechanism of action/

AOP

Feature importance techniques should be used for
algorithms that employ large quantities of descriptors,
relating highest scoring descriptors to the mechanism.

Generalisability

1.5a How appropriate is the modelling approach for the

endpoint and to deal with the complexity/non-

linearity of the data

This requires a pragmatic and subjective assessment,

e.g., a data set based on one mechanism with a single

overriding descriptor can be modelled more simply

than a more complex scenario. If applicable, both the
optimisation procedure and the sufficiency of resulting
approach complexity should also be considered.

2.2a Statement of statistical fit, performance and

predictivity

The use of appropriate validation methods, resampling
techniques, and/or external test sets should be

demonstrated, different metrics may be required for

different models.

2.2b Interpretation of statistical fit etc with respect to

biological measurement error and variability

The use of strategies to limit overfitting (e.g., early-
stopping, pruning, regularisation) may be required for
certain algorithms.

https://doi.org/10.1371/journal.pone.0282924.t004
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which unambiguous definitions of all amenable factors (as adopted in development) are pre-

sented. In spite of this, detailed reporting of methodology and output has often been over-

looked within ML and artificial intelligence–with such issues only recently gaining attention

[84]. It is apparent that ML presents a unique series of challenges which must be addressed

when seeking to guarantee replicability. Commonly-employed techniques tend to incorporate

large numbers of freely variable hyperparameters, each of which may typically be tuned inde-

pendently of the other. Default values are themselves liable to be inconsistent–dependent not

only upon the identity of the software employed, but also on its particular version or imple-

mentation form [85]. Furthermore, intrinsic to the training of many ML algorithms is pres-

ence of randomness: notably within NN, whereby connection weights are assigned

stochastically [86]. Without control through consistent application of pseudo-random number

generator seeds, reproduction of such models is a practical impossibility.

For non-ML QSARs, the provision of details concerning statistical technique, composition

of training/ test sets (alongside molecular descriptors) and performance is generally sufficient

in order to ensure confidence in reproducibility. However, given the aforementioned consid-

erations exclusive to ML model construction, it is evident that an expanded range of defini-

tions shall be required such that like demands may be satisfied. Accordingly, in addition to

descriptor sets and those details relating predictive performance, it would be necessary to state

both the hyperparameter quantities and the values of any seeds adopted in random number

generation. Identification of computational software (incorporating version/implementation

specifics) and hardware shall likewise be a requirement–whereas for maximal transparency,

provision of full source code is desirable. Prior consideration has been granted to the develop-

ment of schemata intended to promote practices facilitating ML replicability [82,87–89]. It is

with further reference to such efforts that we were able to suggest updates to four of the 49

uncertainty assessment criteria presented by Cronin et al. [18]: changes which are themselves

outlined within Table 4 (please refer to S6 File for presentation in their unabridged form).

3.6.2. Interpretability. Interpretability of QSAR is dependent upon identification of plau-

sible relationships associating variability in molecular properties with ultimate predictive out-

come [52,67]. For reasons introduced within Section 3.5, this task may prove particularly

demanding where ML is considered. Traditional QSAR is characterised by dominance of sim-

pler “model-based” techniques (such as linear regression), founded upon parametric statistical

assumptions and, as such, considerate of processes underlying output variance [90]. Typically

trained upon comparatively small datasets, these employ a minimal quantity of descriptors. By

contrast, ML methodologies may be classified as “model-free”–working without underlying

assumption, and concerned solely with acquisition of optimal predictivity. There exist few lim-

itations with regards to potential complexity in algorithms constructed through these means.

A multitude of features may be employed in their training, thus ensuring that preliminary

identification of those holding utmost influence is a necessity. Within Sections 3.5.1 and 3.5.2,

two agnostic methodologies intended for evaluation of the importance of features are explored:

one offering global interpretability, the other local. It should be noted that alternative forms of

feature importance-detection exist–including those offering direct insight in terms of molecu-

lar structural properties, and those otherwise specific to particular techniques [91]. However, a

full consideration of their merits and shortcomings sits beyond the scope of this study.

Although ML models can indeed be reasonably interpreted through employment of the

aforementioned approaches, practical success in doing so remains contingent upon two pre-

requisites. Firstly, those descriptors holding meaningful influence upon the functioning of the

algorithm must be definitively identified [49,51,92]. If necessary, feature reduction should be

performed (even at minor expense in terms of overall predictive power), such that the con-

founding influence of collinear relatives may be mitigated [53,54]. With the exception of those
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trained through tree-based ensemble techniques (RF and XGB), our models exhibited a ten-

dency to display high sensitivity towards the obscuring effect of large descriptor pools upon

the apparent importance of individual features. In these instances, only when pool size had

been sufficiently minimised was interpretation able to be attempted.

The second factor relates both to the availability and appropriate application of knowledge

relating given descriptors, in a mechanistic sense, to an endpoint of interest. With respect to

the adopted T. pyriformis endpoint and associated substance collection, such knowledge exists

in an established form–and could accordingly be drawn upon in order to facilitate the framing

of prominent features (particularly through the smaller TH_50 data subset) in light of their

driving of hydrophobicity-associated baseline, narcotic toxicity [56–58]. Of course, were such

clear understanding not to exist, then the outcomes of feature importance analysis would rep-

resent only correlation–with the existence of any causal linkage remaining a matter for specu-

lation. It is further possible that more practically-interpretable descriptors may yet offer

meaningful insight, even if they should fall outside of the list of features ranked as most promi-

nent (in which case they may risk being overlooked). Considering all points, two relevant Cro-

nin et al. criteria were deemed appropriate for update: these being presented within Table 4

and (in unedited form) S6 File [18].

3.6.3. Generalisability. The principles of generalisation and model overfitting are consid-

ered within Section 3.3. Causes underlying the emergence of this phenomenon have been clas-

sified by Ying as taking one of three primary forms [16]. The first may be considered a product

of the learning of noise within the training set–a concept defined with Section 3.1, and in this

instance relating to detection of specific trends in the data which, although not of universal rel-

evance, may later inform external prediction. As might be anticipated, algorithms within this

study trained upon the “noisier” rat lethality dataset were more inclined to overfit (that is, they

displayed greater R2
over), when related to those developed using the more homogenous and

precisely-curated T. pyriformis inventory. Secondly, it is the case that particularly complex

models (such as those composed from an excessive quantity of features) may display imbalance

in favour of variance over bias, culminating in an increased accuracy concurrent with reduced

broad consistency. The final factor relates to the routine employment of multiple comparison

procedures during the process of training. It is perhaps inevitable that this shall, in time, result

in the selection of parameters which have no positive impact upon general model

performance.

On account of their considerable potency as relates to pattern recognition (and accompa-

nying sharp focus as regards optimisation of predictive performance), the liability of ML

techniques towards the introduction of overfitting is generally far greater than those of clas-

sical approaches (which may again be exemplified by linear regression). Accordingly, whilst

examination of test set performance through cross-validation is considered best practice in

both instances, additional attention has been placed upon the formulation of methodologies

which aim to promote the training of more generalisable ML algorithms. Amongst these are

concepts including early-stopping, regularisation and drop-out (the latter of the three being

specific to NN and their derivatives) [16,93,94]. As such, the scheme of Cronin et al. may

once more be revised (please refer to Table 4 and S6 File for details regarding those three

criteria amended) [18].

4. Good practice in application of machine learning for

development of predictive toxicology QSAR

The evaluation of ML as applied in toxicity prediction, combined with consideration of the

uncertainties associated, has enabled the identification of aspects of good practice which
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should be adhered to in order that the acceptability of such models (particularly with regards

to the supporting of chemical safety assessment) might be improved.

These may be summarised:

• Biological data to be modelled should be evaluated in terms of quality, consistency, coverage

of mechanisms etc.

• The outcomes of assessment of the biological data should be used to assist in problem formu-

lation, particularly in provision of realistic (and not-overoptimistic) performance targets.

• Well-performed feature selection is necessary to reduce noise and collinearity. Fewer

descriptors are also likely to assist in interpretability. If feature selection is not performed,

then some rationale should be stated as to why.

• Descriptors must be appropriate for purposes of modelling of the effect, i.e., they must relate

in some way to the putative mechanisms of action. It is accepted that for large datasets, full

mechanistic definition is often likely to be implausible. In such instances, the approach and

descriptors utilised should be justified and interpreted as best possible.

• Once constructed, the qualities of a model should be evaluated in terms of all aspects: predic-

tive performance, interpretability and nature of any uncertainties.

• 10-fold splitting, or thereabouts, is optimal for use in cross-validation. Beneath this, model

performance tends to be understated–a greater number, by contrast, adds little value.

• Model performance should be related to data quality i.e., to ensure the model does not fit

beyond its limitations.

• Hyperparameters tuned during the optimisation procedure should be declared–with the

approach undertaken in doing so appropriate for the quantity considered.

• Whilst selection of an ideal algorithm may be based upon performance metrics, the com-

plexity and interpretability of a model should be considered, dependent upon its intended

purpose.

• Interpretability of the model is crucial. Descriptors important in influencing output can be

identified–with SHAP (in particular) offering a useful approach towards achieving this.

• Mechanistic interpretability does not automatically follow from identification of key descrip-

tors. A direct relationship between the feature, and the means through which it contributes

towards observed toxicity, should be established.

• Full documentation of the model should be provided, clearly demonstrating adherence to

the good practice principles (as described above).

Supporting information

S1 File. Supplementary Material 1. Influence of quantity of splits, k, upon properties includ-

ing: ¤ Dataset fold size (i.e., average number of substances within). ¤ Apparent predictivity of

models trained upon TH_90 data subset, expressed in terms of R2CV (average of R2 values

acquired from individual folds during their hold-out), R2min and R2max (respective mini-

mum and maximum in fold-wise R2). *Denotes parent dataset (prior to splitting)

(XLSX)
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S2 File. Supplementary Material 2. Hyperparameter optimisation (manual). Optimisation

curves displayed within figures below outline influence upon the model performance metrics

R2
train and R2

CV (k = 10), arising as a consequence of the incremental variation in value of a

given hyperparameter over its defined range (with all others simultaneously held constant at

their default quantities).

(DOCX)

S3 File. Supplementary Material 3. Hyperparameter optimisation (randomised search). Dis-

played within figures below are values of performance metrics R2
train and R2

CV (k = 10) relat-

ing to models generated through each trialled random hyperparameter combination.

(DOCX)

S4 File. Supplementary Material 4. Hyperparameter optimisation (Bayesian). Figures below

illustrate aspects of the iterative Bayesian optimisation procedure enacted upon each model,

courtesy of Optuna.

(DOCX)

S5 File. Supplementary Material 5. SHAP-determined absolute global feature importances

relating to each model, as trained upon T. pyriformis TH_90 and TH_50 data subsets through

adoption of Optuna-derived hyperparameter sets.

(DOCX)

S6 File. Supplementary Material 6. List of those assessment criteria for individual areas of

uncertainty, variability or bias within toxicity-prediction QSAR (as presented by Cronin et al.

[18]) updated in light of consideration of concerns specific to application of ML. Each is

grouped in accordance with its relevance either to the reproducibility, interpretability or gen-

eralisability of models. Updates to text under heading “Comment or Other Information” are

displayed in bold.

(XLSX)
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