
Javed, F, Saif-ul-Allah, MW, Ahmed, F, Rashid, N, Hussain, A, Zimmerman, WB 
and Rehman, F

 Kinetics of Biodiesel Production from Microalgae Using Microbubble 
Interfacial Technology

https://researchonline.ljmu.ac.uk/id/eprint/19562/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Javed, F ORCID logoORCID: https://orcid.org/0000-0002-9610-794X, Saif-ul-
Allah, MW, Ahmed, F ORCID logoORCID: https://orcid.org/0000-0003-2834-
7340, Rashid, N, Hussain, A ORCID logoORCID: https://orcid.org/0000-0001-
8413-0045, Zimmerman, WB ORCID logoORCID: https://orcid.org/0000-0001-

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


Citation: Javed, F.; Saif-ul-Allah,

M.W.; Ahmed, F.; Rashid, N.;

Hussain, A.; Zimmerman, W.B.;

Rehman, F. Kinetics of Biodiesel

Production from Microalgae Using

Microbubble Interfacial Technology.

Bioengineering 2022, 9, 739.

https://doi.org/10.3390/

bioengineering9120739

Academic Editors: Indra

Neel Pulidindi, Aharon Gedanken

and Reeta Rani Singhania

Received: 20 October 2022

Accepted: 25 November 2022

Published: 29 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Article

Kinetics of Biodiesel Production from Microalgae Using
Microbubble Interfacial Technology
Fahed Javed 1 , Muhammad Waqas Saif-ul-Allah 2, Faisal Ahmed 2 , Naim Rashid 3, Arif Hussain 1 ,
William B. Zimmerman 4 and Fahad Rehman 1,*

1 Microfluidics Research Group, Department of Chemical Engineering, COMSATS University Islamabad,
Lahore Campus, Lahore 54000, Pakistan

2 Process and Energy Systems Engineering Center-PRESTIGE, Department of Chemical Engineering,
COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan

3 Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University,
Qatar Foundation, Doha 34110, Qatar

4 Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S10 2TN, UK
* Correspondence: frehman@cuilahore.edu.pk; Tel.: +92-42-111-001-007; Fax: +92-42-9203100

Abstract: As an alternative to fossil fuels, biodiesel can be a source of clean and environmentally
friendly energy source. However, its commercial application is limited by expensive feedstock and
the slow nature of the pretreatment step-acid catalysis. The conventional approach to carry out this
reaction uses stirred tank reactors. Recently, the lab-scale experiments using microbubble mediated
mass transfer technology have demonstrated its potential use at commercial scale. However, all the
studies conducted so far have been at a lab scale~100 mL of feedstock. To analyze the feasibility
of microbubble technology, a larger pilot scale study is required. In this context, a kinetic study of
microbubble technology at an intermediate scale is conducted (3 L of oil). Owing to the target for
industrial application of the process, a commercial feedstock (Spirulina), microalgae oil (MO) and
a commercial catalyst para-toluene sulfonic acid (PTSA) are used. Experiments to characterize the
kinetics space (response surface, RSM) required for up-scaling are designed to develop a robust
model. The model is compared with that developed by the gated recurrent unit (GRU) method.
The maximum biodiesel conversion of 99.45 ± 1.3% is achieved by using these conditions: the
molar ratio of MO to MeOH of 1:23.73 ratio, time of 60 min, and a catalyst loading of 3.3 wt% MO
with an MO volume of 3 L. Furthermore, predicted models of RSM and GRU show proper fits to
the experimental result. It was found that GRU produced a more accurate and robust model with
correlation coefficient R2 = 0.9999 and root-mean-squared error (RSME) = 0.0515 in comparison with
RSM model with R2 = 0.9844 and RMSE = 3.0832, respectively. Although RSM and GRU are fully
empirical representations, they can be used for reactor up-scaling horizontally with microbubbles if
the liquid layer height is held constant while the microbubble injection replicates along the floor of
the reactor vessel—maintaining the tessellation pattern of the smaller vessel. This scaling approach
maintains the local mixing profile, which is the major uncontrolled variable in conventional stirred
tank reactor up-scaling.

Keywords: biodiesel; kinetics; esterification; RSM; microbubble technology

1. Introduction

The renewable energy generation is an important factor in reducing harmful effects
on the environment caused by the excess use of conventional fuels. Biodiesel derived from
inexpensive feedstocks, such as microalgae, can be a suitable alternative for replacing fossil
fuel. Biodiesel is generally produced from various resources, such as waste cooking oil,
animal fats, energy corps, yeast lipids, and microalgae [1,2]. Biodiesel consists of long
chains of carboxylic acids of alkyl ester produced from esterification and transesterification
of lipids or oils [3,4].
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For sustainable production of biodiesel, feedstock cost is the key parameter affecting
overall economics of the process. Since biodiesel production through refined oils feedstocks
(soybean oil or sunflower oil) is expensive, low-cost unrefined oil (animal or microalgae
oil) can be utilized as a cheaper substitute for biodiesel production [5–7]. However, the
unrefined feedstock’s generally consists of a large quantity of FFA. The presence of these
FFA in feedstock are not suitable for transesterification using base catalysts due to the
soap formation [8,9]. Therefore, acid catalyzed esterification is employed to reduce FFA
content by converting them into FAMEs [10,11]. The acid-catalysis is significantly slower
than transesterification due to the low-miscibility of MeOH with oil reducing overall mass
transfer; as a result reaction rate decreases. The slower reaction rate directly affects the
overall economics of the process [12–14]. However, the development of an economical
method for commercial biodiesel production would be a revolutionary milestone for the
fuel industry. Large scale biodiesel production could address many global challenges,
such as waste management, energy supply, and environmental pollution. The major
challenges that hinder commercialization of biodiesel include (1) cost-intensive methods of
acid catalyzed esterification of biodiesel feedstock, (2) inability of the present technologies
to scale-up, (3) expensive two stage production process, i.e., acid catalysis followed by base
catalysis, and (4) expensiveness of various feedstocks [15–17].

Recently, microbubble mediated mass transfer technology has proven to increase the
reaction rate by injecting one of the reactants in the vapor phase [18–20]. Microbubbles
provide a large interfacial area, low buoyancy force, and high contact time on the bubble
surface, which facilitate the rate of reaction of the system [21,22]. Furthermore, a smaller
radius causes the increase of pressure inside the microbubble, as stated by Young–Laplace’s
law. Hence, the temperature inside the bubble could be predicted to be higher as compared
with the boiling point of the alcohol. This also increases the surface energy of the bubble.
All of these factors have yielded an unprecedented higher rate and conversion of the
esterification reaction [18,20,23]. For example, Fahed et al. (2019) investigated the effect
of microbubble on the esterification reaction by producing ethyl acetate and achieved
79.95% in 35 min compared with the conventional method, which achieved 64% conversion
of esterification reaction in 350 min for ethyl acetate production [23]. In another study,
Naveed et al. (2019) reported a 97% conversion of oleic acid into biodiesel in 30 min
using microbubble technology which is a higher conversion than the conventional method,
which achieved 80% conversion in 312 min using H2SO4 as a catalyst [20]. The major
focus of these studies was to develop microbubble technology for esterification reaction
using single component feedstock. In this context, Fahed et al. (2021) validated the
effectiveness of microbubble technology in an unrefined feedstock (chicken fat oil) and
showed an overall process conversion of 89.90% in 30 min [18]. To further investigate the
effect of microbubble technology, Fahed et al. (2022) investigated the effect of microbubble
technology by integrating microbubble technology with heterogeneous catalyst using
waste cooking oil to further increase the rate of reaction and achieved an 85% conversion in
20 min [24]. The higher conversion was achieved for both chicken fat oil and waste cooking
oil in a shorter period of time, indicating that microbubble technology is an economical
method for biodiesel production.

However, all previous studies on microbubble technology mainly focused on lab-
scale experiments~100 mL of oil and without significant control over vapor pressure of
MeOH. The major focus of this study is to scale-up the microbubble mediated mass transfer
technology from lab-scale to semi-pilot scale with up to 3 L volume of oil. The experiments
were design using response surface methodology (RSM) and compared with gated recurrent
unit (GRU). There are many studies in the literature that use RSM for optimization for
biodiesel production [25,26]. However, the current study is the first study that implemented
both RSM and GRU using microbubble technology. Furthermore, several technologies have
been developed to manipulate the reaction equilibrium to achieve a higher conversion.
These reactions are usually slow and limited by reaction kinetics and mass transfer, which
are key constraints, such as esterification reactions. However, an entirely different technique
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has been developed using microbubble mediated mass transfer technology: an inherent
liquid–liquid reaction is converted into liquid–vapor reaction, which entirely changes the
reaction kinetics. The kinetics of a reaction are entirely based on two hypotheses, i.e., (1) by
increasing interfacial area, mass transfer of the process increases to which rate of reaction
is also enhanced. (2) Simultaneous removal of a reactant could also increase the reaction
kinetics in the forward direction. Moreover, this study also investigated reaction kinetics
on the semi-pilot scale the first time to understand the feasibility and compatibility of
microbubble technology for further scale-up.

Keeping the semi-pilot scale nature of the study, a commercial feedstock (biomass of
Spirulina) and a commercial catalyst p-Toluenesulfonic acid (p-TSA) is chosen to investigate
microbubble mediated mass transfer. Oil from Spirulina was derived using solvent extrac-
tion method. Experiments were designed using response surface methodology (RSM), a
robust model derived from RSM compared with another model developed using gated
recurrent unit (GRU). This is the first study that demonstrated the potential scale-up of mi-
crobubble technology and compared both RSM and GRU models to increase the commercial
feasibility of the process.

2. Material and Methods
2.1. Materials

Spirulina-biomass was purchased from Sentron Asia Company in Lahore, Pakistan.
p-Toluenesulfonic acid (p-TSA) was purchased from Sigma Aldrich, St. Louis, MO, USA.
MeOH of 99% analytical grade and 99% analytical grade n-Hexane were purchased from
DAEJUNG chemicals, Siheung-si, South Korea.

2.2. Lipids Extraction from Spirulina Biomass

Microalgae oil/lipids (MO) were extracted from dry biomass using hexane and MeOH
in a ratio of 7:3 by vol %. The biomass of Spirulina and solvent were stirred at 1000 rpm for
6 h at room temperature. Afterward, biomass was separated through filtration (whatman
filter paper 42), and oil was recovered by evaporating solvent using vacuum evaporation
(Buchi R-210, BUCHI Corporation, New Castle, DE, USA) at 60 ◦C [27]. The gravimetric
method determined the oil yield [27]. Physiochemical properties and lipid composition of
derived MO are presented in Table 1.

Table 1. Physicochemical properties of microalgae oil.

Parameters Units Value

FFA content % 32.5 ± 2
Density (25 ◦C) Kg m3 920 ± 5

Kinematic viscosity (40 ◦C) mm2 s−1 30.06 ± 3

MO composition

Mystic acid (C14:0) % 1.90 ± 0.5
Palmitic acid (C16:0) % 35.67 ± 3

Palmitoleic acid (C16:1) % 6.11 ± 2
Linoleic acid (C18:2) % 48.55 ± 2

Linolenic acid (C18:3) % 2.17 ± 0.5
Stearic acid (C18:0) % 5.60 ± 2

2.3. Pilot-Scale Experimental Setup for Biodiesel Production

The esterification reaction between MO and MeOH was performed using p-TSA as a
catalyst. The schematic diagram of the pilot scale process was shown in Figure 1. In the
current pilot-scale process, MeOH vapors were formed using a local fabricated digitally
controlled vaporizer purchased from EES Technologies, Lahore, Pakistan. The vaporizer
provided MeOH vapor at control/desired vapor flowrate, pressure, and temperature. A
customized bubble reactor was fabricated using grade 3 sintered borosilicate glass diffuser.
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The total volume of the bubble reactor was 3.5 L (radius = 43.18 mm and height = 609 mm),
and the working volume was up to 3 L. The experiments were designed using RSM (Design
Expert 11). The details of the RSM model are given in the next section. The bubble
reactor was filled with different volumes of microalgae MO according to the response
surface methodology RSM model. The MeOH vapors were produced in a vaporizer then
passed through a borosilicate glass diffuser to form microbubbles. The temperature of
the reactor was measured through a thermocouple (Digital thermometer, Jiangsu, China).
The sample was collected continuously at a regular interval of 10 min. Once, the reaction
had been run for the given time, the samples were filtered (whatman filter paper 42) and
washed with deionized water. The samples were dried using a vacuum evaporator (Buchi
R-210, BUCHI Corporation, New Castle, DE, USA) and stored for further analysis. All the
experiments were performed in triplicate, and their average values with standard deviation
was reported.
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Figure 1. Process flow diagram of scale-up microbubble reactor.

2.4. Modeling and Experimental Design through Response Surface Methodology

RSM is a statistical and mathematical tool that uses multiple variables to design exper-
iments for optimization [28]. In the current study, BBD was used to design experiments.
BBD was used to design a process with more than two factors; this method provides fewer
experiments than factorial design. Furthermore, BBD follows a cubical design edge using a
midpoint with three levels each (−1, 0, +1) [29].

BBD was used with three factors and five center points in the current study. Three
factors used in this study are: A (molar ratio of oil to MeOH = 1:5 to 1:25), B (catalyst
dosage = 0 to 5 g wt% of MO), and C (TIme-10 to 90 min). According to this design, a
total of 17 runs were conducted to evaluate the current process feasibility. The designed
experiments and their response with predicted values of RSM and GRU are shown in Table
S-I (Supplementary Information) and the RSM final conversion equation with coded value
was given in Equation (1) [30,31]. The goodness-of-fit summary provided by RSM shows
that quadric model is best suited for current experimental design Table S-II. The suggested
model is best suited for current experimental responses, and the current suggested model
is also assessed through analysis of variance (ANOVA) as shown in Table S-III.

Conversion = 88.68 + 3.27A + 26.13B + 7.97C + 3.24AB + 3.49AC + 3.98BC− 1.74A2 − 29.76B2 − 5.81C2 (1)
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2.5. Modeling through Gated Recurrent Unit (GRU)

Commonly used artificial neural networks (ANN) involve three main layers, such as
(1) input layer, (2) hidden layer (3) output layer and are indicated as x, h, and y. Recurrent
neural network, a variant of ANN, was proposed for modeling time series and sequential
data [32]. However, the vanishing gradient issue with large sequential data limits the
application of RNNs. To solve the vanishing gradient problem, long short-term memory
(LSTM), a variant of RNN, was introduced by Hochreiter and Schmidhuber [33]. This new
variant of RNN, LSTM, was incorporated with four gates to replace the original hidden
state in the memory cell. In 2014, GRU was introduced by adding a gated mechanism to
the recurrent neural network [34]. Unlike LSTM, GRU merged the input gate and the forget
gate into the update gate, as shown in Figure 2.
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Hidden unit activation (rt) is processed at a time step using Equation (2):

rt = σ(Wrht−1 + Urxt) (2)

Here, σ depicts logistic sigmoid function, Wr and Ur represents weight matrices. After
that, by using tanh type layer h̃t is calculated using rt:

h̃t = tan h(W(rt × ht−1) + Uxt) (3)

Equation (4) is the equation that distinguishes GRU from the LSTM. Here, zt combined
the remember gate along with forget gate in LSTM. zt is calculated as follows:

zt = σ(Wzht−1 + Uzxt) (4)

Lastly, the hidden state (ht) in GRU is calculated using Equation (5):

ht = (1− zt)(ht−1) + (zt)(h̃t) (5)
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This study incorporated artificial intelligence modeling for the prediction of response
surface, conversion in this case. Gated recurrent unit (GRU) was utilized as a sequence
learning deep learning technique that requires suitable value of its hyper-parameters.
Suitable architecture of the GRU model was obtained by varying hyper-parameters values
(Table 2). To study the comparison between GRU and RSM, different parameters were
considered, such as R2, RMSE, MAPE, and mean absolute error MAE.

Table 2. Hyperparameters for gated recurrent unit model.

Hyperparameters Bounds Set Values

Number of hidden units Positive integers 50
Gradient threshold 0–1 0.1
Initial learning rate 0–1 0.01

Learn rate drop factor 0–1 0.2
Learn rate drop period Positive integers 100

Training Epochs Positive integers 150

2.6. Biodiesel Analysis

Biodiesel analysis was performed using gas chromatography (GC) and ASTM method
of FFA analysis. Briefly, in GC (Shimadzu GC-2014, Shimadzu Europa, Duisburg, Ger-
many) the system was equipped with a flame ionization detector with column EN14103
(30 m × 0.32 mm id. × 0.25 µm film thickness). Nitrogen was introduced as a carrier with
an initial temperature of 523 K and a split ratio of 50:1 [20]. For FFA analysis, the AOCS
standard titration method was used [36,37]. To determine the FFA of the solution, the
following Equations (6) and (7) were used [27]:

Acid value
(

mgKOH
g biodiesel

)
=

(FA − FB)× N × 56.11
W

(6)

Free fatty acid (FFA) (%) =
1
2
×AV (7)

3. Results and Discussion
3.1. Effect of Different Parameters on Free Fatty Acid Conversion
3.1.1. Effect of Catalyst Loading and Molar Ratio on Free Fatty Acid Conversion

The simultaneous effect of the molar ratio of oil: MeOH and catalyst loading are
shown in Figure 3. The graph indicates that increasing catalyst loading from 0 to 5 wt% of
MO significantly increases the conversion of the process. Increasing the catalyst loading
enhances the protonation of FFA in MO. As the degree of protonation increases, the
conversion of FFA and the reaction rate also increases. A further increase in catalyst loading
after a certain point conversion of FFA was not increased due to insufficient active sites
of MO. Furthermore, Perturbation plot of RSM indicate that most dominate factor in the
current study is catalyst loading as show in Figure S-II.

On the other hand, by increasing the molar ratio of oil and MeOH, the FFA conversion
also increases due to the contact time of FFA with MeOH vapors increasing. At a lower
molar ratio, less volume of MeOH passes through the MO and leaves the system and vice
versa. However, increasing the molar ratio after a certain limit, a small amount of MeOH
can start to accumulate in the reactor, slightly reducing the reaction rate, as indicated by
the results. RSM’s optimized condition was molar ratio: 1:23.73 Oil: (MeOH) and catalyst
loading 3.3 wt% of MO.
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3.1.2. Effect of Reaction Time and Molar Ratio on Free Fatty Acid Conversion

The effect of both time and molar ratio was investigated and are shown in Figure 4.
Time is another important parameter to study the rate of reaction. The results indicate that
increasing time conversion and the rate of reaction increase due to an increase in reaction
time increases the contact time of oil molecules with MeOH. As a result, conversion of FFA
increases. However, a higher molar ratio and less reaction time decrease the reaction rate
due to the bubble having less contact time with MeOH, as the flowrate of MeOH vapors is
too high. As a result, the result MeOH vapors leave the system unreacted [18,20,23].
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Furthermore, an increase in MeOH flowrate also increases the formation of macrobub-
bles at higher flow rates and tends to produce larger bubbles [38]. Macrobubbles have
a large buoyancy-force and less residence time compared to microbubbles. As they rise
significantly faster, MeOH does not come into contact with FFA and, as a result, MeOH
leaves the system unreacted. Both optimize reaction time and molar ratio can also provide
an optimized flow rate to increase FFA conversion. The optimized time and molar ratio
according to RSM were molar ratios: 1:23.73 Oil: (MeOH) and Time = 59.79~60 min.

3.1.3. Effect of Reaction Time and Catalyst Loading on Free Fatty Acid Conversion

The simultaneous effect of catalyst loading and reaction time were important parame-
ters for scaling up of biodiesel process. These parameters greatly affect the cost and energy
of the biodiesel process. The interactive effect of catalyst loading and reaction time on
response surface are shown in Figure 5. FFA conversion tends to increase with the reaction
time. However, the effect of reaction time is masked by the effect of catalyst loading. The 3D
plot also shows that catalyst loading directly relates to FFA conversion due to an increase
in catalyst loading increasing the number of available reaction sides; as a result, higher
conversion of FFA was achieved.
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3.2. Scale-Up of Microbubble Reactor

The main goal of this work is to investigate the scale-up capacity of microbubble
technology at optimized conditions provided by RSM and GRU and verify that provided
conditions are suitable for converting FFA into biodiesel. For scale-up of microbubble
reactor, different experiments were performed at different volumes of reactor varying from
1 to 3 L (Conversion: 1 L = 99.12%, 2 L = 99.55%, 3 L = 99.45%), as shown in Figure 6.
It was observed that an increase in the volume in the reactor has negligible effect on the
FFA conversion. An increase in the volume of oil also increased the pressure head of
the microbubble reactor. By increasing the volume of oil, microbubbles stay in contact
with the oil for a longer period of time. However, it is observed that an equilibrium is
achieved at 200 mm and does not change if it is increased any further. This could be
explained on the basis of mass transfer occurring across the bubble interface and kinetics
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of the reaction. At 200 mm, a boundary layer would have formed at the bubble interface
stopping the mass transfer of MeOH from inside the bubble to the oil working as a “solid
sphere”. Several studies in hot microbubble distillation/stripping show that increasing the
liquid layer heat can decrease separation efficiency because the non-equilibrium driving
force diminishes [39]. Thus, further upscaling of the reactor should be horizontal by
maintaining the microbubble tessellation pattern in the reactor. However, this scaling
approach maintains the local mixing profile, which is the major uncontrolled variable in
conventional stirred tank reactor upscaling.
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Conventionally, biodiesel is produced by mixing both reactants in liquid phase in a
batch reactor. The mass transfer is limited by low miscibility of reactants, apart from castor
oil/MeOH, which has an OH at C-12, reducing the overall conversion. However, the current
process MeOH was injected in the form of vapors (bubbles) and as a result a vapor–liquid
system is formed. In vapor–liquid system, conversion of MO is also increased as diffusion of
vapor–liquid is higher than the liquid–liquid reaction. Furthermore, microbubbles exhibit
less buoyancy force, increasing the residence time of MeOH bubble. FFA is premixed with
the catalyst and is already protonated. As the microbubbles of MeOH rise, the reaction
between MeOH and protonated MO starts instantaneously. The amount of alcohol available
in the interface is in excess as compared to the available MO pushing the reaction in a
forward direction. As the bubble rises, the alcohol is transferred into the MO. As the
temperature of the reactor is maintained higher than the boiling point of MeOH, it does not
condenses in the reactor and leaves as vapor [24]. The vapors of MeOH can be collected,
condensed and recycled to improve the process economics. Figure 7 clearly exhibits three
different slopes. The highest rate is achieved in the first 10 min of the process. Afterword,
the rate slightly slows down and an overall conversion of 97% is achieved in the next
30 min (overall 40 min). Since almost all of the MO has already reacted, only 2% conversion
is achieved in the last 20 min. To enhance feasibility and hence the economics, the reaction
could be stopped at 10 min and product could be separated using a suitable separation
technique, such as distillation or else 99% pure product could be obtained in 60 min.
Comparison of current MO study with other conventional acid catalyst based biodiesel
production is shown in Table 3.
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Table 3. The comparison of current up-scaling study with other conventional catalyst based biodiesel
production.

Feedstock Catalyst Reaction Time
(min)

Conversion
(%) Reference

Conventional method H2SO4 120 78 [40]
Microbubble Technology H2SO4 30 98 [20]
Microbubble Technology p-TSA 30 97 [20]
Microbubble Technology p-TSA 30 89.90 [18]
Microbubble Technology Sr/ZrO2 20 85 [24]

Microbubble Technology (semi pilot-scale) p-TSA 60 99.45 ± 1.3 This study

3.3. Reaction Kinetics of Biodiesel Conversion

Scale-up results already show that by increasing the liquid layer height, the conversion
does not change and has been identified; the reaction kinetics for a microbubble mediated
esterification system can be upscaled via scaling out the reactor horizontally, maintaining
the same aerator pattern along the reactor bottom surface. This is a logical conclusion from
the seminal paper of Al-Mashhadani et al. (2015) [41]. In their paper, the geometry of
the placement of the internal baffle in an airlift loop reactor is systematically varied, yet
the hydrodynamics of the phase distribution is invariant to the baffles position, basically
demonstrating that it is insignificant. Only the height above the aerator injection point is
shown to matter. This follows logically from the fact that microbubbles that are injected in
laminar flow and maintain laminar flow only rise vertically. By tessellating the aerators to
provide downcomer regions in between, this configuration replicates the micromixing and
bulk mixing profiles. This horizontal tessellation/upscaling approach has been found in
all pilot scale studies for microbubble distillation/hot microbubble stripping [39]. Rees-
Zimmerman and Chaffin (2021) [42] found that in modeling the hydrodynamics of tall
bioreactors with variable bubble size, there is no mass transfer limitation with microbubbles,
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but the reactor height above a fixed level is immaterial. Hence, studying the kinetics for
this critical layer height is sufficient for upscaling horizontally.

The kinetics of this study were investigated under optimized condition of RSM,
i.e., the molar ratio of MO to MeOH of 1:23.73 ratio, time of 60 min, and a catalyst loading of
3.3 wt% MO. The results show that the difference between predicted value of RSM (99.10%
as shown in Figure S-I) and actual value (99.45%) was less than 0.5% which indicate the
validation of the current RSM model. To evaluate the reaction behavior of vapor–liquid, Ha
was calculated using Equation (8) to assess the whether a reaction occurs on the bubble’s
bulk or surface [43,44].

Ha =

√
(Mg/l)T k Cb

kbl
(8)

(Mg/l)25°C = 6.02× 10−5

(
V0.36

l
µ0.61

l V0.64
g

)
(9)

(Mg/l)T = 4.996× 103(Mg/l)25°C exp
(
−2539

T

)
(10)

Mg/l was calculated at 25 and 70 ◦C by Equations (9) and (10) [45]. For a bubble size
less than 2 mm, Equation (11) was used to calculate kbl [46].

kbl = 0.31

(
(Dg/l)

2ρl g
µl

) 1
3

(11)

The calculated value of Ha is greater than 1, which indicates that the reaction occurs on
the bubble surface, due to which bubble size is a crucial parameter of controlling reaction
kinetics. The order of reaction was calculated using E by Equation (12) [43].

E = Ha
(

1− Ha− 1
2Ei

)
(12)

Ei was determined by using Equation (13) [43]

Ei = 1 + (Mg/l)T

(
CbH
b Pg

)
(13)

The value of Ha and E show that the current reaction is pseudo first order due to
the value of both of them I almost equal. The rate of reaction was calculated by using
Equation (14).

− rA =
1

1
kgσ + H

a
√

(Dg/l)TkCb

Pg (14)

The values used to calculate for kg σ, kbl, and H are 5.32 × 10−3 kmol s−1 m−3,
1.24 × 10−4 ms−1 and 43.05 kmol s−1.m−3 Pa, respectively. The final reaction rate was
determine using Equation (15);

− rA =
(

1.32× 10−5
)
(PA × 101, 325)

(√
Cb

)
(15)

To determine the current activation energy (EA) in the scale-up reactor, the Arrhenius
equation was used. The experiments were conducted by varying the reaction temperature
(70–90 ◦C) [43]. The Arrhenius equation was used to develop the relations with rate
constants to develop the equation to determine EA using Equation (16) [47]. An Arrhenius
plot between ln (k) and 1/T is shown in Figure 8.

ln k = − EA
RT

+ ln A
◦

(16)
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The EA of the esterification reaction in the current scale-up microbubble reactor is cal-
culated to be 10.01 ± 0.3 kJ mol−1. The current EA was significantly less than conventional
processes, as shown in Table 4. This low EA indicates that reactions occur on the surface of
bubbles [20]. It also shows that less energy is needed for MO to pass the barrier to form
a product. In addition, the latent heat of MeOH was also freely available as free energy,
making the reaction nature more exergonic, enhancing the rate of reaction and reducing the
EA. The current reaction kinetics and reduced EA successfully show the implementation of
current scale-up reactor to industrial level.

Table 4. Comparison of activation energy with different biodiesel feedstocks.

Feedstock Method Scale of
Experiments Catalyst EA

(kJ mol−1) Reference

Jatropha Conventional method Lab-scale 1% H2SO4
and 1% NaOH 87.808 [48]

Microalgae Supercritical method Lab-scale No catalyst 105 [49]
Chlorella Conventional method Lab-scale HCl 38.892 [50]

Spirulina platensis
Single stage extraction–

transesterification
process

Lab-scale H2SO4 14.518 [51]

Oleic acid Microbubble technology Lab-scale 7% H2SO4 26.37 [20]
Chicken fat oil Microbubble technology Lab-scale 7% PTSA 24.9 [18]

Spirulina Microbubble technology Semi pilot scale 3.3% PTSA 10.01 ± 0.3 This study

3.4. Gated Recurrent Unit and Response Surface Methodology Comparison

RSM model has reported 0.9844 correlation coefficient R2 that shows good fitting
efficiency, as shown in Figure 9. However, GRU has shown superior efficiency (Figure 10)
and reported 0.9999 R2. The values of mean absolute percentage error (MAPE), root mean
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square error (RMSE) and mean absolute error (MAE) for RSM model and GRU model have
been reported in Table 5.
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Table 5. Performance criteria comparison (response surface methodology vs. gated recurrent unit).

Criteria
Conversion % Prediction Performance

RSM Model GRU Model

R2 0.9844 0.9999
MAPE 0.0465 0.00083
RMSE 3.0832 0.0515
MAE 2.6847 0.045
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Table 5 confirms the superiority of the GRU model over RSM as its predicted values
are in good agreement with actual values, as shown in Figure 10. It can also be confirmed
that GRU reported performance criterions used, such as MAPE, RMSE, and MAE, lesser
than that of the RSM model. From Figure 9, deviating RSM model prediction values from
actual values are clearly visible, causing lower R2 (0.9844) compared to that of GRU (0.9999),
as well as a reported larger MAPE, RMSE and MAE compared to that of the GRU model, as
show in Figure 10. The MAE for the RSM model is 2.6847, which is approximately 60 times
higher compared to that of the GRU model (0.045). Furthermore, MAPE for the GRU model
(0.00083) confirms its superiority over the RSM model (0.0465). Furthermore, in terms of
RMSE, GRU reported an RMSE of 0.0515 and RSM reported 3.0832.

Furthermore, a 45-degree perfect line was added to the plot to better understand the
prediction accuracy of the models. The prediction performance increases as the scatter
points approach toward a 45-degree perfect line and hence decreases the error. The plot
depicted that the GRU model prediction of conversion% were following the 45-degree
perfect line more strictly than that of the RSM model and hence reported lesser RMSE,
MAPE, and MAE. Furthermore, a higher R2 value for the GRU model (0.9999) depicts
outperforming performance compared to the R2 value for the RSM model (0.9844). This
scatter plot comparison also pointed out that the GRU model has performed much better
than the RSM model to predict conversion.

4. Conclusions

The current study successfully developed a robust model which shows a high feasi-
bility of microalgae-based biodiesel on a semi-pilot scale. Both models were in line with
experimental observation. In addition, the comparison of both RSM and GRU showed
that GRU was more accurate than RSM to predict the conversion. Furthermore, predicted
models of RSM and GRU show a proper fit to the experimental result. It was found that
GRU produced a more accurate and robust model with correlation coefficient R2 = 0.9999
and root-mean-squared error (RSME) = 0.0515 in comparison with the RSM model with
R2 = 0.9844 and RMSE = 3.0832, respectively. Furthermore, the kinetics of the pilot scale
microbubble reactor revealed that more than 99.45 ± 1.3% conversion of FFA into biodiesel
was achieved in 60 min, and the current reaction follows pseudo first order kinetics with
respect to MO. Additionally, a lower EA of 10.01 ± 0.3 kJ mol−1 indicates that less energy
was required for reactant to jump the barrier to form product. Although RSM and GRU
are fully empirical representations, they can be used for reactor upscaling horizontally
with microbubbles. Horizontal out-scaling maintains the liquid layer height, while the mi-
crobubble injection replicates along the floor of the reactor vessel—keeping the tessellation
pattern of the smaller vessel with the same bubble flux per unit area. This scaling approach
maintains the local mixing profile, which is the major uncontrolled variable in conventional
stirred tank reactor upscaling. This study should prove to be a milestone in future studies
for further scale-up of microbubble mass transfer technology. Further research needs to be
carried out in terms of reactor development and finding new material for reactor formation,
keeping the process cost to a minimum. Additionally, life cycle analysis should be carried
out to calculate the environmental impact of the microbubble technology. Life cycle analysis
will provide overall insight toward sustainability of the developed approach to analyze
manufacturing, ecological effect, and energy expenditures of current technology.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering9120739/s1, Table S-I: The designed experiments
and their response with predicted values of RSM and GRU; Table S-II: Goodness-of-Fit summary
generated through RSM; Table S-III: Statistical ANOVA analysis of current RSM model; Figure S-I:
Predicted values from RSM; Figure S-II: Perturbation plot of experimental parameters.
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Abbreviations

Words Abbreviations
Activation energy EA
Absolute percentage error MAPE
Acid value AV
Box–Behnken design BBD
Concentration of MO Cb
Enhancement factor E
Free Fatty Acid FFA
Fatty Acid Methyl Esters FAMEs
Gas constant R
Gated recurrent unit GRU
Gas diffusion coefficient Mg/l
Henry constant H
Hatta number Ha
Interfacial area σ

Infinite enhancement factor Ei
Liquid film coefficient kbl
Mass of biodiesel (g) W
Microalgae oil MO
Methanol MeOH
Molar volume of MO vl
Molar volume of MeOH vg
Mean absolute error MAE
Normality of KOH N
Partial pressure of MeOH pg
Pressure of MeOH (bar) PA
Pre-exponential factor A◦

Rate constant K
Rate of reaction ra
Root mean square error RMSE
Response surface methodology RSM
Volume of KOH used for titration (mL) FA
Volume of KOH used for blank titration (mL) FB
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