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Abstract

1-Acetyl-N,N-diethyllysergamide (1A-LSD, ALD-52) was first synthesized in the

1950s and found to produce psychedelic effects similar to those of LSD. Evidence

suggests that ALD-52 serves as a prodrug in vivo and hydrolysis to LSD is likely

responsible for its activity. Extension of the N1-alkylcarbonyl chain gives rise to novel

lysergamides, which spurred further investigations into their structure–activity

relationships. At the same time, ALD-52 and numerous homologues have emerged as

recreational drugs (“research chemicals”) that are available from online vendors. In

the present study, 1-dodecanoyl-LSD (1DD-LSD), a novel N1-acylated LSD deriva-

tive, was subjected to analytical characterization and was also tested in the mouse

head-twitch response (HTR) assay to assess whether it produces LSD-like effects

in vivo. When tested in C57BL/6J mice, 1DD-LSD induced the HTR with a median

effective dose (ED50) of 2.17 mg/kg, which was equivalent to 3.60 μmol/kg. Under

similar experimental conditions, LSD has 27-fold higher potency than 1DD-LSD in

the HTR assay. Previous work has shown that other homologues such as ALD-52

and 1-propanoyl-LSD also have considerably higher potency than 1DD-LSD in mice,

which suggests that hydrolysis of the 1-dodecanoyl moiety may be comparatively

less efficient in vivo. Further investigations are warranted to determine whether the

increased lipophilicity of 1DD-LSD causes it to be sequestered in fat, thereby reduc-

ing its exposure to enzymatic hydrolysis in plasma and tissues. Further clinical studies

are also required to assess its activity in humans and to test the prediction that it

could potentially serve as a long-acting prodrug for LSD.

K E YWORD S

head-twitch response, LSD, new psychoactive substances, psychedelics

1 | INTRODUCTION

The synthesis of 1-acetyl-N,N-diethyllysergamide (1A-LSD, ALD-52;

Figure 1a), an N1-acylated derivative of lysergic acid diethylamide

(LSD), was first reported by Franz Troxler and Albert Hofmann in

1957.1 Subsequently, ALD-52 was distributed by Sandoz pharmaceu-

ticals and tested in several small-scale clinical trials, which showed it

produces psychedelic effects closely mirroring those induced by
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LSD.2–7 ALD-52 is believed to serve as a prodrug in vivo, and its

hydrolysis to LSD is thought to be responsible for its activity. ALD-52

is rapidly metabolized to LSD after administration to mice.8 Likewise,

investigations carried out in vitro showed conversion of ALD-52 to

LSD after exposure to pooled human liver S9 fractions.9 Although the

psychedelic effects of LSD are believed to be largely mediated by

activation of the 5-HT2A receptor, N1-acyl substitution markedly

diminishes the agonist efficacy of LSD at the 5-HT2A receptor,8

indicating the psychoactive properties of ALD-52 and other

N1-acylated LSD derivatives must be largely mediated by the forma-

tion of an active metabolite.

The extent to which ALD-52 circulated on the recreational drug

market during the 1960s and the decades that followed is not clear.

Claims have been made that LSD distributed under the name “orange
sunshine” in the United States during the 1970s was actually ALD-52,

although this has been disputed. The first confirmed detection of

ALD-52 as a recreational drug appears to have occurred in Europe in

2016, when ALD-52 was reported to the European Monitoring Centre

for Drugs and Drug Addiction as a new psychoactive substance

(NPS).10 Detections of ALD-52 in Japan and Brazil were subsequently

reported in the scientific literature.11–13

Cases of N1-acylated LSD derivatives containing extended linear

alkylcarbonyl substituents have emerged on the “research chemical”
market in recent years, and as shown in Figure 1, examples included

1P-LSD,12,14 1B-LSD,15–17, and 1V-LSD, respectively.18,19 At the same

time, information on longer chain derivatives is currently unavailable,
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F IGURE 1 (a) Chemical structures
of N1-acylated derivatives of lysergic
acid diethylamide (LSD). (b) Electron
ionization mass spectrum of 1DD-
LSD. (c) GC-MS trace in TIC mode.
(d) GC-MS trace in EIC mode.
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which prompted the investigation into 1-dodecanoyl-LSD (1DD-LSD),

an N1-alkylcarbonyl LSD derivative with a 12-carbon chain (Figure 1a).

Understanding the mechanism of action and structure–activity

relationships of these derivatives are warranted. There is currently no

indication that 1DD-LSD is circulating on the market, but it was

deemed reasonable to disseminate its analytical features.

The behavioral pharmacology of 1DD-LSD was assessed by

evaluating its effects on the head-twitch response (HTR), a 5-HT2A

receptor-mediated head movement in mice that serves as a behavioral

proxy for LSD-like psychedelic psychopharmacology.20–23 HTR testing

confirmed that 1DD-LSD is active in the paradigm but has lower

potency and an extended duration of action compared to several

other N1-acylated LSD derivatives.

2 | EXPERIMENTAL

2.1 | Materials

All chemicals and solvents were of analytical or HPLC grade and

obtained from Aldrich (Dorset, UK). A powdered sample of 1DD-LSD

tartrate (95%) (identified as a tartrate [3:2 ratio based on 1H NMR])

was provided by Synex Synthetics BV, Maastricht, The Netherlands.

2.2 | Instrumentation

2.2.1 | Gas chromatography–mass spectrometry
(GC-MS) (method 1)

A solution in acetonitrile (1 mg/ml, 2 μl injected) was analyzed on an

Agilent 6980 GC coupled to an Agilent 5973 mass selective detector.

A Rxi-5Sil MS column (0.25 mm ID, 0.25 μm, 10 m; Restek,

Derbyshire, UK) was used with helium carrier gas at a constant flow

of 1 ml/min in splitless mode. The injector and transfer line were set

at 250 and 280�C, respectively. The initial oven temperature program

was 200�C held for 2 min and then increased at 20�C/min up to

300�C, at which it was held for 23 min. The total run time was 30 min.

The mass spectrometer settings were as follows: solvent delay, 5 min;

EI mode, 70 eV, range m/z 40–600; source temp. 230�C; quad

temp. 250�C, and transfer line 280�C. Details of an alternative GC-

MS method 2 are reported as Supporting Information.

2.2.2 | High-performance liquid chromatography
diode array detection

A Dionex 3000 Ultimate liquid chromatography system coupled to a

UV diode array detector (Thermo Fisher, St. Albans, UK) was used

with a Phenomenex Synergi Fusion column (150 � 2 mm, 4 μm)

protected by a 4 � 3 mm Phenomenex Synergi Fusion guard column

(Phenomenex, Macclesfield, UK). The mobile phases were 70% aceto-

nitrile with 25 mM of triethylammonium phosphate buffer (TEAP)

(B) and aqueous TEAP (25 mM) buffer (A). The gradient elution

commenced with 4% B and ramped to 70% B over 15 min and then

held for 3 min, resulting in a total acquisition time of 18 min at a flow

rate of 0.6 ml/min. The diode array detection window was set at

200–595 nm (collection rate of 2 Hz).

2.2.3 | Ultra-high-performance liquid
chromatography–electrospray ionization tandem mass
spectrometry (UHPLC-QTOF-MS/MS)

UHPLC-QTOF-MS/MS data were obtained from an Agilent 6540

UHD Accurate-Mass QTOF LC-MS system coupled to an Agilent

1290 Infinity UHPLC system (Agilent, Cheshire, UK). Separation was

achieved using an Agilent Zorbax Eclipse Plus C18 column

(100 � 2.1 mm, 1.8 μm) (Agilent, Cheadle, UK). Mobile phases

consisted of acetonitrile (containing 1% formic acid) and 1% formic

acid in water. The column temperature was set at 40�C and data were

acquired for 5.5 min. The flow rate was (0.6 ml/min). The gradient

was set at 5–70% acetonitrile over 3.5 min, then increased to 95%

acetonitrile in 1 min and held for 0.5 min before returning to 5%

acetonitrile in 0.5 min. QTOF-MS data were acquired in positive ion

mode scanning from m/z 100–1000 with and without auto MS/MS

fragmentation. Ionization was achieved with an Agilent JetStream

electrospray source and infused internal reference masses. Ion source

parameters were gas temperature 325�C, drying gas 10 L/min, and

sheath gas temperature 400�C. Internal reference ions at m/z

121.05087 and m/z 922.00979 were used for calibration purposes.

The sample was dissolved in methanol at a concentration of 10 μg/ml.

2.2.4 | Nuclear magnetic resonance spectroscopy
(NMR)

NMR spectra (1H at 600 MHz; 13C at 150 MHz) of the powdered

sample (10 mg, 0.75 ml solvent) were recorded using a Bruker

AVANCE III 600 MHz spectrometer (Bruker UK Ltd, Coventry, UK) in

DMSO-d6. Experiments were carried out at 298 K with a 5 mm PA

BBO probe with z-gradient. Spectra were referenced to residual

solvent, and assignments were supported by both 1D and 2D

experiments.

2.3 | Animal pharmacology

Male C57BL/6J mice (6–8 weeks old) were obtained from Jackson

Laboratories (Bar Harbor, ME, USA) and housed up to four per cage

with a reversed light cycle (lights on at 1900 h, off at 0700 h). Food

and water were provided ad libitum, except during behavioral testing.

Testing was conducted between 1000 and 1830 h. All animal experi-

ments were carried out in accordance with NIH guidelines and were

approved by the UCSD animal care committee. The HTR was assessed

using a head-mounted magnet and a magnetometer detection coil.23
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Mice were anesthetized, a small incision was made in the scalp, and a

small neodymium magnet was attached to the dorsal surface of the

cranium using dental cement. Following a 2-week recovery period,

HTR experiments were carried out in a well-lit room with at least

7 days between sessions to avoid carryover effects. Mice were

injected IP (5 ml/kg injection volume) with vehicle (water containing

16% dimethylsulfoxide) or 1DD-LSD (1, 2, 4, or 8 mg/kg), and then

activity was recorded in a glass cylinder surrounded by a magnetome-

ter coil for 60 min. Coil voltage was low-pass filtered (2-kHz cutoff

frequency), amplified, digitized (20-kHz sampling rate, 16-bit ADC res-

olution), and saved to disk using a PowerLab 8/35 data acquisition

system with LabChart software ver. 8.1.16 (ADInstruments, Colorado

Springs, CO, USA). To detect head twitches, events in the recordings

were transformed to scalograms, deep features were extracted using

the deep convolutional neural network ResNet-50, and then the

images were classified using a support vector machine (SVM).24 Total

head-twitch counts were analyzed using a one-way ANOVA. HTR

counts were also binned in 2-min blocks and analyzed using a two-
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F IGURE 2 (a) Electron ionization mass spectra recorded from GC-MS peaks shown in Figure 1c. (b) Tentative structures of potentially GC-
induced artifacts based on mass spectral considerations (Supporting Information).
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way ANOVA (drug � time). Post hoc comparisons were made using

Dunnett's test. Significance was demonstrated by surpassing an

α-level of 0.05. ED50 values and 95% confidence intervals were calcu-

lated using nonlinear regression.

3 | RESULTS AND DISCUSSION

3.1 | Analytical features

The electron ionization (EI) mass spectrum of 1DD-LSD is shown in

Figure 1b, and proposed fragmentation pathways are included as

Supporting Information adapted from those suggested previously for

1P-LSD,14 1B-LSD,15 and 1V-LSD, respectively.18 Key ions specifically

related to 1DD-LSD (attachment of the N1-dodecanoyl group)

included the retro-Diels–Alder fragment at m/z 462, characteristically

formed by a neutral loss of 43 u (N-methylmethanimine) that reflected

the presence of the N6-methyl group. One of the fragment clusters

frequently seen with LSD-type compounds (but also certain isomers)

include those detected at m/z 218–224 with one example possibly

being m/z 222, formed after a neutral loss of N,N-diethylformamide.25

In the case of 1DD-LSD, the mass shift related to the presence of the

N1-dodecanoyl group (182 u) was detected at m/z 404, which was

part of the mass-shifted cluster at m/z 403–406. The loss of the

N,N-diethylamino radical (C4H10N
•, 72 u) might have produced the

oxonium species at m/z 433, which also indicated that it might have

served as an originator of m/z 250 following the loss of the N1-acyl

group. Low-mass ions at m/z 57 and 43 were also detected,

which suggested potential secondary fragmentations from fragmenta-

tions of the N1-acyl group (Figure 1b). The EI mass spectrum of

1V-LSD also showed an m/z 57 species, although it was hypothesized

to have formed from a neutral loss of CO from the oxonium ion at

m/z 85.18

Results from GC-MS analysis of 1DD-LSD are shown in Figure 1c

(TIC) and 1d (EIC), respectively. In addition to 1DD-LSD, six additional

peaks were detected in full scan mode. The EI mass spectra and
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chromatographic peak at 16.28 min (insert).
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TABLE 1 1H and 13C NMR data for 1DD-LSD tartrate (3:2) in DMSO-d6 at 600/150 MHz.

No. 13C [δ/ppm] 1H [δ/ppm]

1 — —

2 120.05 7.60 (d, J = 1.8 Hz, 1 H)

3 116.05 —

4 26.14 2.47–2.41 (m, H-4α, 1 H)

*Partially overlapping with H-17

3.48 (dd, J = 15.4, 5.5 Hz, H-4β, 2 H)

*Partially overlapping with H-19

5 61.84 3.07–3.02 (m, H-5β, 1 H)

6 — —

7 55.35 3.00 (dd, J = 11.0, 4.8 Hz, H-7α, 1 H)
2.60 (t, J = 10.8 Hz, H-7β, 1 H)

8 38.92 3.85–3.78 (m, H-8α, 1 H)

9 121.83 6.34 (s, 1 H)

10 133.50 —

11 127.80 —

12 116.57 7.34 (d, J = 7.4 Hz, 1H)

13 125.91 7.30 (t, J = 7.7 Hz, 1H)

14 114.83 8.00 (d, J = 7.8 Hz, 1H)

15 133.15 —

16 127.56 —

17 43.14 2.48 (s, 3 H)

*Overlapping with solvent and partially overlapping with H-4α

18 170.39 —

19 41.57 3.44 (q, J = 7.1 Hz, 2 H)

19 39.48 3.31 (AB qq, J = 13.9, 7.0 Hz, 2 H)

*Coalescing with broad water signal

20 14.83 1.18 (t, J = 7.1 Hz, 3 H)

20 13.06 1.06 (t, J = 7.1 Hz, 3 H)

21 171.84 —

22 34.70 2.96 (t, J = 7.3 Hz, 2 H)

23 24.17 1.67 (p, J = 7.4 Hz, 2 H)

24 31.28, 28.99, 28.98, 28.92, 28.79, 28.70, 28.48, 22.09 1.39–1.34 (m, 2 H)

25–31 1.20–1.34 (m, 14 H)

32 13.95 0.85 (t, J = 7.0 Hz, 3 H)

TA 173.27 —

TA 71.99 4.23 (s, �1.4 H)

Abbreviation: TA, tartaric acid.
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proposed identities are summarized in Figure 2, though it should be

noted that these assignments remain hypothetical (with the exception

of LSD) because reference material was unavailable. Attempts to

rationalize their proposed identification involved suggested fragmen-

tation pathways (Supporting Information) adapted from work carried

out previously with 1V-LSD.18 The extent to which these detected

peaks (Figure 1c) reflect synthesis-related impurities is uncertain, but

it was also deemed reasonable to consider their artificial formation

during GC-based analysis because they were undetectable under

LC-MS conditions (with the exception of LSD). As shown in the

Supporting Information, 1DD-LSD was also analyzed using an alterna-

tive GC-MS method 2 where an increase of the GC oven temperature

to 340�C was evaluated. The reason why the GC method 1 included

here resulted in a comparatively short retention time for 1DD-LSD is

that the GC column (originally 30 m long) was shortened to 10 m,

which was not the case for GC-MS method 2. Previous reports

suggest that use of solvents such as methanol or ethanol has a

noticeable impact on the formation of LSD when ALD-52 and 1P-LSD

were subjected to GC-MS analysis.26 Other contributing factors

impacting on the detection the compounds reported here (Figure 2)

may have included varying conditions of the GC liner (including active

sites) and injection port temperatures. However, the detection of LSD

by GC-MS was also corroborated by the analysis by LC-MS

(Supporting Information).

Electrospray ionization QTOF tandem mass spectral data for

1DD-LSD are shown in Figure 3a together with proposed formations

of product ions (included as Supporting Information), which

were based on data reported previously 1P-LSD,14 1B-LSD,15 and

1V-LSD, respectively.18 The majority of the ions detected were as

expected and compared well with those reported for many other

lysergamides abundantly reported elsewhere. However, key ions

reflecting the presence of the N1-dodecanoyl substituent included

the retro-Diels–Alder fragment at m/z 463.3295 (C30H43N2O2
+,

Δm: �5.18 ppm), m/z 405.2907 (C27H37N2O
+, Δm: 1.73 ppm,

possibly formed after loss of CO from an oxonium ion), and m/z

379.2746 (C25H35N2O
+, Δm: 0.53 ppm) (Supporting Information).

The retention time of 1DD-LSD under HPLC-UV conditions was

16.28 min, and the ultraviolet spectrum recorded with the diode

array detector (Figure 3b) was reminiscent of other N1-acylated

lysergamides with three peak maxima at 226, 253, and

294 nm.11,12,14–16,18,19,26,27

Table 1 provides a summary of the 1H and 13C NMR data

recorded for 1DD-LSD, with full spectra included as Supporting

Information. Assignments are supported by 2D NMR data and are

consistent with the structure of 1DD-LSD. The majority of the

protons associated with the 12-carbon chain could not be fully

resolved, although the carbons could be identified individually.

Between the H-9 integral and the tartaric acid singlet at 4.23 ppm, a

1:1 ratio would normally be expected to reflect a 2:1 ratio

(lysergamide: tartaric acid). However, since the integral showed 1.36

protons instead of 1.0 (presumably due to excess tartaric acid),

the 1DD-LSD: tartrate molar ratio was estimated to be �3:2 instead

of 2:1.

3.2 | HTR

1DD-LSD was tested in the mouse HTR assay to determine whether

it produces LSD-like effects in vivo. Previous studies have shown that

the HTR in male C57BL6J mice is highly predictive of psychedelic

potential in humans.20 Administration of 1DD-LSD induced the HTR

(F4,22 = 14.90, p < 0.0001), with the 4 and 8 mg/kg doses producing a

significant increase in HTR counts over baseline levels (Figure 4a). The

median effective dose (ED50) for 1DD-LSD was 2.17 (95% CI 1.61–

F IGURE 4 (a) Effect of 1-dodecanoyl-LSD (1DD-LSD) on the

head twitch response. Data are presented as group means ± SEM for
the entire 60-min test session. *p < 0.0001, significant difference
from vehicle control group (Tukey's test). (b) Time course of the head
twitch response induced by 1DD-LSD. Data are presented as group
means during 5-min time blocks. The time blocks where there were
significant differences from the vehicle control group are identified
using colored symbols, p < 0.05 (Dunnett's test).
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2.93) mg/kg, which is equivalent to 3.60 μmol/kg. When tested under

similar experimental conditions, LSD induced the HTR with an ED50

of 132.8 nmol/kg,23 which is 27-fold higher than the potency of 1DD-

LSD.

Similar to 1DD-LSD, several other N1-alkylcarbonyl-substituted

LSD derivatives including ALD-52, 1P-LSD, 1B-LSD, and 1V-LSD

induced the HTR in mice. Although ALD-52 and 1P-LSD exhibited

weak agonist activity at the 5-HT2A receptor, they are hydrolyzed to

LSD under in vitro and in vivo conditions and probably act as pro-

drugs.8,28 Given its activity in HTR, it is reasonable to assume that

1DD-LSD probably also serves as an LSD prodrug. However, ALD-52

(ED50 = 297.2 nmol/kg8), 1P-LSD (ED50 = 349.6 nmol/kg14), 1B-LSD

(ED50 = 976.7 nmol/kg15), and 1V-LSD (ED50 = 373 nmol/kg18) have

considerably higher potency than 1DD-LSD in mice, which may indi-

cate that the hydrolysis of 1DD-LSD is relatively inefficient. 1DD-LSD

is also a much more lipophilic molecule due to the presence of a

1-dodecanoyl group, which may cause it to be sequestered in fat,

thereby reducing its exposure to esterases in plasma and tissues.

It was previously reported that N1-alkylcarbonyl-substitution

generally had relatively little effect on the time course of the HTR

induced by LSD. The response to LSD23 and 1B-LSD15 peaked

approximately 5–10 min after IP injection. The max response induced

by 1P-LSD was slightly delayed in comparison (�10–20 min after IP

administration14). To assess the time course of 1DD-LSD, the HTR

data were binned and analyzed in 5-min blocks. There was a main

effect of drug (F4,23 = 13.70, p < 0.0001) and an interaction between

drug and time (F44,253 = 2.501, p < 0.0001). The response to

1DD-LSD (Figure 4b) peaked 35 min post-injection, and the 4 mg/kg

and 8 mg/kg doses were active throughout the second half of the test

session (i.e., 30–60 min after injection) based on post hoc compari-

sons. If 1DD-LSD is stored in fat and hydrolyzed over an extended

period, then it may be possible to use 1DD-LSD as a depot form of

LSD.29

4 | CONCLUSION

The analytical and pharmacological data obtained for 1DD-LSD may

be of interest to scientists and clinicians engaged in research focusing

on psychedelic drugs and other recreational substances. The HTR data

confirmed that 1DD-LSD produces behavioral effects mirroring those

induced by serotonergic psychedelics such as LSD. However, the

increased N1-acyl chain length in 1DD-LSD led to noticeable reduc-

tion in potency compared to lower homologues, such as ALD-52, 1P-

LSD, 1B-LSD, and 1V-LSD. Further clinical testing is necessary to

assess the abuse potential of 1DD-LSD and to evaluate its pharmaco-

logical interactions and the qualitative nature of its effects in animals

and humans. In addition, the pharmacokinetic properties of 1DD-LSD

need to be investigated. Based on the HTR data, 1DD-LSD appears to

have an extended duration of action compared to LSD and other N1-

acyl-substituted homologs, possibly because it is sequestered in fat,

potentially protecting it from enzymatic hydrolysis. Further studies

are warranted to investigate whether depot forms of 1DD-LSD should

be developed by adjusting the formulation or by creating lipophilic

esters that are sequestered in fat and slowly released and

metabolized.
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