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Abstract

In various signal processing applications, such as audio signal recovery, the ex-

traction of desired signals from a mixture of other signals is a crucial task. To

achieve superior performance and efficiency in separator systems, extensive re-

search has been conducted. Blind source separation emerges as a relevant tech-

nique to address the challenge of separating and reconstructing unknown signals

when only observations of their mixtures are available to end-users. Blind source

separation involves retrieving a set of independent source signals mixed by an

unknown and potentially destructive combining system. Notably, the separa-

tion process in blind source separation frameworks solely relies on observing the

mixed sources without prior knowledge of the mixing algorithm or the source

signal characteristics. The significance of blind source separation has garnered

substantial attention, and its numerous applications have been demonstrated,

which serves as the primary motivation for conducting this comprehensive study.

This paper presents a systematic literature survey of blind source separation,

encompassing existing methods, approaches, and applications, with a particular

focus on artificial intelligence-based frameworks. Through a thorough review
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and examination, this work sheds light on the diverse techniques utilized in

blind source separation and their performance in real-world scenarios. The

study identifies research gaps in the current literature, highlighting areas that

warrant further investigation and improvement. Moreover, potential avenues for

future research are outlined to contribute to the ongoing development of blind

source separation techniques.

Keywords: artificial intelligence, blind source separation, deep learning,

independent component analysis, machine learning

Nomenclature

# Abbreviations Phrases

1 ABC Artificial bee colony

2 AI Artificial intellignece

3 ANNs Artificial neural networks

4 AP Affinity propagation

5 AVCC Absolute value of correlation coefficient

6 BCA Bees colony algorithm

7 BCO Bee colony optimization

8 BIO Bioinspired intelligence optimization

9 BLSTM Bi-directional long short-term memory

10 BNN Biological neural networks

11 BRNN Bidirectional recurrent neural network

12 BSS Blind source separation

13 BCC Bacterial colony chemotaxis

14 CCA Canonical correlation analysis

15 CDAE Convolutional denoising autoencoder

16 CFSFDP Clustering by fast search and find of density peaks

17 CGA Conjugate gradient algorithm

18 CMF Complex matrix factorization

Continue on the next page
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# Abbreviations Phrases

19 CNN Convolutional neural network

20 Conv-TasNet Convolutional time-domain audio separation network

21 CSC Convolutional sparse coding

22 CSKC Complex spherical k-mode clustering

23 DAN Deep attractor networks

24 dB Decibel

25 DE Differential evolution

26 Demucs Deep extractor for music sources

27 DNNs Deep neural networks

28 DNPSO Dynamic niching particle swarm optimization

29 DRNN Deep recurrent neural networks

30 EASI Equivariant adaptive source sepration via independance

31 EEG Electroencephalogram

32 EEMD Ensemble empirical mode decomposition

33 EM Expectation-maximization

34 FastICA Fast independence somponent analysis

35 FCRNN Fully connected recurrent neural network

36 FNN Fuzzy neural network

37 FPA Flower pollination algorithm

38 GA Genetic algorithm

39 GAN Generative adversarial network

40 GRU Gated recurrent unit

41 HEPSO High exploration particle swarm optimization

42 IBM Ideal binary mask

43 ICA Independent component analysis

44 IMF Intrinsic mode function

45 Infomax Information maximization

Continue on the next page
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# Abbreviations Phrases

46 IoT Internet of Things

47 IRM Ideal ratio mask

48 IVA Independent vector analysis

49 JADE Joint approximate diagonalization of eigenmatrices

50 JD Joint diagonalization

51 KAM Kernel additive modeling

52 Khyp-GDA K-hyperline-generalized discriminant analysis

53 Khyp-LDA K-hyperline-linear discriminant analysis

54 LDA Linear discriminant analysis

55 LMS Least mean squares

56 MABC Modified artificial bee colony algorithm

57 MAE Mean absolute error

58 MAP Maximum a posteriori probability

59 MI Mutual information

60 MIR-1K Multimedia information retrieval lab, 1000 song clips

61 mir eval Music information retrieval evaluation

62 ML Maximum likelihood

63 MMSE Minimum mean square error

64 MOD-GD Modified group delay

65 MSE Mean square error

66 NMF Non-negative matrix factorization

67 NMSE Normalized mean square error

68 ORM Optimal ratio mask

69 PCA Principal component analysis

70 PDF Probability density function

71 PESQ Perceptual evaluation of speech quality

72 PLCA Probablistic latent component analysis

Continue on the next page
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# Abbreviations Phrases

73 PSESOP Projected sequential subspace optimization

74 PSO Particle swarm optimization

75 RBF Radial basis function

76 ReLU Rectified linear units

77 RF Random forest

78 RNN Recurrent neural network

79 RSME Root mean square error

80 SAR Signal-to-artifact ratio

81 SCA Sparse component analysis

82 SCSS Single-channel source separation

83 SDR Signal-to-distortion ratio

84 SepFormer Separation transformer

85 SIR Signal-to-interference ratio

86 SISO Single input single output

87 SNR Signal-to-noise ratio

88 SOBI Second-order blind identification

89 SSP Single-source-point

90 STFT Short-time Fourier transform

91 SVD Singular value decomposition

92 SVM Support vector machine

93 UMM Underdetermined mixing matrix

94 VAE Variational Autoencoders

95 WMM Watson mixture model

1. Introduction

Everyday momentous and worthwhile content is broadcast on television,

radio, internet, and satellite channels [1]. The transmitted data/information is
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combined with other sources, such as music, noise, etc. [2], that might or might

not be very important for a different group of audiences. Therefore, the need

for systems that separate inconsequential sources and signals which lack value

from other sources of high importance is significantly evident [3]. Accordingly,

extracting advantageous and desired signals combined with worthless sources

that have no service and validity for a specific audience, e.g., music or ambient

noise, singing voice, or the lead guitar, is substantially important. Additionally,

a system separating the worthless data from the noteworthy data is necessitated

to reduce the storage volume [4].

As an example, in telecommunications networks, in order to reduce the

amount of data transmitted by the user, the system needs to recognize and

remove the silence frames from the speech frames [5]. Another scenario is al-

lowing people to talk simultaneously using various devices located at different

locations. The speeches are mixed and conveyed to a receiver node. The goal

is to distinguish and recover the speeches utilizing the perceived data [6]. As

observed, a framework capable of speech and music separation can be very ben-

eficial and leveraged in many lucrative applications [7].

Blind source separation (BSS) aims to retrieve the source signals that form

an observed/received mixture without prior knowledge of the mixing algorithm

or source signals [8]. The mixture can be either single-channel [9] or multi-

channel [10]. The separation problem is underdetermined when there are fewer

observed channels than sources, e.g., musical audio. Therefore, prior knowledge

about the original signals is demanded to further enhance the separation process.

There are many diverse objectives for the development of BSS technology. Even

if the focus is on audio signals, there are always different reasons and purposes

for using BSS, including:

� examining the cocktail party problem effect,

� extracting the target speech in a noisy environment for better speech

recognition results,

� to separate each part of the musical instruments from the orchestral per-
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formance to analyze the music.

For instance, various systems and algorithms have been presented by re-

searchers in order to separate numerous audio sources. The signal separation

methods are divided into single-channel algorithms and multi-channel algo-

rithms [9, 10]. In single-channel algorithms, only one mixture output signal is

available for processing. Signal separation, which usually focuses on separating

a signal source, is performed using single-channel methods. The single-channel-

based methods are generally based on the characteristics and assumptions that

exist within the nature of the source signals. The discriminator algorithm can be

implemented using the existing features and the special statistical conditions of

the signals. On the other hand, multi-channel signals are formed from several

sources that exhibit cross-channel similarity or correlation. While processing

multi-channel signals, sources in different channels affect each other. One of the

most well-known multi-channel methods is the BSS technique. Multi-channel

algorithms are employed to perform BSS, reconstructing source signals.

Furthermore, BSS is a valuable and extensively employed technique in the

field of multivariate data analysis. Multivariate data refers to datasets where

each observation or data point consists of multiple variables recorded simul-

taneously. This data type arises in various domains, including neuroimaging,

finance, genetics, and environmental sciences, among others. In the context

of neuroimaging, for instance, functional magnetic resonance imaging (fMRI)

captures brain activity as multivariate data by measuring the signal intensity

at numerous spatial locations, i.e., voxels, over time. The fundamental goal

of BSS is to disentangle the underlying independent sources from the observed

mixtures without prior knowledge of the sources or the mixing process. In the

context of fMRI data analysis, BSS techniques, such as independent component

analysis (ICA), independent vector analysis (IVA) [11], joint approximate diag-

onalization of eigenmatrices (JADE) [12], Comon’s joint diagonalization (JD)

[13], second-order blind identification (SOBI) [14], canonical correlation analysis

(CCA) [15], and non-negative matrix factorization (NMF), play a critical role
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in revealing distinct brain networks, discerning task-specific activations, and

identifying subject-specific patterns. As multivariate datasets continue to grow

in complexity and scale, the development and refinement of BSS techniques

hold tremendous potential in unraveling intricate patterns and latent structures

across diverse disciplines, fostering deeper understanding and facilitating mean-

ingful discoveries.

One of the main assumptions considered in the applications related to BSS

is the statistical independence of the primary sources, which leads to the ICA

technique [16–18]. Blind separation of signal sources is one of the studied topics

in signal processing, which has been very popular in recent years [19]. The

purpose of source signal separation is to estimate the signal of 𝑁 different sources

using the mixture of signals received by 𝑀 sensors. The method is known to

be blind because there is no primary information available about the sources

and how the signals are combined at the nodes, i.e., only 𝑀-mixed signals are

presented [20].

In addition to the accessible techniques, noise and various environmental

factors destroy information in data transmission channels. Hence, BSS is one

of the effective methods for data recovery. BSS is one of the best approaches

for separating data signals that are unintentionally mixed due to environmental

conditions or undesirable signals. Moreover, BSS is an important processing

method in many applications, such as audio signal recovery, image processing

[21], medical imaging, signal processing, cocktail party problem, and telecom-

munications [22–24]. Separating/retrieving audio sources is one of the topics of

interest in signal processing in recent years.

Many machine-learning methods have been exploited in the BSS space [25].

In fact, one of the most important reasons for finding soft computing and com-

putational intelligence is the existence of uncertainties and ambiguities in the

real world. Machine learning and deep learning are two concepts of artificial

intelligence (AI) [26, 27] that are currently undergoing significant growth and

development and are two very active research fields in computer science. As

one of the broad and widely used branches of AI, machine learning deals with
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the adjustment and discovery of models and algorithms based on which com-

puters and systems gain the ability to learn and teach [28, 29]. The idea behind

machine learning is a way to develop a system that learns and improves its

performance through experience. The purpose of machine learning is that the

system can gradually and, by increasing the amount of data, achieve superior

efficiency in the desired task [30]. Algorithms based on artificial neural net-

works (ANN) aim to provide a structure similar to the structure of the human

brain [31–34], which is categorized into two categories: classical methods and

deep methods. Today, deep techniques have found a more suitable place in ap-

plications. Fuzzy logic and evolutionary algorithms are other AI-based models

that are utilized in BSS problems [25]. Fuzzy logic is a logic system inspired

by the human brain’s qualitative view of the phenomena around it. Fuzzy logic

has been proposed to model linguistic and speech expression and uncertainty.

Evolutionary algorithms, in an iterative process, attempt to employ special op-

erators to manipulate weak solutions so that a system can solve a problem in

the most favorable way possible.

This survey paper investigates and summarizes the latest BSS research work.

In light of the above, the main contributions of this work can be listed as follows.

� Systemic review of the latest literature on BSS.

� Study in-depth knowledge about BSS and identify different parameters

considered during the BSS process.

� Benchmark various AI-based BSS approaches.

� Analyze the state-of-the-art methods, applications, and results.

� Identify the laps in the current solutions and suggest developing an en-

hanced BSS system based on the systematic literature review.

The remainder of the paper is organized as follows. Section 2 introduces the

concept of blind source separation. The technical background related to blind

source separation is presented in Section 3. Related work and a summary of the
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literature are provided in Section 4. Section 5 highlights the research gap and

discussion. Finally, Section 6 provides an overview, conclusion, and avenues for

future work.

2. Blind source separation

Nowadays, the field of digital signal processing, separation of received mixed

signals, and extraction of desired information from received signals are of partic-

ular importance [35]. Consequently, a reliable system is necessitated to separate

parts that are not of great importance and perhaps low-value from high-value

content. Due to a lack of information regarding the mixing process and the

source signals, a BSS model to extract and retrieve important data is required

[36]. BSS refers to recovering a set of independent sources that an unknown de-

structive system has mixed. The separation procedure in this method is based

only on observing the combined sources without having information about the

mixing system and the type of source signals. These methods are proposed

based on a particular branch of information theory. Cardoso and Jutten initi-

ated the work on BSS [37–39]. The term blind relies on the fact that, firstly,

the main signals are not visible, i.e., accessible, and secondly, there is no infor-

mation about how they are combined. The separation is accomplished only on

the basis of the mixed signals and assuming the statistical independence of the

sources [40, 41]. Hitherto, numerous studies have been conducted in the field of

BSS [36, 39, 42–45].

Separation of the mixed signals is without having information about the sig-

nal combining matrix or having little information about this signal combination.

It is worth noting that the environmental conditions and the type of mixture

affect the complexity of the BSS problem. The overall schematic for estimating

and attaining the main signals (𝑆) is illustrated in Fig. 1.

The mixing system can be formulated as follows [40, 46]:

X = 𝐴S, (1)
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Figure 1: Schematic diagram of BSS in linear space.

where S = [𝑆1, 𝑆2, . . . , 𝑆𝑀 ]𝑇 designate a vector gathering the source signals

and 𝑋 = [𝑋1, 𝑋2, . . . 𝑋𝑁 ]𝑇 indicate a vector collecting the signals resulting from

the combination of the mixing matrix 𝐴 (i.e., observed signals). Assuming

independent sources, the goal in BSS is to acquire the input of matrix 𝐵 so

that 𝑌1, 𝑌2, . . . , 𝑌𝑁 , which are the estimated signals to be equal (similar) to the

initial inputs and independent of each other like the original input signals. It

should be mentioned that in addition to the assumption of independence of the

input sources, assuming that the combining matrix is linear (which, of course,

can be nonlinear), the exact mathematical formula to find the output is stated

by [40, 46]:

Y = 𝐵X (2)

where Y = [𝑌1, 𝑌2, . . . , 𝑌𝑁 ]𝑇 represents a vector indexing the estimated signals,

𝐵 designates the separating matrix obtained by a mathematical algorithm and

repetitive methods. In (2), the number of input sources is equal to the number

of sensors (𝑋𝑆). However, if it is assumed that there are 𝑃 linear mixtures of

𝑀 sources, in this case, the unknown matrix 𝐴 has the 𝑀 × 𝑃 dimensions and

is expressed as 𝑋1, 𝑋2, . . . , 𝑋𝑃.

Fig. 2 illustrates an intuitive example of BSS to understand the concept

better. The combination of two signals is exploited to display the problem

better. Two speech signals received from the environment are combined, and

it is intended to separate and retrieve the main speech signals employing the

introduced methods. As can be observed in the figure, the two estimated, i.e.,

separated, signals are the same as the speech signals of the two speakers.

One of the assumptions engaged in some BSS methods is sparsity [2, 47, 48].
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Figure 2: An illustration of mixture signals and BSS framework implementation.

The advantage of the sparsity assumption is that the probability that two or

more sources are active at the same time in a point of the sparse space is very

low. Therefore, in a sparse space, the contribution of the desired source can

be removed from the combinations by estimating the coefficient of each source

individually. The above assumption is used when the number of sources exceeds

sensors (uncertain situation). For the sparse representation of an acoustic signal,

Fourier transform [49], Gabor transform [50], and wavelet transform [51] are

often leveraged.

So far, many models have been introduced and investigated to enhance the

BSS performance, including kurtosis, maximum likelihood, and minimum mu-

tual information [52–54]. However, the most common and preferred BSS method

is to exploit ICA. In general, two ICA approaches, including linear ICA [55] and

nonlinear ICA [56], can be listed. Fig. 3 provides various BSS techniques clas-

sified into different categories. Each of the listed methods has been reviewed in

several articles [57–64].
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Figure 3: The existing BSS techniques.

3. Technical background

BSS finds wide-ranging applications across diverse fields, showcasing its ver-

satility and effectiveness. These applications include digital signal processing,

enabling the separation and extraction of desired information from composite

signals, as well as facilitating the distinction between fetal and maternal heart

signals. Moreover, BSS proves valuable in the domains of image processing, au-

dio signal separation, and audio processing, underscoring its significant impact

in enhancing various technological endeavors [16–24].

For instance, as a prominent method within the domain of BSS, IVA stands

out as a powerful and emerging approach for the separation of multivariate data,

garnering increasing attention across various research domains [65]. Unlike tra-

ditional BSS methods, IVA extends its applicability beyond linear mixtures to

handle complex and nonlinear dependencies among sources [66]. This unique

capability makes IVA particularly well-suited for scenarios where the sources’

statistical independence is preserved, but their interactions are nonlinear in na-

ture. In essence, IVA seeks to identify statistically independent sources while

considering the inherent vector structure of the data, enabling it to capture

higher-order dependencies that conventional BSS methods might overlook [67].
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Figure 4: The main steps of the research protocol.

The methodology leverages higher-order statistics and optimization techniques

to iteratively estimate the mixing matrix and separate the sources from the

observed data. With its promising potential to reveal hidden patterns in multi-

variate datasets, such as fMRI data or audio signals, IVA continues to attract

significant interest from researchers and holds the promise of opening new av-

enues for understanding complex relationships within diverse datasets [68]. This

study investigates various AI-based methods in BSS. Various models of classical

machine learning models, deep learning methods, and evolutionary algorithms

employed in BSS are thoroughly investigated to provide a fair and detailed

comparison of the state-of-the-art techniques.

The selection and filtering of the papers are explained in the following para-

graphs and figures, i.e., Figs. 4 through 8. Fig. 4 depicts the primary steps

toward implementing a systematic literature survey. Once the essentials and

requirements of the survey process are identified, the review protocol, i.e., the

14



Searching process

Study selectionFinal set of selected papers

DecisionAnalysis Results

IE
E

E
 X

p
lo

re

S
ci

en
ce

D
ir

ec
t

S
p
ri

n
g
er

T
ay

lo
r 

&
 

F
ra

n
ci

s

W
il

ey
 O

n
li

n
e 

L
ib

ra
ry

E
ls

ev
ie

r

S
p

ri
n
g

er

IE
E

E
 X

p
lo

re

S
ci

en
ce

D
ir

ec
t

S
p
ri

n
g
er

T
ay

lo
r 

&
 

F
ra

n
ci

s

W
il

ey
 O

n
li

n
e 

L
ib

ra
ry

E
ls

ev
ie

r

S
p

ri
n
g

er

Inclusion and

exclusion criteria
Relevant BSS-related papers in the libraries

Set of BSS-

related papers

Formulation of

research question
Keywords

Keywords generalization

and their refinement
Initial keywords

Searching process

Study selectionFinal set of selected papers

DecisionAnalysis Results

IE
E

E
 X

p
lo

re

S
ci

en
ce

D
ir

ec
t

S
p
ri

n
g
er

T
ay

lo
r 

&
 

F
ra

n
ci

s

W
il

ey
 O

n
li

n
e 

L
ib

ra
ry

E
ls

ev
ie

r

S
p

ri
n
g

er

Inclusion and

exclusion criteria
Relevant BSS-related papers in the libraries

Set of BSS-

related papers

Formulation of

research question
Keywords

Keywords generalization

and their refinement
Initial keywords

Figure 5: Illustration of the procedure followed to analyze the developed systems and studies

in the BSS field.

proposed methodology, is provided. Fig. 5 demonstrates the proposed method-

ology of the review protocol deployed in this work. Fig. 6 shows the annual

trend of the selected papers for the final pool, which empowers us to investigate

the significance of the BSS study in the corresponding year. Fig. 7 presents

the percentage contribution of the reviewed papers with respect to the year of

publication in the final pool. The state-of-the-art work are categorized based

on various criteria, including the type of the paper, publication year, selected

digital library, and the reference number of the desired paper. Accordingly,

Fig. 8 illustrates the final pool of the relevant studies providing complete in-

formation about the selected papers. The presented doughnut chart empowers

the assessment process. Moreover, Sections 3.1 through 3.3 briefly overview the

sparse approximation technique, machine learning, and deep learning, which are

extensively utilized in various BSS approaches.
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Figure 8: The evolution of the final pool possessing the information related to the selected

studies.

3.1. Sparse approximation

Sparse approximation, also known as sparse representation [69–71], has re-

ceived widespread attention in the last ten years. The main idea of sparse

representation is that natural signals have much less information content in

contrast to their high apparent dimension. Consequently, the natural signals

can be represented in terms of a small number of basic signals (called atoms)

[70]. A collection of atoms is called a dictionary [70, 72–74]. Sparse representa-

tion is a simple and efficient description of signals. Dictionary learning is used
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for sparse representation applications [72, 74], which generally involves restor-

ing or improving signal or image quality [48, 70, 75]. Sparse representation

introduces a model for the signal according to which processing operations can

be performed with usually better quality than classical methods. For a brief

overview of sparse representation and dictionary learning, suppose 𝑦 ∈ 𝑅𝑚 is

a given signal and 𝐷 ∈ 𝑅𝑛×𝑚 is a known dictionary containing 𝑚 atoms in 𝑅𝑛

space. Now, the sparse representation is defined as approximating a signal 𝑦 in

terms of a linear combination containing a few atoms from the dictionary 𝐷.

The problem (𝑃0) can be expressed as follows [70]:

(𝑃0) : min
𝑥

𝑥0 𝑠.𝑡. 𝑦 = 𝐷𝑥 (3)

where ∥·∥0 denotes the ℓ0-norm, i.e., pseudo-norm of zero, which counts the

number of non-zero regions, and 𝑥 ∈ 𝑅𝑚 designates the sparse representation

vector. Solving the above problem in polynomial time is impractical because

the pseudo-norm of zero is a discrete function. Therefore, the problem is a

nondeterministic polynomial time (NP)-hard problem [76].

Sparse approximation constitutes a prominent technique frequently applied

to address the challenging problem of BSS. Among the notable methods falling

under this category, sparse component analysis (SCA) [77] and sparse coding

[78] emerge as significant approaches. In the context of BSS, the key objective of

sparse approximation is to decompose mixed signals into a concise set of sparse

components. Remarkably, these components exhibit sparsity, with only a few

being significant, while the majority remain close to zero, or negligible. SCA

leverages a meticulously constructed dictionary of basis functions to represent

the mixed signals in a sparse manner. The proficient identification of sparse

coefficients associated with these basis functions is at the heart of SCA’s ef-

fectiveness, allowing it to disentangle the underlying sources from the complex

mixture of signals. As a result, the application of SCA in the domain of BSS

yields promising outcomes, offering valuable solutions in various domains, such

as signal processing and related scientific fields.
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3.2. Machine learning

Machine learning is recognized as the development by which a computer is

trained to ensure a specific assignment [79, 80]. To date, various algorithms have

been presented in the field of learning [81, 82]. Likewise, various AI algorithms

have been employed in different parts of BSS and its numerous applications [35,

83–89]. One of the common methods of classifying machine learning algorithms

is based on the type of input given to the algorithm in the learning phase.

Supervised, unsupervised, semi-supervised, and reinforcement learning methods

can be mentioned as the four main classes of machine learning [90]. The basis of

work of most machine learning algorithms is the same as the first category, i.e.,

supervised learning. First, some data is given as training data. Once the training

phase is over, other data is presented as test data to evaluate the algorithm, i.e.,

training and testing phases. Supervised BSS necessitates a dataset that contains

the actual/real source signals, while unsupervised separation only requires a

mixture of data. The existing unsupervised models still use supervision to evade

over-separation and compete with fully supervised methods [91–93].

3.3. Deep learning

Deep learning is part of machine learning, a branch of AI that offers a so-

lution to various problems [94–98]. In deep learning, the computer learns from

previous experiences how to react to new data. Deep learning sees the world as

a hierarchy of concepts, where each concept is defined as its relationship to more

straightforward concepts. Deep learning is a subset of machine learning and AI

that imitates the way of thinking and the natural structure of the human brain

and, in fact, the way that the human mind uses to learn a particular subject

[94]. This type of learning is one of the important elements in data science,

which includes statistics and predictive modeling.

Deep learning performs learning for the machine at the level of complex tasks

and overcomes the limitations of machine learning models. In deep learning

models and algorithms, the machine gets a better understanding of existential

realities and can automatically discover and identify different patterns from the
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data. The two concepts of machine learning and deep learning have technical

differences from each other. Deep learning algorithms are hierarchical, increas-

ing in complexity and abstraction, while traditional machine learning models

are linear [94, 95].

In deep learning, unlike machine learning, there are no separate feature

extraction and classification parts [99]. The feature extraction [100] part is

embedded inside the model, which means the system automatically recognizes

the features. Another difference between deep learning and machine learning

is that deep learning exploits an end-to-end learning method, meaning that

raw data is fed into the neural network and given a task such as classification.

Afterward, the model itself learns how to perform the desired task automatically.

Another remarkable difference between these two areas is that deep learning

adapts itself to the increase in the amount of data. Whereas, machine learning

is limited in this case because when the number of data in the models exceeds

a limit, the learning curve loses its increasing trend and becomes fixed. The

overall structure and difference between machine learning and deep learning is

shown in Fig. 9.

The integration of BSS with machine learning and deep learning techniques

has revolutionized the field, introducing novel approaches and enhancing the

analysis of multivariate data. BSS models leverage unsupervised learning meth-

ods to disentangle mixed sources without requiring labeled data, making them

valuable in scenarios with limited labeled datasets. In audio source separation

applications, machine learning algorithms, such as clustering-based methods

or NMF, efficiently segregate mixed audio sources into individual components.

Similarly, deep learning architectures, like deep autoencoders and convolutional

neural networks (CNN), excel at extracting complex temporal and spatial fea-

tures, resulting in improved performance in source separation tasks.

The applications of deep learning extend to domains like computer vision

and speech processing, where it learns hierarchical representations from data. In

computer vision, deep learning-based BSS approaches extract salient visual fea-

tures from mixed images, effectively isolating individual objects or components
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Figure 9: The overall structure and difference between machine learning and deep learning.

from complex scenes. In speech processing, deep learning models learn intricate

spectral and temporal patterns, leading to accurate and robust separation of au-

dio sources. This utilization of vast amounts of data and computational power

unlocks new frontiers in BSS and enhances source separation applications.

Moreover, machine learning and deep learning have substantially enriched

BSS applications in diverse fields. In neuroimaging, BSS combined with ma-

chine learning methods enables the extraction of distinct brain networks and

their activations from functional MRI data, leading to improved insights into

cognitive processes and neurological disorders. In audio processing, the applica-

tion of deep learning in BSS has led to remarkable achievements in music source

separation, facilitating the separation of individual instruments from complex

musical mixtures. The evolving synergy between BSS and machine/deep learn-

ing is anticipated to lead to further breakthroughs and an expanded range of ap-

plications, underscoring the transformative impact of these integrated method-

ologies.
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4. Related work and summary

Numerous work have been presented in the BSS field, which are comprehen-

sively reviewed in this paper. The BSS-related work can be divided into two

categories: analytical-based and AI-based. This work overviews the AI-based

methods and briefly summarizes the previous work and related comparisons.

The selected studies are split into audio, music, sound, speech, voice, and source,

i.e., individual components or original signals that are mixed together, separa-

tion categories. It is worth noting that various comparison criteria are leveraged

in different studies depending on the type of application [101]. Section 4 divides

and reviews the previous papers according to their applications and then the

technique employed.

4.1. Audio separation

4.1.1. Classical machine learning methods

The study in [102] proposes a fully connected recurrent neural network

(FCRNN) algorithm for blind source separation. The authors add a self-feedback

loop to their proposed model. It is claimed that the model does not get trapped

in a local minimum. Moreover, the utilized FCRNN method enhances the speed

of convergence of the weights. It is observed that the model is suitable for non-

linear mixing. The simulation results indicate that the technique can accurately

perform BSS for multiple overlapping speech signals.

Underdetermined BSS is a challenging problem to overcome because the mix-

ing process is not reversible. Accordingly, a variational Bayesian method for un-

derdetermined BSS is presented in [103]. The study is conducted in a frequency

bin-wise way. A variational mixture of Gaussians with a circular-symmetric

complex-Gaussian density function is utilized at each frequency frame to model

the time-frequency mixture. The authors mention that suitable conjugate prior

distributions are selected for the modeling purpose of the parameters in the

Bayesian inference. The learning task involves the estimation/tuning of hyper-

parameters that define the distribution of parameters for variational posterior
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distribution optimization. By exploiting variational behavior, the work provides

a technique that can effectively determine the actual number of signal sources.

It is stated that their proposed method does not need prior knowledge about

the number of sources.

In [104], the authors present a variational Bayes expectation-maximization

(EM) technique for time series. Their proposed work is based on the variational

Bayesian theory of Attias. The proposed model of [104] first estimates the

mixing matrix and, subsequently, the optimal model structure source signals in a

BSS problem. Due to the correlation of mixing matrix elements, the distribution

of the mixing matrix of [104] is based on the Gaussian matrix. Besides, a

Wishart distribution represents the inverse covariance of the sensor noise for the

correlation between various sensor noises. The distribution of each independent

source is approximated by a mixture of the Gaussian model. The algorithm

estimates the mixing matrix and source signals by applying the least mean

squares (LMS) and maximum a posteriori probability (MAP) to the posterior

distributions of the hidden variables and the model parameters. The results

acknowledge that the provided model enhances the accuracy of separation. It

is worth noting that their proposed algorithm is tested utilizing a synthetic

dataset.

Each frequency bin is generally processed separately in frequency-domain-

based BSS frameworks. Thus, subsequent alignment of permutation ambigu-

ities occurring between frequency bins is required. Therefore, the work of

[105] proposes permutation-free frequency-domain BSS. The model performs

BSS through full-band clustering of time-frequency components. As opposed

to frequency-domain-based BSS frameworks, the proposed method of [105] con-

currently processes all frequency intervals utilizing a mixture model. The mix-

ture model consists of frequency-independent, time-varying mixture weights.

By assuming non-sparse priors on the mixture weights, the authors avoid any

degradation in the BSS performance that might occur by the time-varying mix-

ture weights. Moreover, the MAP estimation of the model parameters is ac-

complished through a customized expectation-maximization (EM) model. As
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a result, their model escapes the local maxima. The Watson mixture model

(WMM) and the normalized observation vector, which is used as the feature

vector, are employed to separate audio sources. Simulation results show that

the proposed permutation-free BSS performs closely to the state-of-the-art.

Lee et al. [106] mention that ICA algorithms have been widely used to per-

form BSS. It is noted that the gradient algorithm is recognized as a well-known

technique that separates independent signals through an iterative process with a

learning rate. Therefore, the study in [106] employs a PSO-optimized fuzzy neu-

ral network (FNN) to tune the learning rate and enhance the convergence speed

of the BSS method. The learning rates are adjusted according to the second-and

higher-order correlation coefficients of BSS output components. The simulation

results further indicate the superiority of the presented work.

The authors of [107] state that most of the previous work on the BSS prob-

lem investigate the linear mixing model. Therefore, the study in [107] tackles

the more realistic model of BSS, which is the non-linear scenario. The work

presents a non-linear BSS model by using a two-layer perceptron network that

successfully retrieves source signals received in non-linear mixture signals. The

model aims to minimize the MI criterion with a conjugate gradient algorithm.

The presented system leverages the adaptive kernel density estimation to ap-

proximate the probability density functions (PDFs) as well as the derivatives of

the separated sources. It is observed that the model offers a decent non-linear

BSS performance.

With recent advances in time-frequency clustering-based BSS, WMM is em-

ployed to separate mixed signals accurately. However, the majority of existing

work necessitates an additional permutation alignment stage due to the utiliza-

tion of frequency bin-wise. The application of WMM to under-determined cases

needs to be further investigated. Accordingly, the application of a generative

clustering method is studied in [108] to estimate time-frequency BSS masks.

The authors appraise the clustering ability of the WMM within the clustering-

based BSS model. The results further designate the superiority of the WMM

over other clustering algorithms, including the fuzzy c-means.
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A uniqueness/disjointness theorem exploited in BSS based on conventional

clustering algorithms assumes that the received mixed sources entail a single

source only at each time-frequency slot. However, the performance of conven-

tional techniques degrades in reverberant environments. Accordingly, a new

clustering model is proposed by [109] to perform joint BSS and dereverber-

ation. The technique is based on a relaxed disjointness assumption. Under

the premise of relaxed disjointness, the selected system iteratively substitutes

clustering-based BSS and dereverberation. The clustering is conducted on the

dereverberation of mixtures. Joint BSS and dereverberation are challenging

tasks that aim to simultaneously separate mixed sources and reduce the impact

of reverberation in audio signals. While various approaches have been proposed

to address this problem, IVA stands out as the most prominent method in the

literature. IVA extends its applicability beyond linear mixtures and can effec-

tively handle complex and nonlinear dependencies among sources, which are

prevalent in joint BSS scenarios. By leveraging higher-order statistics and opti-

mization techniques, IVA iteratively estimates the mixing matrix and separates

the sources from the observed data. Its capability to exploit the statistical in-

dependence of sources while considering the inherent vector structure of the

data enables IVA to capture higher-order dependencies, making it particularly

well-suited for joint BSS and dereverberation tasks. MAP fitting a probabilistic

generative architecture to reverberant mixed sources is employed to complete

the separation task. The experimental results prove that considering signal-

to-interference ratio (SIR), the algorithm of [109] overtakes the state-of-the-art

clustering method by 0.6–4 dB.

The work in [110] aims to estimate the mixing matrix of underdetermined

BSS. Initially, they present an effective detection technique that recognize var-

ious single sources possessing only one source. The complex conjugates of the

coefficients and the time-frequency coefficients of mixed signals are employed

to acquire the single source points. Probability-density-based algorithms obtain

more reliable single sources followed by a clustering procedure. Therefore, by

reselecting and classifying single source points in various clusters, the model
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identifies the mixing matrix through which the source signals are recognized

and separated. The evaluations demonstrate that the proposed model of [110]

precisely performs BSS by estimating the mixing matrix. It can be noted that

the algorithm achieves a superior performance only when the number of sensors

is less than the sources.

Sun et al. [111] employ density-based spatial clustering of application with

noise (DBSCAN) and the Hough transform to approximate and obtain the mix-

ing matrix in underdetermined BSS. The DBSCAN clustering method automat-

ically estimates the number of sources; thus, the mixing matrix is obtained and

updated accordingly. Furthermore, the Hough transform accurately modifies the

center of each cluster by which the mixing matrix is estimated more precisely.

The paper proposes to use of phase-angle-based single-source time-frequency

point detection for the improvement purposes of sparsity. The authors compare

their work with the k-means and conventional DBSCAN algorithm. Based on

the simulation results, the authors claim that the presented framework success-

fully estimates the mixing matrix as well as the number of sources.

Due to the non-invertibility of mixing matrices, underdetermined BSS be-

comes a complicated problem to solve. Conventionally, a two-step approach is

employed to overcome this issue. The essential phase is to find the underdeter-

mined mixing matrix. A hybrid model based on k-means and affinity propaga-

tion (AP) clustering techniques is exploited in [112] to enhance the estimation

performance of the underdetermined mixing matrix. AP acquires the initial

clusters as well as the exact number of exemplars. The model starts with trans-

forming the time-domain signals into sparse signals in the frequency domain.

Next, the normalization process is applied to the sparse signals mapping them

on compact clustering. Eventually, the selected clustering algorithms estimate

the underdetermined mixing matrix, and BSS is accomplished by linear pro-

gramming. The evaluation results indicate the effectiveness of the hybrid model

in separating the underdetermined signal sources.

The study in [113] signifies the need for some assumptions in order to achieve

an accurate BSS according to various real-life scenarios. It should be noted that
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most of the existing models work well under laboratory conditions; however,

these models suffer while dealing with real-life applications in which nothing

is known. Accordingly, the authors of [113] employ sparsity approaches for

the preprocessing phase and a Gaussianity-based technique to present a novel

BSS framework. The model harnesses the power of the ICA tool to further

augment the separation performance [11, 114]. Furthermore, the fixed-point

ICA algorithm is utilized to appraise and validate the BSS model.

The study in [115] investigates the significance of BSS in natural and artificial

signal processing. It is intended to utilize biologically plausible neural networks.

The authors tackle the scenario in which the sources, not the mixing matrix,

are non-negative due to their nature. The work is conducted in an online set-

ting, i.e., the dataset is flooded to a neural network. Their technique considers

the blind separation of non-negative sources as a similarity-matching problem.

It is worth noting that biologically plausible local learning rules influence the

synaptic weights of the neural network.

Abouzid et al. [116] present a framework in which they propose an approach

that involves the implementation of the support vector machine (SVM) classifi-

cation method as a preprocessing step for the purpose of segregating two signals

acquired from separate microphones within a humanoid robot. The study fo-

cuses on a specific scenario termed the determined case. The core aim of their

investigation is to assess the performance of SVM in effectively discerning au-

dio signals, leveraging the sparsity properties of the signals without relying on

additional assumptions like stationarity or source independence.

An underdetermined BSS approach employing single-layer perceptron ANN

is proposed in [117]. The weight vectors of a one-layer perceptron act as source

signals. The sources are retrieved by proper adjustment of the weight vector

of the perceptron. Moreover, a ℓ0-norm computes the output error decision

rule of the perceptron. The ℓ0-norm deployment conduces to sparse recovery.

The learning parameters are optimized. The model entails lower computational

complexity, and the enhancement is achieved by using a descent sequence of the

smoothed parameter at each iteration.
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Wang et al. in [118] provide a BSS system by employing the 𝑆-transform

along with fuzzy c-means clustering algorithm. The model can estimate mixing

matrices and the number of source signals in an underdetermined BSS problem.

Once the estimation is performed, the sources are represented in a null space

form. Subsequently, the model retrieves the source signals exploiting ML crite-

ria. Based on the evaluations, the authors claim that the presented technique

can perform BSS on any distribution while achieving superior performance as

compared to the existing BSS architectures.

The study in [119], by investigating three BSS techniques, presents an un-

supervised audio, i.e., singing voice, recognition based on single-channel BSS.

The investigated approaches benefit from morphological filtering of the ana-

lyzed mixture spectrogram. To achieve the goal, the authors first reformulate

the selected BSS methods for audio signals and adjust the relevant hyperparam-

eters. They also employ an extension of the kernel additive modeling (KAM)

approach. The customized KAM possesses a new training system in order to

obtain a source-specific kernel. The performance of the model is evaluated

through exhaustive singing voice detection. Both supervised and unsupervised

detection techniques are utilized for comparison purposes. Moreover, several

BSS methods, including machine-learning-based BSS models, are implemented

for benchmarking purposes.

Lei et al. [120] highlight the importance of acknokwledging the number

of sources prior to BSS implementation. The work proposes the application of

various machine-learning-based clustering models to find the number of sources,

i.e., categorize the number of frequency bands of the received signal sources.

The selected methods include Gaussian mixture, k-means, and DBSCAN. The

inter-frequency distance is constructed with respect to the magnitude of each

frequency in the signal spectrum curve. The clustering results of the selected

models are illustrated under their respective optimal estimates. Spectral scatter

plot indicates the advantage of source recognition and quantity evaluation in

BSS problem [120].

The study in [121] utilizes a multilayer neural network to classify the spec-
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trogram analysis blindly. The multilayer neural network operated in this study

contains three layers and is used to separate the voice of a man from a woman.

The method begins by providing a spectrum of the mixed signal using the short-

time Fourier transform. The spectrogram is divided into small time-frequency

windows classified into the corresponding signal source class. The inverse short-

time Fourier transform extracts the separated signals.

FastICA is considered in [122] to perform BSS in determined or over-determined

instantaneous mixture signals. The study examines various contrast functions

using the FastICA algorithm. The contrast function is a non-linear function of

FastICA measuring the independence of the estimated sources from the mixture

signals. Besides, the highly performed available contrast functions for analyz-

ing signals in noisy environments are found. The contrast functions in Fas-

tICA include negentropy, ML, and Kurtosis. The model is examined using

real-time recorded mixture signals as well as synthetic instantaneous mixtures.

The performance of the contrast functions is evaluated based on SIR, signal-to-

distortion ratio (SDR), signal-to-artifact ratio (SAR), and computational com-

plexity. Based on the simulation results in noisy environments, it is claimed

that the ML outperforms the remaining contrast functions.

The work in [123] targets enhancing the steady-state and convergence speed

of BSS methods. The authors optimize the performance of the neural-networks-

based BSS by tackling the loss function of the BSS method. The model employs

neural networks and the ML estimation approach. It is reported that the neural

network of the model possesses a bias term, and the L2 regularization terms are

added to the loss function for the weights and biases. The added biases advance

the steady-state performance. In addition, a new optimization model consisting

of a dual acceleration strategy is designed, which accelerates the training for

the gradient descent. The algorithm significantly enhances the convergence

rate. Various simulations with and without prior knowledge of mixing systems

and source signals are conducted to further validate the performance of the

presented model [123]. It is claimed that the model fourfolds the convergence

speed compared to the state-of-the-art methods. Moreover, the steady-state
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performance index is claimed to be improved by up to 96%. The simulation and

validation results conclude that the model outperforms the existing techniques

in terms of convergence and steady-state performance. Eventually, they state

that their technique is more appropriate for engineering applications.

After thoroughly investigating the final set of relevant BSS articles, this sur-

vey paper extracts and reports their employed machine learning-based methods

as well as their asserted results. Table 1 indexes the associated results for the

selected machine learning-based methods investigated in Section 4.1.1. As ob-

served, various benchmarking criteria are exploited to evaluate and report the

performance of the presented BSS models, which makes it challenging to provide

a fair comparison between different studies. It should be emphasized that not

all work report their numerical results. Moreover, the papers do not discuss the

time/computational complexity of their presented algorithms. It is worth not-

ing that in order to utilize a technique, the complexity of the BSS model should

be investigated. Depending on the nature of the problem, and application, the

selection of BSS model configuration, feature extraction, and machine learn-

ing algorithms have associated advantages and disadvantages, which primarily

relate to the context of the investigated activities.

4.1.2. Deep learning methods

Noda et al. [124] state that human-machine interaction necessitates a speech

recognition system that is robust against noise to be applicable in real-world

applications/environments. The work aims to separate sound sources, which is

beneficial in noise-robust speech recognition frameworks. The speech of the tar-

get speaker needs to be extracted while other sources of the signal are removed or

filtered. It is mentioned that the conventional ICA and nonlinear principal com-

ponent analysis (PCA) face limitations while performing complex projections

with scalability. Additionally, the existing models require additional systems for

the reduction of noise. The work in [124] employs a deep neural network (DNN)

to model the separation function that recognizes and separates sound sources.

The DNN model is trained to develop a separation function that extracts the
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Table 1: The Performance Comparison of the State-of-the-Art Classical Machine Learning-

Based Techniques

Ref Technique Application
Correlative

Coefficients

NMSE Recall
SAR

(dB)

SDR

(dB)

SIR

(dB)

[102] FNN Speech —– —– —– —– —– —–

[103] Variational Bayes Speech (SiSEC08) —– —– —– —– 6.00 —–

[104] Variational Bayes EM Speech —– —– —– —– —– —–

[105] Customized EM Speech —– —– —– —– 11.82 —–

[106] FNN + PSO Signals —– —– —– —– —– —–

[107]
Two-layer perceptron network

+ CGA

Speech and Image —– —– —– —– —– 27.00

[108] WMM-MAP Audio —– —– —– —– 5.80 13.00

[109] MAP Audio —– —– —– —– —– 8.26

[110] PDF + clustering Speech —– -55.4104 —– —– —– —–

[111] K-means + DBSCAN Voice —– -61.3072 —– —– —–

[112] K-means + AP clustering Signals 0.96725 —– —– 9.3930 8.0899 14.4262

[113] Gaussianity and Sparsity Audio —– —– —– —– —– 38.93

[115] BNN Natural Images —– —– —– —– —– —–

[116] SVM Speech —– —– —– —– —– —–

[117] ANN (1 Layers) Signals —– —– —– —– —– —–

[118] S-Transform + Fuzzy C-Means Signals —– —– —– —– —– —–

[119] Proposed KAM Singing voice —– —– 0.60 —– —– —–

[120] K-means + DBSCAN + GM Source —– —– —– —– —– —–

[121] MLP Audio —– —– —– —– —– —–

[122]
FastICA +

ML/Kurtosis/Negentropy

Speech —– —– —– 54.7559 49.7015 51.3274

[123] Neural Networks + ML Source 0.69 —– —– —– —– —–

intended sound with no prior information about the environment. The DNN

estimates a clean version of the target sound features. The model is capable of

source separation in non-directional or directional accumulated noise scenarios.

The sound is recognized as non-directional when the wavelength is longer than

the distance between human ears. In contrast, directional sound refers to the

technology of employing several devices to generate fields of sound that spread

out less than conventional speakers. It is worth noting that the presented DNN

model performs noise reduction procedure concomitantly. An extensive vocab-

ulary of continuous speech and an isolated word recognition task are utilized to
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examine the model. By considering the simulation results, the authors conclude

that their DNN model outperforms the conventional techniques. The paper

adds that the performance difference becomes more noticeable when directional

noise is accumulated with a low signal-to-noise ratio (SNR).

A hybrid model based on a classical multi-channel Gaussian model and a

DNN is presented in [86, 125] to conduct BSS. The DNN joint with the clas-

sical multi-channel Gaussian model creates the source spectra and exploits the

spatial information. The parameters are approximated in an iterative EM ap-

proach. Next, the estimated parameters are utilized to develop a multi-channel

Wiener filter. The authors evaluate the performance of their model under the

influence of different scenarios through an extensive experimental study. Differ-

ent cost functions, including Cauchy, phase-sensitive, Kullback-Leibler, MSE,

and the probabilistically motivated Itakura-Saito divergence, are used to train

the DNNs. Furthermore, the work is extended by involving multiple DNNs and

studying the number of EM iterations. Each DNN is designed to enhance the

spectra approximated by the preceding EM iteration. The evaluations guaran-

tee that the presented multi-channel approach outperforms single-channel DNN-

based and conventional multi-channel NMF-based algorithms.

The work in [126] leverages a combination of several DNNs predictions, i.e.,

time-frequency masks, for single-channel source separation (SCSS) to acquire a

superior BSS compared to the scenario that each DNN performs individually.

Four DNNs possessing four different cost functions predict the various masks.

The first and second DNNS gets trained to predict softmax and the reference

binary masks. The third trained DNN directly forecasts a mask from the ref-

erence sources. For the fourth DNN, an additional discriminative constraint

is defined in order to maximize the differences between the estimated sources.

The authors claim that employing four different DNNs and concatenating the

predictions resulting from these four DNNs offers superior results compared to

an individual one.

DNNs are often used to tackle the SCSS problem by predicting time-frequency

masks [127, 128]. The predicted masks are then used to separate the sources
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from the mixed signal. Different types of masks produce separate sources with

different levels of distortion and interference. Some types of masks produce

isolated sources with low distortion, while other masks produce little crosstalk

between separated sources. However, many application scenarios require models

capable of extracting sentiment from composite audio sources, such as television

content.

The BSS of linear mixtures in various studies is accomplished through the

exploration of the independence property of the sources. The independence

property is not advantageous in nonlinear regimes. The problem of BSS un-

der certain nonlinear mixing conditions is considered in [129] using the Taylor

series. The paper introduces an approach based on deep learning techniques

and recurrent neural networks (RNN) by considering nonlinear mixing systems.

The model is trained to learn the inverse of the system where sources can be

separated. A set of multi-variate polynomial functions assists the training of

the RNN. The authors further assert the superiority of their RNN-based BSS

model by illustrating different numerical results.

The authors of [130] state that the BSS of single-channel is a long-standing

signal processing challenge that many researchers attempt to provide the best

models through multiple signal priors, including sparsity, low rank, temporal

continuity, etc. The work overviews the recent advance of generative adversarial

models. Consequently, a promising BSS technique based on adversarial methods

is presented in [130]. The independence of sources is assumed in order to form

adversarial restrictions on pairs of approximately separated signal sources by

which a good separation is guaranteed. The paper provides several simulation

results on the numerous image sources and claims an excellent performance

allowing the use of the model in other types of sources.

The authors of [131] present a technique for multichannel source separation

called the multichannel variational autoencoder (VAE) method. The approach

employs a conditional VAE to model and estimate the power spectrograms of

individual sources in a mixture. The framework harnesses the powerful repre-

sentation capabilities of DNNs for modeling the power spectrograms of individ-
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ual sources. By training the conditional VAE with spectrograms from training

examples labeled with source-class information, the decoder distribution can

be used as a universal generative model capable of generating spectrograms

conditioned on a specified class index. The unknown parameters of this gener-

ative model include the latent space variables and the class index. The authors

propose a convergence-guaranteed algorithm for supervised determined source

separation, which involves iteratively estimating the power spectrograms of the

underlying sources and the separation matrices.

The work in [132] introduces an approach for determined multichannel source

separation, utilizing a star generative adversarial network (GAN) to model

power spectrograms of sources. To address the need for advancements in source

modeling techniques, the paper explores the potential of star GAN for modeling

source spectrograms and investigates its effectiveness within a frequency-domain

ICA framework for determined multichannel source separation. The technique

integrates a source model trained with star GAN into the local Gaussian model-

based BSS framework. The effectiveness of the Star GAN source model in source

separation is explored and compared with the NMF model used in independent

low-rank matrix analysis and the conditional VAE source model employed in

the multichannel VAE.

BSS of a singing voice from its musical accompaniment is a fundamental

challenge in music information retrieval. Lin et al. [133] propose a BSS tech-

nique based on a unique neural network utilizing pixel-wise image classification.

The model is equipped by pretraining of the CNN and cross-entropy loss, which

acts as an autoencoder on singing voice spectrograms. The ideal binary mask

(IBM) is leveraged to train the target output label in the CNN. The pixel-wise

classification method is used to predict the label of sound sources. Therefore,

common pre- and postprocessing tasks are eliminated. The goal of the training

phase is to minimize the error between the predicted and the target label by

exploiting the cross-entropy. In addition, the work excludes the Wiener filter

postprocessing by converting the BSS problem to a pixel-wise classification task.

Various datasets and models are exploited to assess the model performance. By
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relying on simulation results, the authors indicate that their proposed CNN al-

gorithm performs considerably better than the existing architectures, i.e., up to

5.9563 dB.

Using a random forest model and a DNN, [134] examines the effect of mixed

audio on the emotion recognition of music and speech. The presented ran-

dom forest algorithm ranks the speech/music emotion recognition features. The

speech DNN consists of 512 neurons split into three hidden layers with a dropout

rate of 0.5. Rectified linear units (ReLU) activation is exploited in the hidden

layer neurons, whereas the output layer benefits from the softmax activation

function. The model is implemented and examined on six datasets. By il-

lustrating simulation results, the paper claims that the BSS model achieves

superior music/speech emotion recognition accuracy.

The authors of [135] state that machine learning algorithms, such as convolu-

tional time-domain audio separation network (Conv-TasNet) and deep extractor

for music sources (Demucs), can discriminate between two interfering signals,

such as speech and music, without any prior information about the mixture

operation. The Demucs algorithm is a waveform-to-waveform model that of-

fers a higher decoding capacity as compared to the Conv-TasNet model and

exploits the same technique as the audio generation algorithm. On the other

hand, the Conv-TasNet model is known to be a fully convolutional time-domain

audio separation technique. The algorithms are compared based on high-quality

and precise signal separation and lower time complexity, i.e., higher execution

time. Four experiments/scenarios are declared to examine the performance of

the selected models, including music-child, music-male, music-conversation, and

music-female. The R-squared, mean absolute error (MAE), root mean square er-

ror (RMSE), and music information retrieval evaluation (mir eval) system, i.e.,

a Python library, scores metrics are employed to assess the obtained results. It

is observed that Conv-TasNet provides a high SDR score for the music-child

test and the highest SDR scores for the music-women tests. Additionally, the

Demucs algorithm achieved a high SDR value of music in the music-female ex-

periment, equal to 7.8, while the music-child experiment scored the highest SDR
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value of 8.15. However, measuring the average execution time, it is found that

the Demucs model is seven times slower than Conv-TasNet. The absolute values

and the average magnitude of the errors between the observed and predicted

data are calculated using RMSE and MAE, respectively.

The speech signals converted and transferred to the computer may be mixed

by other sources. The interference and mixture come from other speech sources

or noises. For instance, when several people talk simultaneously, i.e., the cocktail

party problem, producing a mixture of different mixed speech signals. Therefore,

BSS is used to retrieve the desired audio signals. The study in [136] offers a

novel BSS framework benefiting from deep recurrent neural networks (DRNN)

equipped with bi-directional long short-term memory (BLSTM). The presented

algorithm separates audio signals from a monaural mixed signal consisting of

male and female speeches. Two types of time-frequency masks, namely ideal

ratio mask (IRM) and optimal ratio mask (ORM), are estimated.

RNNs have traditionally been the dominant architecture for sequence-to-

sequence learning. However, due to their inherently sequential nature, RNNs

lack the ability to parallelize computations effectively. As an alternative, trans-

formers have emerged as a promising solution, replacing recurrent computa-

tions with a multi-head attention mechanism. A neural model termed separa-

tion transformer (SepFormer) is proposed in [137] for speech separation. The

SepFormer architecture is devoid of RNNs and exclusively utilizes a masking

network composed of transformers. Within this masking network, a multi-scale

approach is employed to learn both short and long-term dependencies. By re-

lying on the reported results based on experiments conducted on two datasets,

the authors assert that state-of-the-art performances in source separation can

be achieved without incorporating RNNs in the network design. Consequently,

computations across different time steps can be parallelized effectively. More-

over, the authors claim that the model delivers competitive performance even

when the encoded representation is subsampled by a factor of eight, resulting in

significant acceleration during training and inference, accompanied by a drastic

reduction in memory usage.
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Table 2: The Performance Comparison of the State-of-the-Art Deep Learning-Based Tech-

niques

Ref Technique Application ACC MAE RMSE
SAR

(dB)

SDR

(dB)

SIR

(dB)

[86] DNN + EM Speech —– —– —– 18.23 13.25 15.58

[124] DNN Speech (ACC) 93.89% —– —– —– —– —–

[125] DNN + EM Speech and Music —– —– —– —– —– —–

[126] DNN Speech + Music —– —– —– 7.05 4.24 11.34

[129] RNN Signals —– 0.0568 —– —– —– —–

[130] GAN MNIST , shoes and bags (ACC) 0.90/0.73 —– —– —– —– —–

[133] CNN + IBM
Singing Voice

Musical Accompaniment

—– —– —– —–
15.1944/

14.4359

—–

[134] DNN + RF Audio —– —– 0.960 —– —– —–

[135] ConvTasNet + Demucs Music + Speech —– —– —– —– 8.15 —–

[136] DRNN + BLSTM Audio —– —– —– 14.150 6.347 7.387

Table 2 lists the results of each deep learning-based BSS model studied

in Section 4.1.2. In summary, it can be concluded that there is no universal

approach to BSS. Based on tabular summaries of the research work surveyed

in relation to deep learning-based BSS, it is observed that different models are

proposed for different types of audio signals within different environments. It

should be emphasized that each BSS approach must be designed according to

the application, goal, objectives, environment, datasets, environment, etc. The

state-of-the-art models are claimed to provide an accurate separation. However,

it is necessitated to further investigate the performance of the selected models

using unique and similar evaluation criteria in order to obtain the best BSS

framework.

4.1.3. Evolutionary algorithms

Mavaddaty et al. [138] employ a bee colony optimization (BCO) method for

the BSS problem of independent component signals. The work aims to tackle

linear instantaneous mixtures. Various cost functions are exploited to assess the

performance of the BCO model. The employed cost functions are the results

of information theory and higher-order statistics. The paradigms compute the
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statistical dependence of the retrieved signal obtained by the demixing system.

Furthermore, the paper discusses the benefits of the proposed model, which are

a high degree of flexibility and robustness against local minima. Exploiting

the evaluation results and comparisons with other studies, such as PSO-based

models, the authors demonstrate the superiority of the BCO-based technique.

Xuansen et al. [139] use an ant colony clustering algorithm to propose a

new underdetermined BSS framework. The authors indicate that their pro-

posed technique approximates the mixing matrix and the source signals quickly

and precisely. The general idea behind the model is the application of linear

clustering feature sparse signals. The model aims to predict the number of

sources in addition to the column vector of the mixing matrix. The technique

entails some preprocessing steps, including time domain to sparse signals in fre-

quency domain transformation and normalization. In the normalization phase,

the received data are mapped to compact clustering. Next, the data enter the

ant colony clustering to acquire the number of source signals and the mixing

matrix. Once the mixing matrix is estimated, the original signals are retrieved

through a linear programming algorithm.

The study in [140] states that the selection of the learning rate causes a

trade-off between the speed of convergence and the stability of the BSS model.

Accordingly, the paper utilized a PSO to optimize and adjust the learning rate of

the BSS system. Three signal sources are exploited to conduct the simulation

in order to report the model performance. The signals are mixed and then

separated using the model. The authors conclude that their technique improves

the convergence rate and offers efficient and stable ICA models.

Genetic algorithm (GA) [141] and PSO are two evolutionary algorithms used

separately to perform BSS in [142]. The feature distance and kurtosis are de-

fined as the fitness function of the selected evolutionary algorithms to evaluate

the level of separated signals. The study considers the physical significance as

well as the mathematical calculation of the separated source. Accordingly, the

estimated signals correlate remarkably with the original signal sources. Various

MATLAB simulations on mixed spoken signals are conducted, further illustrat-
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ing the effectiveness of GA and PSO techniques on the BSS problem.

A chaotic signal is known to be a nonlinear and non-Gaussian signal. BSS

of a mixture of chaotic signals is quite challenging due to the characteristics

of non-periodic and wideband spectrums. Thus, the authors of [143] investi-

gate an artificial bee colony (ABC) optimizer to model a new BSS. Besides,

the framework adopts a parameterized representation of orthogonal matrices

through principal rotation in order to decrease the complexity of the BSS prob-

lem. It is observed that the technique precisely separates the mixture of chaotic

signals. The paper compares their model with conventional ICA techniques and

states that better results are obtained.

The study in [144] presents a BSS framework equipped with GA and ICA

techniques. Unlike other ICA-based work, the study does not apply any data

preprocessing, including whitening transformation and centering techniques.

Minimization of MI and maximization kurtosis are set as the fitness function.

The method approximates the coefficients of the separating matrix. The au-

thors utilize one objective/fitness function to measure kurtosis and MI. Several

simulations, a mixture of two and three synthetic signals and a mixture of four

audio signals, are implemented. Through simulations, the authors depict that

their presented GA successfully retrieves the independent sources of synthetic

signals. However, the work adds that in the case of four audio signals, the model

fails to accurately separate one of the signals due to the Gaussian nature of one

of the sources.

The problem of sequential BSS dealing with mixtures of sub- and sup-

Gaussian sources is thoroughly deliberated in [145]. The authors develop three

algorithms based on kurtosis maximization. The models include PSO, ABC,

and differential evolution (DE). The separation process is achieved by decreas-

ing the absolute kurtosis order, considering the maximization of the kurtosis

cost function. Several simulations are implemented to verify the validity of

the BSS algorithms. Besides, through a fair comparison, it is seen that the

models provide higher accuracy in separating various sources. Furthermore,

electroencephalogram (EEG) signals are leveraged to perform a real-world BSS
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experiment. It is intended to separate EEGs from a super-determined mixture

with Gaussian noise. It is declared that in contrast to the conventional models

that separate EEG signals with noise simultaneously, the presented algorithms

of [145] solely separate and extract only the EEG signals.

By recognizing the BSS technology as one of the primary areas in the signal

processing field, [146] introduces a single-channel speech BSS technique. The

model utilizes time-frequency masking and GA optimization. They decompose

the mixture into an intrinsic mode function (IMF) with distinct source signal

features. The ensemble empirical mode decomposition (EEMD) approach is

utilized to compose a new multidimensional signal. Afterward, a GA benefiting

from the ICA technique is employed to accomplish BSS. The work asserts that

the selected approach successfully enhances the stability and efficiency of BSS

operation, providing an excellent separation.

The study in [147] overviews the PSO algorithm in BSS and states that the

model encounters some shortcomings, such as low accuracy and easy trapping

in early maturation. Accordingly, the authors present an enhanced PSO to

increase the BSS performance. The algorithm is based on adaptive adjustment

inertia weight. The work is compared with the fast fixed-point algorithm, i.e.,

FastICA, and conventional PSO techniques. The selected environment is noisy,

and the correlation coefficient matrix is chosen for evaluation purposes. The

model is claimed to be robust against noise and able to effectively enhance the

accuracy of BSS.

A method called high exploration particle swarm optimization (HEPSO) is

presented in [148] to separate signal sources from a received set of observations.

In the proposed method of [148], the presented model, an enhanced version of the

PSO algorithm, consists of two additional operators: the GA and the bee colony

mechanism. The GA and the bee colony framework are employed to update the

speed and position of particles. The authors set kurtosis and MI as fitness

functions. Their proposed models are leveraged to find the transform/mixing

matrix. The study provides their simulation results in order to claim that the

HEPSO provides superior results on three test datasets compared to that of
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PSO and GA+kurtosis methods.

Wang et al. [57], by employing ABC optimization and kurtosis, introduce

a BSS technique that compensates for the slow convergence rate. Their model

does not impose any hypothetical requirements on the source signal. The algo-

rithm of [57] selects iterative updates and step sizes based on adaptive function

values. The kurtosis objective function allows the algorithm to be applicable to

any signal distribution. Various simulations are conducted through which the

authors highlight the superiority of their model compared to other approaches.

Table 3 highlights the reported results of evolutionary-based BSS algorithms

examined in Section 4.1.3. From the illustration, it is clear that the most used

algorithm is PSO, followed by GA. By relying on the reported results, it can be

observed that the HEPSO model of [148] achieves a superior separation com-

pared to the other evolutionary algorithms. However, it should be noted that

the complexity of the models should be investigated and compared. Depending

on the nature and importance of the application, the most suitable model should

be considered.

4.2. Music separation

4.2.1. Classical machine learning methods

The work in [149] proposes the utilization of unsupervised clustering algo-

rithms to improve the robustness and accuracy of separation. Different clus-

tering methods are combined based on probability theory. The probabilities of

having different data in the same cluster are calculated in order to be able to

join various techniques. It is claimed that the model has a higher expandable

ability than other state-of-the-art separation algorithms.

In [150], it is stated that conventional BSS approaches work based on over-

determined possessing more sensors than sources. The paper adds that the

underdetermined is a challenging situation that is closer and more applicable

to real-life scenarios. A two-step framework is proposed to achieve underde-

termined BSS. The fuzzy c-means algorithm approximates the mixing matrix

and reduces the necessity for sparsity. The model diminishes the restrictions
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Table 3: The Performance Comparison of the State-of-the-Art Evolutionary-Based Optimiza-

tion Techniques

Ref Technique Application ACC
Correlative

Coefficients

MSE
SAR

(dB)

SDR

(dB)

SIR

(dB)

SNR

(dB)

[138] BCO Speech and Image —– —– —– —– —– —–
28.80/

16.163

[139] Clustering + ACO Voice —– —– —– —– —– —– —–

[140] PSO Signals —–
0.973/0.964/

0.985

—– —– —– —– —–

[142] PSO and GA Signals —– —– —– —–

28.6550/

40.1285/

28.7721/

39.7033

—– —–

[143] ABC Chaotic signals —– —– —– —– —– —– —–

[144] GA-ICA Signals —– —–
0.0317/

0.0130

—– —– —– —–

[145] PSO + DE + ABC EEG Signals —– —– —– —– —–

28.0683/

38.7114/

28.0683/

38.7119/

28.0699/

38.7918

—–

[146] GA+ICA Speech —– —– —– 13.17 23.47 12.76

[147] PSO Signals —– —– —– —– —– —– —–

[148] HEPSO Speech
(AVCC) 1.0000/

0.0071

—– 6.6862e-08 —– 48.7775 —– —–

by employing semi-NMF. The fuzzy c-means-gradient-based NMF combination

procedure is illustrated in [150]. By depicting comparison results, Alshabrawy

et al. indicate the significance of their proposed model in dealing with high SNR

while encompassing low time complexity.

The study in [151] leverages the disjoint orthogonality of source signals and

the sparsity to estimate the mixing matrices in the instantaneous BSS problem.

The authors investigate the performance of clustering techniques in BSS prob-

lem. It is stated that the model can be implemented in a parametric domain, i.e.,

signals can be sparsely represented. Accordingly, the paper employs k-hyperline-

linear discriminant analysis (Khyp-LDA) and k-hyperline-generalized discrimi-

nant analysis (Khyp-GDA) to achieve BSS. The kernel approach is added to the
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system to perform discriminative clustering in high-dimensional feature space

for underdetermined BSS. The simulation results based on synthetic data fur-

ther indicate the significant superiority of the models in the estimation of mixing

matrices.

The BSS in audio files containing a mixture of speech sound and instru-

mental music is studied in [152]. It is mentioned that ICA performs poorly

in dealing with a dynamic mixture of sources. The study aims to overcome

the shortcoming of ICA by employing a two-pass model. The first subsection

subdivides the observed mixture signal into different clusters considering the

similarity of the audio characteristics. Afterward, the second pass is responsible

for ICA implementation on each chunk. It should be emphasized that differ-

ent mixtures of sources possess distinct features which can be identified and

extracted by various machine learning models, such as k-means clustering. The

extracted characteristics assist the BSS system in classifying the mixed-source

input into distinct groups. As a result, the BSS model can perform better on

the chucked files.

In [153], Souden et al. investigate the BSS problem and render a speech

source clustering and separation technique. The approach leverages the multi-

channel location information in a recursive EM model. WMM models the nor-

malized multi-channel speech-recording vector. The normalized vector is treated

as a feature vector. Likelihood maximization determines the parameters of the

selected model at each time-frequency slot. The proposed model regulates the

speech clusters in an online fashion. The authors indicate that the presented

model outperforms the batch EM techniques by relying on the evaluation results.

The work in [154] uses a GA-optimized radial basis function (RBF) neural

network to provide a BSS model. The model aims to obtain high separation

accuracy at low SNRs. Additionally, the k-means clustering model is exploited

to compute the width and center values of the RBF network. Maximum entropy

is used as the cost function. GA optimizes the tuning parameters of the RBF

neural network. The authors present various simulation results claiming that

their proposed model can accurately perform BSS at low SNR values.
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A clustering algorithm is presented to cluster complex-valued unit-length

vectors [155]. The clustering is performed on the unit hypersphere; the model

is called complex spherical k-mode clustering. The derivation of the approach

from the EM method for complex WMM is provided in detail. Subsequently,

the validity and applicability of the model on real-world BSS problems are inves-

tigated. The authors observe and report that their proposed spherical k-mode

framework competes significantly with the latest BSS models concerning SIR

gains. Moreover, the work reports that the model entails lower computational

complexity and easy implementation.

Ruan et al. [156] provide a two-stage underdetermined BSS system. The

model is equipped with compressed sensing and eigenvalue decomposition. Elec-

tronic surveillance, radar applications, spectrum management, etc., can be

named as several applications of underdetermined BSS algorithms. The contri-

bution of [156] is threefold. The work provides single source points detection al-

gorithm based on eigenvalue decomposition. A hierarchical coupling dictionary

training method based on K-means singular value decomposition is presented.

A two-stage algorithm is implemented to blindly separate radar signals with no

prior knowledge. The eigenvector corresponding to the maximum eigenvalue is

approximated. The estimated eigenvector is clustered as a vector of the mixing

matrix. The mixing matrix is then utilized to recover sources from the received

signals. The integrated underdetermined BSS-compressed sensing framework is

constructed to perform the separation process. The work by relying on sim-

ulation results indicates that the system provides higher separation accuracy

compared to the state-of-the-art methods.

The prediction of the mixing matrix is of great importance in underdeter-

mined BSS in order to provide an accurate separation. The study in [157] ex-

ploits DBSCAN and clustering by fast search and find of density peaks (CFSFDP)

to enhance the prediction accuracy of the BSS model. The mixed signals are

transformed from the time domain into sparse signals in the frequency domain

through an STFT. Besides, the single-source-point (SSP) detection improves the

linear clustering characteristic of signals. First, the DBSCAN model searches
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for high-density data points and automatically acquires the cluster centers and

the number of clusters. Next, the CFSFDP algorithm explores the density peaks

of the data clusters in order to update the cluster centers. The authors, through

simulation results, claim that their hybrid model offers a robust predictor that

enriches the prediction accuracy of UMM. Moreover, it is stated that the uti-

lized joint clustering algorithm helps the CFSFDP model so that the technique

does not require human intervention.

A hybrid method constructed by quantum PSO and Bigradient neural net-

work is presented in [158] to optimize the ICA approach in order to obtain

source signals. The performance of the hybrid model is benchmarked with both

PSO and Bigradient neural network, by which the authors show that their hy-

brid model outperforms both models. SNR, SDR, AVSS, and computation time

criteria are considered and reported.

Table 4 incorporates the results achieved by each of the state-of-the-art BSS

frameworks explored in Section 4.2.1. There is a considerable variation in the

obtained/reported results of the selected machine learning-based approaches,

which makes it challenging to recognize the most efficient BSS model. Various

work tackled the BSS problem using clustering techniques, while other papers

employed classification algorithms to separate and retrieve source signals. It

is worth noting that the appropriate model can be selected depending on the

application, required accuracy, and speed. Accordingly, it is recommended to

consider both accuracy and complexity while reporting/comparing models.

4.2.2. Deep learning methods

A regression-based speech enhancement system is proposed in [162]. The

work employs multiple-layer DNNs. One of the advantages of DNN over clas-

sical machine learning is the ability to deal with large datasets. The study

exploits a large training dataset to guarantee a potent model which can accu-

rately estimate clean signals from noisy speech mixture. The speech signals are

accurately separated from a musical-speech mixture that contains noise. The

dataset entails more than one hundred hours of simulated speech data which
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Table 4: The Performance Comparison of the State-of-the-Art Classical Machine Learning-

Based Techniques

Ref Technique Application ACC
Correlative

Coefficients

MSE
SAR

(dB)

SDR

(dB)

SIR

(dB)

SNR

(dB)

[149] Clustering Signals —– —– —– 16.27 9.91 15.21 —–

[150]
Fuzzy c-means +

semi NMF PSESOP

Speech —– —– —– —– —– —–

324.2969/

372.2919/

429.9053/

397.6122

[151]
K-hyperline clustering

+ LDA

Signals —– —– —– —– —– —– —–

[152] K-means + ICA
Speech and

Instrumental Music

—– 0.89-0.93. —– —– —– —– —–

[153] ML-based + EM Speech —– —– —– 10.02 10.5 16.58 —–

[154] RBF + GA Signals —– 0.875-0.992 —– —– —– —– —–

[155] CSKC + EM Speech —– —– —– —– —– 16.3 —–

[156] K-means + SVD Signals —– —– —– —– —– —– 24.78

[89] —– Music —– —– —– —– —– —– —–

[157] DBSCAN + CFSFDP Signals —– —– -47.0569 —– —– —– —–

[158]
QPSO+

Bigradient neural network

Speech (AVCC) 0.8741 —– —– —– 13.9585 —– 0.2013

[159] CNN Signals (ACC) 0.996 —– —– —– —– —– —–

[160] Deep clustering and DAN Speech —– —– —– —– 9.0 —– —–

[161]
CNN + RNN +

GRU + LSTM

Speech (ACC) 98.00% —– —– —– —– —– —–

empowers the model to obtain a superior generalization capability. The work

is compared with the logarithmic minimum mean square error (MMSE) crite-

rion. The authors use simulation results to illustrate and claim the significant

superiority of their presented technique.

NMF is one of the most distinguished algorithms employed in BSS problems

[163]. NMF factorizes a set of data into a basis matrix and an encoding matrix.

The augmentation of the basis matrices for independent sources constructs the

basis matrix for mixture data. Kang et al. [163] notice that BSS with the

concatenated basis matrix becomes problematic when some overlap exists. Ac-

cordingly, by proposing a new model, the authors endeavor to improve encoding

vector estimation. They formulate the approximation of encoding vectors from

the mixture data as a regression problem. Their proposed BSS framework is
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equipped with a DNN facilitating the learning process of mapping the mixture

data to the corresponding encoding vectors. Several simulations were imple-

mented on the speech enhancement task by which the significance of the model

is highlighted.

A DNN is used to extract an instrument from music in [164]. The study

assumes that the types of instruments in the mixture are known to the system,

i.e., having prior knowledge. A fully connected ReLU-based neural network is

formed, resulting in the least squares initialization of weights and speeding up

the training process. The experimental studies consisted of two mixtures, each

involving three instruments. The separation performance is examined using a

varying number of hidden layers.

DRNNs have been successfully employed to solve the challenging task of BSS

in various environments, for instance, separating signal sources from a single-

channel acoustic mixture. It is stated in [165] that magnitude spectra help to

learn the characteristics of each source in various monaural BSS scenarios. In

contrast, the phase spectrum, which inherently comprises timing-related infor-

mation, is often neglected. The application of modified group delay (MOD-GD)

function is investigated in [165] in order to learn the time-frequency masks of

the sources. The study is conducted for the monaural BSS problems. The

authors employ the MOD-GD for two different music source separation tasks,

including vocal-violin separation in the Carnatic music dataset and singing voice

separation in the multimedia information retrieval lab, 1000 song clips (MIR-

1K) dataset. Finally, considering the SIR, the paper shows that their presented

model outperforms the existing features in the literature. In addition, the au-

thors assert that the training and testing time is significantly reduced, i.e., up

to 50%, without performance degradation.

The majority of algorithms of BSS assume that the number of signal sources

is known. However, it is crucial to determine the number of independent sources

in real-world applications of BSS. A deep learning model, namely CNN, is ex-

ploited in [159] to estimate the number of independent sources, which allows the

separation of signal sources to be completed. Various simulations at different
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SNRs are carried out, and the authors observe that the CNN model effectively

retrieves signals from the mixture.

Uhlich et al. [166] tackle the problem of BSS in music separation. Two dif-

ferent DNN models, including feed-forward and a recurrent bidirectional LSTM

network, are employed to separate music into individual instrument tracks

stored on the SiSEC DSD100 dataset. Data augmentation is used at the time of

training, which empowers the model against overfitting phenomena. Lastly, it

is proposed to integrate both networks, and the outputs are linearly syndicated.

The process is followed by a multi-channel Wiener filter postprocessing. The

authors claim that the result of the integrated framework on the SiSEC DSD100

dataset achieves the best result ever reported.

The work in [167] employs deep fully convolutional denoising autoencoders

(CDAEs) to tackle monaural audio BSS. Their proposed scheme requires each

CDAE to acquire appropriate spectral-temporal filters and characteristics mapped

to the corresponding source. The number of CDAEs must equate to the number

of sources in order to perform a proper separation. Accordingly, every CDAE

separates only one source while treating the remaining sources as background

noise. As claimed by the authors, the experimental and comparison results

demonstrate that CDAE surpasses the deep feedforward neural networks even

with fewer parameters.

Deep attractor networks (DAN) are an approach to BSS benefiting from

spectral features of a monaural recording exploiting bidirectional LSTM mod-

els. The study in [168] mentions that the bidirectional LSTM models cannot

work in an online manner. Therefore, the authors present an integrated model

of spatial and spectral features. The work aims to solve the block permutation

issue. It is intended to provide generalized DANs so they can perform well in

multi-channel meeting recordings. The DAN is responsible for the extraction of

the spectral feature. The features are then provided to a model-based cluster-

ing method. Various joint models are analyzed in batch-processing scenarios.

Eventually, a block-online BSS framework is developed. The effectiveness of

the BSS algorithms on mixtures corrupted by noise is illustrated in the paper.
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Furthermore, the paper states that the simulation results confirm the efficiency

of both the batch-processing and the proposed block-online architectures.

Drude et al. [160] utilize deep clustering and DAN to form a standard model

for acoustic BSS. The framework allows the integration of data-driven spec-

trotemporal approaches. In addition, physically motivated probabilistic spatial

algorithms, namely complex angular central Gaussian mixture techniques, are

embedded. The joint framework employs the complementary strengths of the

two BSS methods. The models benefit from the strong modeling power of neural

networks and the ease of unsupervised learning of the spatial mixture models.

Actual recordings of speech mixtures and artificial mixed speech are involved in

the set of experiments in order to confirm the efficiency of the integrated model

compared to the individual models.

Recent advances in deep learning empower researchers to develop highly ef-

ficient BSS algorithms, e.g., non-stationary noise removal from speech. The

authors in [169] demonstrate that by reformulating the problem of speech dere-

verberation and employing bidirectional RNN, BSS models can be applied to

achieve the dereverberation goal. The efficiency of the model is compared with a

baseline dereverberation technique considering spectral subtraction. The study

reports benchmarking results to indicate that their proposed RNN model per-

forms better than the baseline architecture.

Bhagwat et al. [170] state that BSS is used in music demixing tasks. Var-

ious components, including vocals, bass, drums, accompaniment, and jazz, get

separated in music source separation. The bidirectional LSTM framework is

employed to offer a universal platform-independent software that precisely sep-

arates music sources. The models retrieve jazz solos and their accompaniment

from audio mixtures. Five independent audio sources are accurately extracted

from the original audio. Moreover, a CNN is used to process the extracted

accompaniment stem and subsequently approximate instrumental components.

SCSS of speech is a popular framework to enhance and prepare speech signals

for speech recognition. In [171], hierarchical DNNs and time-frequency masks

are used to construct a BSS framework. The separation model initiates by

49



classifying the mixture signals into three categories. Subsequently, three other

networks use the classified data for speech separation. Next, the voice quality is

boosted by considering an enhanced cost function. The job of the cost function

is to reduce the interference of the estimated sources. The performance of the

presented approach is appraised with different measurement indexes, including

SDR, SIR, and perceptual evaluation of speech quality (PESQ). The authors

assert that their architecture outperforms the existing methods of literature.

The study in [161] highlights the importance of BSS in speech recogni-

tion systems and intelligibility for humans. The voice-operated Internet of

Things (IoT) devices necessitate the extraction of understandable commands

from speech signals. When the number of noise sources to room acoustics ra-

tio upsurges, the BSS becomes very challenging. A CNN model extracts the

features, and their model employs RNN joint with LSTM and gated recurrent

unit (GRU) to achieve an advanced BSS. The obtained results are compared

with other machine learning classifiers. The simulation results report an average

accuracy of 98%.

Due to the need for expensive synthetic datasets, unsupervised BSS tech-

niques are sometimes preferred over supervised BSS models. However, it is

worth noting that unsupervised algorithms benefit supervision in order to es-

cape over-separation and provide close results to supervised algorithms. The

method of [172] is a completely unsupervised single-channel BSS technique.

The presented algorithm is based on variational auto-encoding. The correct

and precise number of sources pooled in a mixture is automatically obtained

and learned. A deep inference network separates data mixtures, and then a

deep generative network decodes each demixed source to retrieve source sig-

nals. The paper demonstrates simulation results and concludes that the model

outperforms state-of-the-art models.

Table 5 compares the presented deep learning-based methods discussed in

Section 4.2.2. By relying on the tabular depiction, it can be outlined that DNN

is the most employed deep learning algorithm for BSS. Moreover, it is observed

that DAN+BLSTM [168] and GAN+VAEM [172] models obtain better results
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Table 5: The Performance Comparison of the State-of-the-Art Deep Learning-Based Tech-

niques

Ref Technique Application
SAR

(dB)

SDR

(dB)

SIR

(dB)

SNR

(dB)

PESQ

[162] DNN Speech —– —– —– —– 1.93

[163] DNN Speech 13.91 8.74 11.20 —– 2.23

[164] DNN Music 7.36 5.86 12.47 —– —–

[165] DRNN Music 11.76 9.42 13.72 —– —–

[166] DNN and RNN SiSEC DSD100 —– 11.70 —– —– —–

[167] Deep fully CDAE Audio —– —– —– —– —–

[168] DAN+BLSTM Speech —– 17.4/16.5/14.0 —– —– —–

[169] BRNN Noise/Speech —– 9.6 —– 8.7 —–

[170] BLSTM+RNN Speech and Audio 5.905 5.250 10.49 —– —–

[171]
Mixed-type Detection

Hierarchical DNN

Speech —– 7.74 14.02 —– —–

[172] GAN + VAEM Handwritten and Spec. 18.20 17.10 29.55 —– —–

[97] CNN Signals —– —– —– —– —–

as compared to that of other selected models. It should be noted that the

applications and sources are different, and each approach performs differently

on different source signals. In order to recognize the most appropriate BSS

framework, the accuracy and complexity of the model should be considered

simultaneously.

4.2.3. Evolutionary algorithms

The study in [173] models an AI-based technique for underdetermined con-

volutive BSS and permutation alignment. The model concatenates the full-rank

spatial covariance model with time-frequency masking. The integrated frame-

work separates Fourier transform coefficients of speech signals at each frequency

bin. The separation of coefficients moderates computational complexity. The

variance parameters are converted to binary masking sequences. The represen-

tative sequences are selected for clustering. Lastly, an ABC method is utilized

to implement permutation alignment. The simulations based on SIR, SDR, and
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SAR criteria indicate the efficiency of the model.

The convergence behavior of PSO and its usage in nonlinear BSS, which is

problematic, is analyzed in [174]. Therefore, an RBF network is also added to

the model to overcome the challenge of nonlinearity. The RBF model predicts

nonlinear mapping. The inter-particle communication of the PSO is recognized

by the history of the neighbors. The communication is highly correlated to the

network structure of the swarm. The employed model focuses on the average

path length of the architecture and the model performance. Accordingly, a long

average path length PSO is selected to be added to the nonlinear BSS framework.

The original sources are recovered by computing the distribution probability

of signal sources. The RBF algorithm estimates the inverse mapping of the

nonlinear mixture. The work outlines the efficiency of the approach through

simulation results.

Most BSS models employ single-point optimization techniques. However,

the utilization of such techniques in the existing work results in poor accuracy,

very slow convergence, and getting stuck into local optimum [175]. Accordingly,

the work in [175] presents a modified bacterial colony chemotaxis (BCC)-based

BSS architecture. The model is equipped with an ergodic search of the entire

domain in order to provide a better convergence rate and separation accuracy.

The simulations are implemented by taking kurtosis under the instantaneous

linear model.

Ebrahimzadeh et al. [176] exploit BCO to construct a demixing system

for a novel BSS network. Various cost functions are thoroughly studied to

achieve the an improved optimization. Higher-order statistics and information

theory are the pillars of most cost functions. The paper indicates that the

achievements are fourfold: high flexibility, superior accuracy, high convergence

rate, and robustness against the local optimal.

Bioinspired intelligence optimization (BIO) techniques possess a very high

computational complexity in BSS algorithms. The work in [177] proposes an

effective blind source separation algorithm exploiting a modified artificial bee

colony algorithm (MABC) and covariance ratio to solve and further improve
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the problem of computation amount. The algorithm uses the covariance ratio

of the signals as the objective function. Accordingly, the MABC is employed to

perform BSS. Subsequently, the deflation technique effaces the separated source

signal components from the mixture. Through an iterative process, all source

signals can be retrieved. The absolute value of correlation coefficient (AVCC),

MSE, and SNR performance metrics are used to measure the accuracy of the

presented model. The simulation results on three music and three speech signals

show that the algorithm has improved computational complexity and signal

separation quality compared to ABC and PSO algorithms.

The work in [178] presents the dynamic niching PSO technique to solve the

linear BSS problem. The authors substitute conventional PSO and FastICA by

dynamic niching PSO technique in ICA. The dynamic niching PSO technique

empowers the ICA to achieve substantially higher accuracy and convergence

rate. Numerical experiments study the performance of the dynamic niching

PSO-based ICA.

The study in [179] criticizes other work by stating that they mostly focus on

linear mixtures rather than nonlinear mixtures, which is mostly encountered in

real-world applications. A nonlinear BSS model utilizing the RBF network is

presented in [179]. The authors further improve the performance of the model

by optimizing via multi-universe parallel quantum GA. Several experiments are

performed to verify the model performance.

Singular value decomposition (SVD), ICA, and PCA methods are widely

employed in BSS frameworks. Gradient descent and variants and fixed-point

iterative models optimize the contrast function. The contrast function is non-

linear, which makes it challenging to achieve the global optimum. In [180], a

unique gradient-based PSO is presented to assist the ICA. The traditional ve-

locity in swarm search and the gradient information are joined to obtain the

optimized contrast function. The authors show empirically that, in the pro-

posed process, a BSS is achieved. The model extracts the source signals one by

one, like the deflation process.

Hamdi et al. [181] study a BSS problem in which the sources are non-
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Gaussian and independent. Accordingly, they propose an iterative swarm intel-

ligence algorithm based on ICA. The flower pollination algorithm (FPA) benefits

from the exploration and exploitation capability and separating at each itera-

tion. The selected model is benchmarked with the PSO technique. It is outlined

that the algorithm achieves high accuracy/similarity between the actual and the

approximated sources.

The study in [182] offers a chaotic background BSS method based on a hy-

brid model consisting of the cat swarm algorithm and phase space reconstruction

technique. The phase space reconstruction model forms the objective function.

The cat swarm algorithm acquires the separation matrix. The parametric repre-

sentation of orthogonal matrices decreases the BSS complexity. Therefore, the

model converges much faster. The authors use the experimental and compar-

isons to claim that their model converges faster.

The results of various performance metrics achieved in each work perused

in Section 4.2.3 are recorded in Table 6. Some of the surveyed work do not

announce their results numerically. The model performance varies in different

applications and environments; therefore, it is challenging to determine the best

model. It is essential that the models are evaluated and compared according

to a single criterion. In addition, time and computational complexities are as

important as accuracy, so model speed and big O-notation complexity should be

assessed and presented. The complexity of BSS models significantly increases

when the number of source signals increases. In summary, it can be concluded

that in order to acquire an appropriate multipurpose BSS model, the trade-off

between speed, storage, and accuracy of the technique should be considered.

Deep learning-based algorithms are observed to surpass other techniques when

more data is provided. A system capable of feature detection and extraction

can excel in the separation of instantaneous aliasing signals.

Tables 7 and 8 provide a comprehensive overview of an array of method-

ologies, encompassing classical statistical paradigms, exemplified by ICA and

NMF, alongside cutting-edge AI-based models, including DNNs and Transform-

ers. The encompassing scope of the tables enables the evaluation and differenti-
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Table 6: The Performance Comparison of the State-of-the-Art Evolutionary-Based Optimiza-

tion Techniques

Ref Technique Application ACC
Correlative

Coefficients

MSE
SAR

(dB)

SDR

(dB)

SIR

(dB)

SNR

(dB)

[173]
ABC algorithm

based Permutation

Speech —– —– —– 8.0423 1.8457 5.6697 —–

[174] PSO+RBF Signals —– —– 0.172 —– —– —– —–

[175] Modified BCC algorithm Signals —– —– —– —– —– —– —–

[176] BCA Speech and Images —– —– —– —– —– —– 22.75/19.44

[177] Modified ABC Speech and Music (AVCC) 0.99857 —– 1.983e-4 —– —– —– 25.8384

[178] DNPSO Speech —– 0.9989 —– —– —– —– —–

[179] RBF + Quantum GA Signals (ACC) 0.8898 —– —– —– —– —– —–

[180] PSO Signals —– —– 0.0066 —– —– —– —–

[181] FPA Speech —– 0.9568 —– —– —– —– —–

[182] Cat Swarm Signals —– —– —– —– —– —– —–

ation of diverse approaches, thereby fostering an in-depth comprehension of the

BSS landscape across various dimensions. The complexities of these techniques

vary widely, with traditional methods like ICA and FastICA exhibiting moder-

ate to low complexities, while AI-driven techniques like DNNs and Transformers

necessitate higher computational resources. It is evident from the analysis that

the choice of the appropriate BSS technique largely depends on the specific

characteristics of the data and the desired level of separation accuracy. This

comprehensive comparison can be employed to make informed decisions in se-

lecting the most suitable BSS method for their respective applications, thus ad-

vancing the field of BSS and contributing to its widespread adoption in various

domains. Furthermore, Table 9 highlights the selected papers, their proposed

approaches, models, and the relevant citation to each work. Tabular summaries

and illustrations of the surveyed BSS techniques are provided in Table 9 and

Fig. 10, respectively.
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Table 7: Comparison of BSS Techniques based on Time/Computational Complexity

Ref. Technique Description Complexity

[36] ICA

Assumes the sources are statistically

independent and aims to find unmixing

matrix. Widely used in various fields.

𝑂 (𝑛3) to 𝑂 (𝑛4)

[122] FastICA

An efficient implementation of ICA

using fixed-point iteration and

negentropy optimization.

𝑂 (𝑘 ∗ (𝑛2 + 𝑛 ∗ 𝑡)),
𝑘 - components,

𝑛 - samples,

𝑡 - iterations

[163] NMF

Decomposes data into non-negative

basis vectors and coefficients.

Suitable for non-negative sources.

𝑂 (𝑛 ∗ 𝑚 ∗ 𝑖𝑡𝑒𝑟),
𝑛 - samples,

𝑚 - features,

𝑖𝑡𝑒𝑟 - iterations

[77] SCA

Incorporates sparsity constraints into

the separation process, assuming only

a few sources are active at a time.

𝑂 (𝑛 ∗ 𝑚 ∗ 𝑖𝑡𝑒𝑟),
𝑛 - samples,

𝑚 - features,

𝑖𝑡𝑒𝑟 - iterations

[12] JADE
Uses cumulant-based statistics to

diagonalize eigenmatrices of the mixture.

𝑂 (𝑝3 + 𝑝2 ∗ 𝑛),
𝑝 - sources,

𝑛 - samples

[14] SOBI
Utilizes second-order statistics to

recover sources from the mixture.

𝑂 (𝑝3 + 𝑝2 ∗ 𝑛),
𝑝 - sources,

𝑛 - samples

[13] JD
Jointly diagonalizes the covariance

matrices to estimate the unmixing matrix.

𝑂 (𝑝3 + 𝑝2 ∗ 𝑛),
𝑝 - sources,

𝑛 - samples

[15] CCA

Finds linear transformations for both

the sources and mixtures to

maximize correlation.

𝑂 ((𝑛 + 𝑚)3),
𝑛 - samples,

𝑚 - features

[156] SVD
Extracts dominant components and

might not fully separate sources.
𝑂 (𝑛3)

[78]
Sparse

Coding

Represents data as a linear combination

of atoms, suitable for sparse sources.

High -

Depends on

dictionary size

and iterations
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Table 8: Comparison of BSS Techniques based on Time/Computational Complexity

Ref. Technique Description Complexity

[145] PSO
Optimizes separation parameters using

a swarm intelligence-based approach.

Moderate to High -

Depends on the

problem complexity

[183] GA
Applies genetic-inspired operators to

search for optimal separation parameters.

Moderate to High -

Depends on the

problem complexity

[184] DE
Uses an evolutionary algorithm to

optimize the separation process.

Moderate to High -

Depends on the

problem complexity

[125] DNN

Utilizes deep learning models, such as

autoencoders, to learn feature

representations and separate sources.

High -

Depends on

network architecture

and data size

[129] RNN

Effective for sequential data like audio,

utilizes recurrent connections to capture

temporal dependencies.

High -

Depends on

network architecture

and data size

[133] CNN
Suitable for image and spectrogram-

based source separation tasks.

High -

Depends on

network architecture

and data size

[131] VAE

Aims to model the underlying generative

process and separate sources in a

probabilistic manner.

High -

Depends on

network architecture

and data size

[132] GAN
Employs a generator and discriminator

network to learn to separate sources.

High -

Depends on

network architecture

and data size

[137]
Transformer-

based Models

Utilizes self-attention mechanisms to

process sequential data efficiently.

Commonly used in natural language

processing tasks.

High -

Depends on

model size

and data size

[160]
Deep

Clustering

Combines deep learning with clustering

algorithms for source separation.

High -

Depends on

network architecture

and data size
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Table 9: The List of Approaches, Algorithms, and References Reported for BSS System

Development

Approach Algorithm References

Classical Machine

Learning Methods

FNN, Variational Bayes,

Variational Bayes EM,

Customized EM, MLP ,

WMM-MA, MAP,

DBSCAN, K-means,

AP, SVM, Fuzzy c-means,

NN, Demucs, clustering,

RBF, CSKC, BNN,

ANN, KAM, RF, IBM,

K-hyperline clustering,

CFSFDP, Bigradient

neural network

[89, 102–109, 111–113, 115–123, 135, 149–161, 174]

Deep Learning

Methods

DNN, RNN, CNN,

ConvTasNe, BLSTM,

DRNN, GAN, DAN,

Deep clustering, GRU,

LSTM, Deep fully CDAE,

BRNN,Mixed-type

Detection, Hierarchical

DNN, VAE, GAN, VAEM,

Transformer-based networks

[86, 97, 124–126, 129–137, 162–172]

Evolutionary

Methods

PSO, GA, CGA, BCO,

ACO, DE, ABC,

HEPSO, QPSO, BCC,

BCA, DNPSO,

Quantum GA, FPA,

Cat Swarm

[138–140, 142–148, 173–182]
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AI-based BSS techniques

Machine Learning

[89, 102–109, 111–113, 115–

123, 135, 149–161, 174]

FNN

[102, 106]

Variational Bayes

[103]

Variational Bayes EM

[104]

Customized EM

[105, 153, 155]

MLP

[107, 121]

WMM-MAP

[108]

MAP

[109]

DBSCAN

[111, 120, 157]

K-means

[111, 112, 120, 152, 156]

AP clustering

[112]

SVM

[116]

Fuzzy c-means

[118, 150]

NN

[123]

Demucs

[135]

clustering

[110, 139, 149]

RBF

[154, 174, 179]

CSKC

[155]

BNN

[115]

ANN

[89, 117]

KAM

[119]

RF

[134]

IBM

Attribute

K-hyperline clustering

[151]

CFSFDP

[157]

Bigradient neural network

[158]

Deep Learning

[86, 97, 124–126, 129–

137, 162–172]

DNN

[86, 124–126, 134, 162–164, 166]

RNN

[129, 161, 166, 170]

CNN

[97, 133, 159, 161]

ConvTasNe

[135]

BLSTM

[136, 168, 170]

DRNN

[136, 165]

GAN

[130, 172]

DAN

[160, 168]

Deep clustering

[160]

GRU

[161]

LSTM

[161]

Deep fully CDAE

[167]

BRNN

[169]

Mixed-type Detection

[171]

Hierarchical DNN

[171]

VAEM

[172]

VAE

[131]

Transformer-based

[137]

Evolutionary algorithms

[138–140, 142–148, 173–182]

PSO

[106, 140, 142,

145, 147, 174, 180]

GA

[142, 144, 146, 154]

CGA

[107]

BCO

[138]

ACO

[139]

DE

Attribute

ABC

[143, 145, 173, 177]

HEPSO

[148]

QPSO

[158]

BCC

[175]

BCA

[176]

DNPSO

[178]

Quantum GA

[179]

FPA

[181]

Cat Swarm

[182]

Figure 10: Illustration of the tree chart of the surveyed BSS approaches.
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5. Research gap and discussion

With the rapid growth and recent advances in telecommunication networks,

possessing a rapid and accurate BSS system is of great importance. First and

foremost, great attention needs to be given to the speed and accuracy of the

models to be proposed for BSS. The tradeoff and the relations between the

speed and accuracy of the BSS framework must be thoroughly studied. New

models should be proposed that can realize the blind separation of instantaneous

aliasing signals. Future work should understand and avoid the problems of slow

convergence rates and complex parameters in BSS.

It should be emphasized that BSS is a multidisciplinary field that can be

implemented in various applications. These applications include the separation

of audio, speech, music, silence and noise, image, etc. With the presence of a

vast number of BSS applications, an appropriate multipurpose BSS model ca-

pable of operating in different scenarios should be considered. Many existing

BSS algorithms are sensitive to variations in data characteristics and model pa-

rameters, leading to a lack of robustness in real-world scenarios. Furthermore,

the scalability of these methods to handle large-scale datasets and complex

source separations remains a challenge. Future research should focus on devel-

oping more robust and scalable AI-based BSS techniques, ensuring their efficacy

across diverse applications and datasets.

Most of the existing work consider the determined convolutive BSS problem.

Work needs to be further extended to employ various AI-based classification

methods for tackling the underdetermined convolutive BSS problem. It is ob-

served that the majority of the instrument sounds are harmonic. The harmonic

structure of the music signal is stable. Most state-of-the-art BSS techniques do

not perform well when dealing with non-harmonic instruments, such as drums.

Therefore, several rhythm-tracking methods can be exploited to separate non-

harmonic audio frames precisely. In addition, proper utilization of the feature

selection algorithms and identifying the most efficient features can significantly

enhance the BSS process, especially in music/audio classification. The optimal
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setting of the tuning parameters of machine learning models can significantly

improve the performance of algorithms. The dynamic parameters control can be

investigated and tuned where the exploitation can be preferred to exploration

at the later phase of the BSS process.

Future studies must consider additive noises and nonlinear BSS problems.

There is a pressing need for AI-driven BSS methods that can effectively han-

dle nonlinear mixing models to improve the separation accuracy in challenging

acoustic environments. Speech separation becomes a complex task when the

number of noise sources upsurges with respect to environmental acoustics. The

application of hybrid machine learning models should be investigated in BSS.

The work on DNN-based BSS models needs to be expanded. More datasets,

additional techniques, especially hybrid AI models, and a huge number of data

categories need to be further studied to verify the performance of BSS models in

practical scenarios. A robust, reliable, and real-time BSS is highly necessitated.

A standardized evaluation framework for comparing and benchmarking dif-

ferent BSS methods is lacking. Existing evaluation metrics often fail to capture

the perceptual quality and higher-order statistics of the separated sources ac-

curately. Future research should focus on developing comprehensive and per-

ceptually relevant evaluation metrics that align better with human auditory

perception and cater to the diverse nature of BSS applications. Evolution is

required considering the actual time separation, computational cost, and 100%

interference separation.

Current BSS algorithms often operate in an unsupervised manner, without

exploiting prior information or constraints related to the sources or the mixing

process. The incorporation of additional knowledge, such as spatial or tempo-

ral cues, could greatly enhance the performance of BSS methods. Researchers

should investigate ways to integrate such information into AI-based BSS frame-

works to improve the quality and interpretability of the separated sources.

In addition, with the increasing prevalence of edge computing and the widespread

use of mobile devices, great promise is held by the applicability of BSS algo-

rithms in such environments. As the coming years are envisioned, it is firmly
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believed that substantial growth will be witnessed in the adoption of BSS algo-

rithms on edge/mobile devices, thereby opening up new possibilities in various

fields. The following points are emphasized to elaborate on the application/use

of BSS frameworks, particularly in the context of exploiting edge/mobile de-

vices.

� Edge/On-Device Processing: One of the most compelling advantages of

employing BSS techniques on edge devices is the potential to perform real-

time processing without the need for extensive cloud infrastructure. This

capability is crucial for various applications where low-latency and real-

time audio processing are imperative, such as live music performances,

interactive audio installations, and augmented reality audio experiences.

� Privacy and Data Security: By processing audio and music signals locally

on edge devices, there is reduced reliance on transmitting sensitive audio

data to remote servers. Consequently, BSS can enhance privacy and data

security, which is particularly crucial for applications dealing with personal

audio content.

� Bandwidth Efficiency: Utilizing edge devices for BSS can significantly

reduce the amount of data that needs to be transmitted over networks,

thereby conserving bandwidth and reducing the overall network load.

� Mobile Applications: The integration of BSS algorithms into mobile ap-

plications presents exciting possibilities. For instance, personalized audio

filtering, noise reduction, and enhanced audio quality are just a few areas

where mobile users can benefit from the implementation of BSS tech-

niques.

� IoT Applications: As the IoT ecosystem continues to expand, edge devices

with audio processing capabilities, i.e., BSS, can find applications in smart

homes, connected audio devices, and acoustic event detection systems,

enhancing the overall user experience and interaction.
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� Challenges and Opportunities: Despite the promise of on-device process-

ing, there are challenges to overcome, such as limited computational re-

sources and power constraints on edge devices. Addressing these chal-

lenges will require developing efficient and lightweight BSS algorithms

tailored for edge/mobile platforms, which could also open up research

opportunities in the field. Many AI-driven BSS techniques involve com-

putationally intensive operations, making real-time processing challenging

on resource-constrained devices. For practical deployment, it is crucial to

explore hardware-efficient architectures and algorithm optimizations that

facilitate real-time BSS processing on edge devices and embedded systems.

Lastly, attention is drawn to the fact that the success of AI-based BSS meth-

ods heavily relies on the availability of large and annotated training datasets.

However, acquiring such data may not always be feasible, especially in special-

ized domains. Investigating transfer learning and domain adaptation techniques

can enable the transfer of knowledge from related domains and help overcome

the data scarcity issue, thereby enhancing the generalization capabilities of BSS

models.

6. Conclusion

The transmission process often leads to the mixing and manipulation of sig-

nals, resulting in the presence of unwanted data in the received signal at the re-

ceiver’s end. Such undesirable elements can be destructive and disadvantageous

for recipients. To address this issue, communication systems require an accurate

and fast separator system capable of discriminating mixed signal sources. BSS

stands out as an advanced signal processing technique, enabling the retrieval of

source signals from a received mixture without the need for prior knowledge of

the mixing algorithm or the types of source signals. This review paper delves

into a comprehensive investigation and analysis of the BSS concept, contributing

to a deeper understanding of the subject. The study explores various AI-based

BSS models, emphasizing their unique properties, applications, and efficiency.
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The research findings are presented through various figures and tables, show-

casing the results of comparative studies. By closely examining numerous BSS

techniques, this survey paper sheds light on the competitiveness of such solu-

tions concerning their performance efficiency. In addition, this study diligently

identifies pertinent research gaps, critical shortcomings, and inherent limita-

tions prevalent within the current spectrum of BSS methodologies. To ensure

the development of rapid and robust communication networks, it is crucial to in-

vestigate the complexity of BSS approaches and thoroughly assess the trade-off

between speed and accuracy in BSS frameworks. This investigation should con-

sider aspects such as actual time separation, computational cost, and achieving

100% interference separation. Novel techniques need to be proposed to facilitate

the blind separation of instantaneous aliasing signals. The exploration and pro-

posal of versatile BSS models, emphasizing their adaptability and suitability for

various applications, are of paramount importance. Furthermore, BSS emerges

as a multidisciplinary field with diverse applications. Consequently, the design

of an appropriate multipurpose BSS model becomes essential for its successful

implementation in various scenarios.
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