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Understanding observed interpersonal touch, particularly the so-called affective touch targeting the CT fibers, is essential for social 
interactions. Research has documented that observing other people being touched activates the same cortical areas involved in direct 
tactile experiences. However, observing interpersonal touch also activates an inner simulation of the movements in the observer’s 
motor system. Given the social and affective significance of CT-optimal touch, the present study tested the hypothesis that observing 
stroking touches targeting or not targeting the CT fibers system might distinctly influence motor resonance to vicarious touch. With 
this aim, we used single-pulse transcranial magnetic stimulation and motor-evoked potentials recording while participants observed 
video clips of interpersonal touch events at different stroking velocities. We found a modulation of motor system activity, particularly 
a decrease in corticospinal excitability, when observing CT-optimal touch as opposed to non-CT-optimal velocities, a mechanism that 
might aid in understanding the touchee’s feelings during vicarious interpersonal touch. Moreover, participants with higher reliance on 
bodily cues to be emotionally aware showed greater motor suppression for CT-optimal compared to non-CT-optimal velocities. These 
results shed light on the complex interplay between motor and somatosensory systems in social touch perception and emphasize the 
importance of affective touch in human social interactions. 

Key words: vicarious affective touch; C-tactile afferents; motor resonance; single-pulse transcranial magnetic stimulation; motor-evoked 
potential. 

Introduction 
Understanding affective touch through the observation of actions 
such as handshaking, hugging, and caressing is essential for 
navigating social environments. Neurophysiological responses to 
tactile stimulation are mediated by distinct sensory systems: dis-
criminative touch by fast, myelinated Aβ fibers, and gentle tactile 
stimulation by slow-unmyelinated C-tactile (CT) fibers (Vallbo 
et al. 1999; McGlone et al. 2014). The CT system, primarily located 
in the hairy skin of mammals, is optimally responsive to caress-
like strokes at velocities of 1 to 10 cm/s and at temperatures 
akin to human skin (Olausson et al. 2010; Ackerley et al. 2014a). 
CT fiber activation follows an inverted U-shaped response curve 
in relation to stroke speed and evokes corresponding levels of 
pleasant sensations (Essick et al. 1999; Essick et al. 2010; Ackerley 
2022). The term “affective touch” is thus used to describe stim-
ulation that typically targets CT fiber activation. Human social 
stroking is naturally optimized for CT-optimal touch (Croy et al. 
2016), serving as a soothing form of stimulation and supporting 
social bonding (Cascio et al. 2019). While direct recordings of 
CT fiber activation during vicarious touch are not available, it is 

hypothesized that observing such touch may be processed as a 
prioritized type of information (Morrison et al. 2011a; Pereira et al. 
2023 Feb 28). 

From a neuroanatomical perspective, CT afferent projections 
are directed to the posterior insular cortex (pIC), a brain region 
considered essential for emotion regulation and integration of 
inner bodily signals (Morrison 2016; Kirsch et al. 2020). Extensive 
research provides support for the functional role of CT fibers 
in social functioning and affects regulation across the lifespan 
(Cascio et al. 2019; Montirosso and McGlone 2020; Croy et al. 
2022), with evidence of insular activation to caress-like touch 
being observed in the early stages of infant life (Jönsson et al. 2018; 
Tuulari et al. 2019). Beyond pIC, interpersonal touch activates 
somatosensory cortices (S1 and S2) and key areas of the social 
brain, such as the medial prefrontal cortex, the dorsal anterior 
cingulate cortex, and the inferior frontal gyrus (IFG), that con-
tribute to the processing of affective dimensions of touch (Gordon 
et al. 2013; Case et al. 2017; Boehme et al. 2019). 

Observing other people being touched appears to activate the 
same cortical areas involved in direct tactile experiences (Keysers
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et al. 2004; Keysers et al. 2010; Bolognini et al. 2012; Lee Masson 
et al. 2018). Within this network, IFG, the insula, and the supe-
rior temporal sulcus would aid in recognizing others’ emotions 
(Peled-Avron et al. 2019; Saporta et al. 2022; Schaefer et al. 2023), 
the temporoparietal junction would differentiate self from others 
(Lee Masson et al. 2020), and the somatosensory cortices would 
map the observed touch into an internal representation (Bolognini 
et al. 2013; Bellard et al. 2023). This visuo-tactile mirror mech-
anism, which is detectable in infants as young as 4 months old 
(Rigato et al. 2019a), would mimic the tactile stimulation and 
enable empathy for the other person’s sensations (Schaefer et al. 
2012; Schaefer et al. 2013; Smit et al. 2023). Moreover, a functional 
relationship between activation in the pIC and processing of vicar-
ious affective touch has been observed, suggesting that the brain 
is adept at distinguishing CT-targeted strokes when observing 
interpersonal touch events (Morrison et al. 2011a). 

Within the “embodied simulation framework” (Gallese and 
Sinigaglia 2011), observing interpersonal touch actions can also 
activate an inner simulation of the movements in the observer’s 
motor system (Gazzola and Keysers 2009; Gallese and Ebisch 
2013). For example, previous electroencephalography (EEG) 
research has reported a modulation of the mu and Rolandic 
rhythms during observation of interpersonal touch, indicating 
sensorimotor simulations that aid in understanding another’s 
tactile experience (Peled-Avron et al. 2016; Schirmer and McGlone 
2019; Addabbo et al. 2020). This modulation is also seen in the 
toucher when administering a consoling touch, suggesting a 
connection between delivering touch and simulating another’s 
mental states (Peled-Avron et al. 2018). However, it remains to 
be determined whether observing affective interpersonal touch, 
particularly those targeting CT-optimal strokes, selectively influ-
ences motor cortex activation and supports the understanding 
and prediction of the consoling intention underlying observed 
stroking (Avenanti et al. 2018; Paracampo et al. 2018). 

The phenomenon of motor resonance, a widely acknowledged 
index of motor simulation, involves mapping others’ actions onto 
one’s own motor repertoire. It reflects the activation of the motor 
system during action observation (for a comprehensive review, 
see Fadiga et al. 2005; Pineda 2008; Avenanti et al. 2013; Naish 
et al. 2014), and contributes to action understanding and imi-
tation (Pobric et al. 2006; Tidoni et al. 2013; Urgesi et al. 2014; 
Jacquet and Avenanti 2015). Motor resonance is often indicated 
by changes in motor-evoked potentials (MEPs), measured using 
electromyography (EMG) following transcranial magnetic stimu-
lation (TMS) over the primary motor cortex (M1). These changes 
in MEPs, or corticospinal excitability (CSE), are thought to reflect 
the dynamics of motor facilitation or suppression, corresponding 
to the increase or decrease in motor simulation processes for 
the observed action (Liuzza et al. 2015; Amoruso et al. 2016). 
Interestingly, the simulative representation of observed actions 
encompasses not just movement kinematics but also their affec-
tive meanings (Craighero and Mele 2018; Vicario et al. 2019; Urgesi 
et al. 2020). Given the social and affective significance of CT-
optimal touch, it is hypothesized that observing stroking targeting 
or not targeting the CT fiber system might distinctly influence 
motor resonance to vicarious affective touch. 

To investigate this, we used single-pulse (sp) TMS and MEP 
recording while participants observed video clips of interpersonal 
touch events at different stroking velocities. The rationale behind 
this approach is that spTMS to M1 elicits MEPs in the contralateral 
target muscle, and these MEP amplitudes are influenced by action 
observation, reflecting muscle selectivity and the kinematic pro-
file of the observed movement (Fadiga et al. 1995; Romani et al. 

2005; Urgesi et al. 2006; Alaerts et al. 2009). In this study, MEPs 
were recorded in two muscles of the participants’ right arm and 
compared across different stroking velocities (0, 5, 30 cm/s) and 
two body sites (hairy skin, i.e. hand-dorsum, vs. glabrous skin, 
i.e. palm). We reasoned that, if CSE was specifically mapping 
affective touch, then we should expect motor responses to slow 
touch to deviate from both static and fast conditions. Conversely, 
if CSE maps only kinematic aspects of the observed movements 
(e.g. motion), then we would see a linear modulation of CSE with 
increasing velocities, with motor responses to slow touch being 
intermediate between the static and fast conditions. The lack 
of previous investigations made any predictions regarding the 
direction of this effect exploratory. On one hand, former studies 
have reported a modulation of the mu rhythm during the obser-
vation and execution of interpersonal touch (Peled-Avron et al. 
2018; Addabbo et al. 2020), suggesting that observing CT-optimal 
touch might increase CSE. However, mu oscillatory responses 
during action observation are thought to reflect the mirroring of 
tactile components rather than the motor features (e.g. velocity) 
of action execution (Coll et al. 2015). Conversely, prior research 
on pain perception indicated a decrease in motor cortical output 
during both self- and vicarious experiences of pain (Farina et al. 
2003; Avenanti et al. 2005), although there are contrasting findings 
(Galang and Obhi 2021). Interestingly, larger CSE inhibition and 
greater mu rhythm suppression are both held as proxies of senso-
rimotor resonance to vicarious pain (Cheng et al. 2008; Vitale et al. 
2023). Based on these findings on vicarious pain perception, we 
anticipated a decrease in MEP amplitude during the observation 
of CT-optimal (slow) touch compared to both static and fast touch. 

A secondary objective of our study was to explore the rela-
tionship between individual differences in touch experiences and 
attitudes, as well as in interoceptive awareness (the awareness of 
the connection between body sensations and emotional states), 
and motor resonance to interpersonal touch. Prior research has 
shown that personal affective experiences of CT stimulation, 
altered due to factors such as CT-fiber deafferentation or envi-
ronmental deprivation, can impact the perception of vicarious 
touch (Morrison et al. 2011b; Devine et al. 2020). Additionally, 
interoceptive processing, which involves the integration and elab-
oration of internal body signals, may play a significant role in 
shaping the perception of external stimuli (Seth and Friston 2016) 
and particularly the perception of vicarious touch (Gillmeister 
et al. 2022). Because of the unique neural pathway that links the 
pIC to CT afferents in the skin, affective touch might indeed be 
considered an interoceptive modality. Variations in interoception 
have been reported to influence how individuals provide touch 
(Bytomski et al. 2020) and to modulate vicarious responses to 
touch in somatosensory areas (Adler and Gillmeister 2019; Rigato 
et al. 2019b; Bellard et al. 2023). Therefore, here, we aimed to verify 
whether interoceptive awareness may influence motor resonance 
to vicarious touch. 

Materials and methods 
Participants 
Based on the effect  size  (n2 

p = 0.16) reported by a previous TMS-
MEP paper on interpersonal-action observation and adopting a 
similar design (Betti et al. 2022), considering a repeated-measures 
(RM) ANOVA model with two muscles, two body sites, and three 
stroking velocities, an a priori power analysis using the G∗Power 
3.0.10 software with the “as in SPPS” option (Faul et al. 2007) 
indicated a target sample size of 28, with 80% power and alpha 
set at 0.05. Thirty participants completed the experiment in our
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laboratory at Liverpool John Moores University (LJMU). The data 
from two participants were discarded since they reported, at a 
follow-up debriefing session, a lack of naivety about the research 
stimuli and question, which could alter the results. Therefore, 
the final sample consisted of 28 participants (15 females, 13 
males; age mean = 27.5 years, SD = 5.7). Recruitment was through 
posters, social media advertisements, and email invitations to 
our research panel lists. Inclusion criteria were: (i) having nor-
mal or corrected to normal vision (with glasses/contact lenses), 
(ii) being right-handed, (iii) no history of neurological or psychi-
atric disorders, and (iv) no chronic pain or skin diseases. Partici-
pants were screened for TMS exclusion criteria through a safety 
screening questionnaire (Rossi et al. 2009; Rossi et al. 2021), with 
no contraindications reported. Compensation included a £10 gift 
voucher and Sona-systems points for undergraduate psychology 
students. All procedures were approved by the LJMU Research 
Ethics Committee (reference number: 22/PSY/078) and were in 
keeping with the Declaration of Helsinki, with written informed 
consent obtained. 

General procedure 
Eligible volunteers completed online a preliminary TMS screening 
questionnaire (Rossi et al. 2021). On the scheduled date, par-
ticipants recompleted the safety questionnaire to exclude any 
arising contraindications to TMS. Seated in a recliner with their 
right arm on a pillow, participants watched video clips on a 28′′

monitor (resolution 1,920 × 1,200 pixels, refresh rate 60 Hz) posi-
tioned at approximately 100 cm. MEPs were recorded during and 
before/after the experimental task with video presentation. At 
the end of the experimental session, participants also completed 
self-report questionnaires on demographics, interoceptive aware-
ness (Multidimensional Assessment of Interoceptive Awareness 
[MAIA]), and touch attitudes/experiences (Touch Experiences and 
Attitudes Questionnaire [TEAQ]). Right-handedness was verified 
using the Edinburgh Handedness Inventory (Oldfield 1971). The 
procedure took about 70 min, followed by debriefing. 

Stimuli and task structure 
During the experimental task, participants were presented with 
interpersonal touch video clips taken from previous studies from 
our lab (Trotter et al. 2018a; Bellard et al. 2022, 2023). A recent 
behavioral study using the same video clips documented that 
the appreciation of both toucher- and touchee-referred vicarious 
touch is specifically attuned to CT-optimal touch (Butti et al. 2024). 
The 6-s-long videos displayed both male and female actors apply-
ing touch with their right hand to other female and male actors 
(i.e. 4 actor sex combinations). Touch was delivered with three 
different velocities: 5 cm/s as CT-optimal stroking and 0 cm/s 
(static) and 30 cm/s (fast) as non-CT-optimal velocities. While 
static touch may not elicit motor resonance as effectively as 
dynamic touch, this condition provided a necessary control con-
dition to compare against slow and fast stroking conditions, thus 
enabling a clearer understanding of the motor system’s response 
to the absence of motion (Gallese and Sinigaglia 2011). Moreover, 
static touch represents a natural and ecologically valid modality 
of tactile stimulation during interpersonal interactions (Ali et al. 
2023). Touch was applied on the hand dorsum and on the palm, 
which represent body sites with different densities of CT fibers, 
respectively, a hairy and a glabrous skin site. Importantly, these 
two body regions were selected as they were matched in terms of 
size and observed movements. Considering 4 actor-sex combina-
tions, 3 velocities and 2 body sites, a total of 24 videos represented 
all possible conditions. 

Before the video presentation, participants were instructed 
that they would be presented with interpersonal touch videos 
while receiving spTMS. Crucially, instructions required partici-
pants to pay attention to the biological sex of the toucher because 
in some trials they would be asked to verbally indicate whether 
the toucher was male or female. This explicit sex judgment task 
was thought to engage participants during video presentation and 
to prompt them to focus on the actor delivering interpersonal 
touch and, thus, on the touch action. A verbal, rather than a motor 
response was chosen to avoid MEP contamination due to hand-
response preparation (Betti et al. 2022). 

Each trial started with a fixation cross lasting 500 ms, followed 
by the 6-s-long interpersonal touch videos. The spTMS was admin-
istered in the last second of video presentation, to ensure partici-
pants were exposed to full action unfolding (details below). At the 
end of the video, “classical” trials displayed a black background 
screen reporting “please wait” in white letters for 3500 ms. This 
way, the whole trial lasted 10 s. Conversely, in “catch” trials the last 
slide reported the question “Was the toucher male or female?”, 
written in white letters on a black background. Participants had 
to answer verbally (i.e. “male,” “female”) and the experimenter 
recorded verbal responses by pressing the “m” or “f” tab on a wire-
less keyboard. Participants were asked to provide their answers 
only at the end of the videos to prevent contamination of MEPs 
by verbal responses, which could induce changes in the CSE of 
hand muscles (Meister et al. 2003; Onmyoji et al. 2015). MEPs 
were recorded during both classical and catch trials. The response 
accuracy in catch trials (mean = 95%, SD = 5%) confirmed that 
participants were engaged in the task. The response slide lasted 
until a response was recorded and its duration across participants 
was roughly equivalent to the “please wait” slide in classical trials 
(mean = 2919 ms, SD = 467 ms). Examples of a classical and a catch 
trial are reported in Fig. 1. 

On the basis of a 2 muscle × 3 velocity × 2 body site within-
subject design, and to obtain 32 observations per cell, a total of 
192 trials were presented. Of them, 48 were catch trials (25%). 
This way, each of the 24 video stimuli was displayed six times 
in classical trials and two times in catch trials. The order of 
video and trial presentation was completely randomized. The E-
Prime 3 software (Psychology Software Tools, Pittsburgh, PA, USA) 
controlled task administration and response recording. 

TMS and MEP recording procedure 
TMS was performed by means of a 70-mm figure-eight stimula-
tion coil (Magstim D70 Alpha Flat Coil), connected to a Magstim 
SuperRapid2 Stimulator (The Magstim Company, Carmarthen-
shire, Wales, UK) producing a magnetic field up to 0.8T at the 
surface of the coil. MEPs were recorded simultaneously from the 
extensor carpi radialis (ECR) and the first dorsal interosseous 
(FDI) of the right limb. These two muscles represent, respectively, 
a proximal and a distal muscle involved in interpersonal touch 
movements (Schieppati et al. 1996; van Kuijk et al. 2009). The 
decision to measure the ECR muscle activity was rooted in the 
need to explore whether motor resonance to observed touch 
would manifest differently across muscles that vary in their 
proximity to the site of observed action and their involvement 
in typical touch-related movements (Naish et al. 2014). The ECR 
muscle, being a proximal muscle, is involved in the extension 
of the wrist and thus plays a role in the overall motor pattern 
associated with reaching and touching actions. Measuring the 
activity of the ECR muscle, in conjunction with a distal muscle 
like the FDI, allowed the study to assess whether motor resonance 
is generalized across the limb or if it is more pronounced in

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/34/11/bhae441/7879563 by guest on 18 N

ovem
ber 2024



4 | Cerebral Cortex, 2024, Vol. 34, No. 11

Fig. 1. Trial structure. Examples and timeline of classical and catch trials. 

muscles more directly involved in fine motor control related to 
touch. A greater modulation in the distal muscle (i.e. FDI) would 
suggest the importance of motor feedback from hand muscles in 
understanding the toucher’s intentions ( Betti et al. 2022). Con-
versely, similar MEPs from both muscles would indicate a more 
generalized motor reactivity, likely associated with affective pro-
cessing (Lepage et al. 2010). Surface Ag/AgCl disposable electrodes 
(1 cm diameter) were placed in a belly–tendon montage for each 
muscle. Electrode positions were determined by palpation during 
maximum voluntary contraction for each muscle, with reference 
electrodes placed over the ipsilateral interphalangeal joint for the 
FDI and over the ulnar styloid process for the ECR, while the 
ground electrode was positioned over the right elbow. 

Prior to MEPs recording, participants were tested for their rest-
ing motor threshold (rMT), which is the minimum stimulus inten-
sity able to evoke MEPs from both the muscles with amplitude 
of at least 50 μV in 50% of 10 trials (rMT mean = 72%, SD = 14%). 
Given that the ECR typically has a higher rMT compared to the 
FDI muscle (Wu et al. 2002), the ECR muscle was prioritized when 
setting the individual rMT. Moreover, for each participant, the 
optimal position of the coil was determined by moving the coil in 
approximately 0.5 cm steps around the scalp position correspond-
ing to the left motor hand area and by delivering TMS pulses at 
constant intensity until recording maximal amplitude MEPs from 
both muscles. The determined position was marked on a tight-
fitting cap wore by participants, and the coil was held securely to 
the scalp ensuring the magnetic pulses were only given to the area 
of interest. In line with previous studies (Borgomaneri et al. 2015; 
Amoruso and Urgesi 2016), the coil was placed tangentially on the 
scalp, with the handle pointing backward and approximately 45◦ 

lateral from the midline. 
During task presentation, spTMS was administered to left M1 

according to one of five time-delays after video onset (5,100, 5,200, 
5,300, 5,400, 5,500 ms). These delays were chosen to ensure that 
participants were exposed to the full unfolding of kinematics. 
While this methodological choice limited the detection of poten-
tial different stages of CSE modulation, it allowed for a more 
accurate comparison by accounting for variations in the onset of 

touch actions across the videos. Delay variability prevented any 
anticipatory effect of the stimulation (Tran et al. 2021; Betti et al. 
2022). The stimulation intensity was set at 120% of the individual 
rMT. Before and after the experimental task, MEPs were recorded 
during 10 baseline trials in which participants were presented 
with a fixation cross. 

A Biopac MP-36 system (BIOPAC Systems, Inc., Goleta, CA) was 
used for signal amplification, band-pass filtering (5 to 1,000 Hz) 
and digitalization (sampling rate 10,000 Hz). The TMS pulse was 
also recorded as a digital input channel starting when the TMS 
was triggered and lasting 15 ms. TMS stimulation and EMG record-
ing were controlled by the E-Prime 3 software. Offline analysis of 
EMG data was executed by means of the AcqKnowledge software 
(BIOPAC Systems, Inc., Goleta, CA). 

MAIA 
The MAIA Mehling et al. 2012) is a 32-item questionnaire that 
provides eight dimensions of interoceptive bodily awareness: 
noticing (4 items), not distracting (3 items), not worrying (3 
items), attention regulation (7 items), emotional awareness 
(5 items), self-regulation (4 items), body listening (3 items), 
and trusting (3 items). Answers are recorded on a 6-point 
Likert scale ranging from 0 = “Never” to 5 = “Always,” with some 
questions being reversed scored. Each subscale is scored by the 
average of the corresponding items. The MAIA questionnaire was 
found to have a good internal consistency (Cronbach α = 0.90) 
(Valenzuela-Moguillansky and Reyes-Reyes 2015). 

TEAQ 
The 37-item version of the TEAQ (Trotter et al. 2018a; Trotter et al. 
2018b) is a self-report that assesses current and childhood experi-
ences of positive touch and an individual’s attitude toward inter-
personal touch. Questions are answered using a 5-point Likert 
scale ranging from 1 = “Disagree strongly” to 5 = “Agree strongly,” 
with negatively worded questions being reverse scored. Five sub-
scales are calculated by the average of the corresponding items: 
attitude to friend and family touch (7 items), attitude to intimate 
touch (10 items), childhood touch (8 items), attitude to self-care
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(7 items), and current intimate touch (5 items). Good internal 
consistency was reported for the TEAQ (Cronbach α = 0.93). 

Data handling and statistical analysis 
For each muscle and condition, MEPs were calculated as peak-
to-peak EMG signal (in mV) from the end of the digital input 
representing the TMS pulse for the following 40 ms. With the 
aim to control for muscle preactivation and artifact, trials in 
which the peak-to-peak signal from 70 to 10 ms before the TMS 
pulse was higher than mean + 2 SD were discarded and excluded 
from further analyses. Across all subjects and for both muscles 
excluded trials were less than 10% (ECR: mean = 3.7%, SD = 1.9%; 
FDI: mean = 4.6%, SD = 1.7%), thus ensuring EMG data reliability. 
Changes in basal CSE during the experiment were examined by 
comparing the pre- and postbaseline raw MEPs through paired-
sample t-tests (two-tailed). Postbaseline MEPs of two subjects 
were not recorded due to technical issues. Regarding the exper-
imental task, for each participant and separately for the two 
muscles, the raw MEP amplitude of each trial was normalized 
according to the distribution of all trials (Z-score). Transformation 
into Z-scores was thus calculated using the individual MEP mean 
and SD for each muscle across the experimental trials. This trans-
formation was chosen to control for interindividual variability and 
to insert the two muscles in the same analysis. The Z-scores were 
inserted into an RM-ANOVA with 2 muscles (ECR, FDI), 2 body 
sites (hand dorsum, palm), and 3 velocities (static, CT-optimal, 
fast) as within-subject variables. Post hoc analysis was performed 
using Duncan’s test correction, which reduces the size of the 
critical difference depending on the number of steps separating 
the ordered means and is optimal for testing in the same design 
effects that may have different sizes (McHugh 2011). 

Since we anticipated CSE modulation based on stroking veloc-
ities, specifically a decrease in MEPs for CT-optimal touch, a 
delta index was calculated to measure the mean difference in 
Z-scores between CT-optimal and non-CT-optimal velocities. The 
formula was: [(CT-optimal—fast) + (CT-optimal—static)]/2. Although 
this formula was partially aligned with prior behavioral research 
from our laboratory (Bellard et al. 2022; Butti et al. 2024), since no 
subjective ratings were collected in this study, we named the index 
Affective Touch Sensitivity (ATS) to avoid any misunderstanding. 
Higher negative values would indicate greater MEP suppression 
(i.e. decrease in Z-scores) for CT-optimal compared to non-CT-
optimal velocities, while higher positive values would indicate 
greater MEP facilitation (i.e. increase in Z-scores) for CT-optimal 
touch. The ATS was calculated separately for each muscle as 
we expected differences between proximal and distal muscles 
(van Kuijk et al. 2009). A Pearson’s correlation analysis, adopting 
Bonferroni correction for multiple comparisons, was then con-
ducted between the ATS indexes and interoceptive awareness and 
individual differences in touch attitudes and experiences. Given 
that previous behavioral studies have found significant asso-
ciations between interoceptive trusting, attitudes toward touch 
from friends and family, and vicarious touch perception (Bellard 
et al. 2022; Butti et al. 2024), these subscales of the MAIA and 
TEAQ were included in the correlation analysis. For the TEAQ, 
the childhood touch experience subscale was added to investigate 
whether early touch experiences might influence motor reso-
nance to vicarious touch, similar to how they impact subjective 
ratings of vicarious pleasantness (Devine et al. 2020). Given the 
interplay between interoceptive awareness, emotional processing, 
and vicarious experiences (Seth and Friston 2016), the MAIA emo-
tional awareness scale was also incorporated into the correlation 
analysis. 

Table 1. MEP Z-score means (±SEM) for the ECR and FDI 
muscles according to the body site on which touch was 
delivered and stroking velocities. 

Muscle Body site Velocity Z-score 

ECR Hand dorsum Static 0.035 ± 0.027 
ECR Hand dorsum CT-optimal −0.065 ± 0.034 
ECR Hand dorsum Fast 0.011 ± 0.027 
ECR Palm Static 0.047 ± 0.039 
ECR Palm CT-optimal −0.032 ± 0.031 
ECR Palm Fast 0.009 ± 0.031 
FDI Hand dorsum Static 0.031 ± 0.036 
FDI Hand dorsum CT-optimal −0.058 ± 0.028 
FDI Hand dorsum Fast −0.023 ± 0.036 
FDI Palm Static 0.030 ± 0.033 
FDI Palm CT-optimal −0.043 ± 0.032 
FDI Palm Fast 0.054 ± 0.035 

The effect size was estimated as partial eta squared ( η2 
p) for  

ANOVA (small: 0.01, medium: 0.06, large: 0.14) and as Cohen’s 
d for pairwise comparisons (small: 0.2, medium: 0.5, large: 0.8). 
A significance threshold of P = 0.05 was set for all statistical 
analyses. Data are reported as mean ± SEM. The analyses were 
performed using the STATISTICA software (StatSoft Inc., version 
8). The ggplot2 package version 3.4.3 (Wickham 2016) of the  R  
software (version 4.3.1; R Foundation for Statistical Computing) 
was used to perform data visualization. 

Results 
MEP modulation 
The comparisons between the MEP amplitudes recorded as pre-
and post-task baseline yielded no significant results either for the 
ECR (t25 = 0.56, P = 0.582) or the FDI (t25 = 1.10, P = 0.283), probing 
that the TMS per se did not change basal MEPs across the exper-
iment. The normalized MEPs for each condition are reported in 
Table 1. 

The RM-ANOVA revealed a significant main effect of velocity, 
with a large effect size (F2,54 = 5.09, P = 0.009, n2 

p = 0.16). Post hoc 
analysis indicated significant, medium-to-large differences in 
MEP amplitudes between static and CT-optimal (slow) touch 
(0.036 ± 0.016 vs.−0.050 ± 0.013; P = 0.005, Cohen’s d = 1.10), and 
between CT-optimal (slow) and fast stroking (0.013 ± 0.018; 
P = 0.029, Cohen’s d = 0.75). Such a difference was not significant 
between static and fast touch (P = 0.406, Cohen’s d = 0.25). 
Neither the main effects of muscle and body site nor the 
interaction effects were significant (all F < 3.50, all P > 0.071) (see 
Supplementary Table 1 for further details on the results). To sum 
up, these findings pointed to lower MEP amplitudes for CT-optimal 
(slow) velocity compared to non-CT-optimal velocities, detected 
in both the muscles and regardless of the body site (Fig. 2). 

Correlation analyses 
A strong, negative correlation emerged between the ATS index 
for the FDI muscle and the MAIA emotional awareness scale 
(r = −0.58, P = 0.001). The same correlation was not significant for 
the ECR muscle (r = −0.02, P = 0.930). These results indicated that 
the more participants used their bodily cues to be aware of their 
emotional states, the greater the MEP suppression in the FDI for 
CT-optimal compared to non-CT optimal velocities (Fig. 3). 

The ATS indexes did not significantly correlate with the MAIA 
trusting scale (all r < |0.35|, all P > 0.073), nor with the selected
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Fig. 2. Barplot of MEP amplitudes. The two panels represent the 
Z-standardized MEPs recorded from the ECR and FDI muscles. Error bars 
represent SEM. 

TEAQ scales (all r < |0.22|, all P > 0.282) (see Supplementary Table 2 
for further details on the correlation results across all question-
naire scales). 

Discussion 
This study investigated whether observation of interpersonal 
touch applied at CT-optimal vs. non-CT-optimal velocities might 
affect motor resonance, defined as the covert activation of the 
motor system, measured via MEPs. We also tested the direction of 
motor resonance to observed touch, specifically whether it results 
in CSE facilitation, leading to larger MEPs compared to baseline, or 
in CSE suppression, manifesting as smaller MEPs. For this purpose, 
we used spTMS to measure CSE while participants observed video 
clips depicting interpersonal touch events with different stroking 
velocities. We then explored whether individual differences in 
touch experiences and attitudes, as well as in interoceptive 
awareness, are related to motor resonance to interpersonal touch. 

Motor resonance to interpersonal touch was modulated by 
stroking velocities, with a decrease in CSE when vicarious touch 
was delivered at CT-optimal (slow) velocity compared to both 
static and fast touch. These results suggest that motor cortex 
activation can distinguish CT-optimal stroking during the obser-
vation of reception and delivery of interpersonal touch (Morrison 
et al. 2011a), resulting in a modulation of CSE in the arm muscles. 
The sensitivity of the primary motor cortex to the observation of 
affective touch may seem in contrast with prior fMRI research 
reporting that passively observing interpersonal touch increased 
the activation in somatosensory and socio-cognitive networks but 

not in the M1 (Lee Masson et al. 2018). However, that study did not 
systematically explore a preference for CT-optimal touch, which 
we have observed here. 

Motor resonance during action observation typically manifests 
as facilitation of CSE, which is held to reflect the internal simula-
tion of the model’s movement (Naish et al. 2014). Thus, regarding 
the modulation of motor resonance to interpersonal touch, the 
question is why the CSE decreases specifically for CT-optimal 
stroking. Interestingly, the decrease in MEP amplitude during the 
observation of CT-optimal (slow) compared to both static and fast 
touch represents an opposite pattern compared to the typical 
inverted-U-shaped trend widely documented for CT-fiber firing 
and pleasantness rating (Löken et al. 2009; McGlone et al. 2014; 
Ackerley 2022). A potential explanation for this result is that 
motor resonance suppression may facilitate somatosensory sim-
ulation of the observed (affective) touch, a mechanism that would 
help individuals capture the hedonic value of CT-optimal stroking 
and “resonate” with others’ affective experiences of being touched 
(Schaefer et al. 2012; Peled-Avron et al. 2016; Lee et al. 2019). 
This hypothesis is in line with extensive research documenting 
the contribution of somatosensory networks to vicarious touch 
(Keysers et al. 2004; Keysers et al. 2010; Bolognini et al. 2011; 
Bolognini et al. 2012; Peled-Avron et al. 2019; Rigato et al. 2019a). 
Notably, a similar inhibition of CSE has been documented while 
participants witnessed the delivery of a painful tactile stimulation 
(i.e. a syringe injection) to the hand of a model compared to 
when they observed the delivery of a neutral tactile stimulus (i.e. 
Q-tip touch) (Avenanti et al. 2005; Avenanti et al. 2006; Avenanti 
et al. 2010; Vitale et al. 2023). Conversely, the same experimental 
conditions were shown to be associated with an activation of S1 
and posterior parietal cortex (Bufalari et al. 2007; Costantini et al. 
2008), but no activation differences were found in the primary 
motor cortex (Lamm et al. 2011; Fallon et al. 2020). This literature 
on pain observation suggests that the simultaneous inhibition of 
primary motor representations and activation of somatosensory 
areas may play a role in encoding the sensory and affective 
features of the observed bodily sensations (Bufalari and Ionta 
2013). 

In a similar vein, the somatosensory simulation might be pri-
oritized over the motor simulation of the observed touch as it 
is the touchee’s experience to determine whether the stroking 
is perceived as pleasant, adequate to the context, and matched 
to the toucher’s purpose, thus providing more information than 
vicarious execution to infer affective and social values conveyed 
by interpersonal touch (Kirsch et al. 2018; Sailer and Leknes 
2022). This prioritization of somatosensory simulation might hint 
at inhibitory connectivity between S1 and M1 (Solodkin et al. 
2004), which has been shown to contribute to motor inhibition 
during motor imagery (Guillot et al. 2012). Accordingly, a recent 
study (Oldrati et al. 2021) showed that inhibiting neural activ-
ity of S1 with repetitive TMS boosted CSE facilitation during 
motor imagery. The decrease in CSE observed here might thus 
reflect the processing of somatosensory features in S1 (Valchev 
et al. 2017), leading to the inhibition of motor simulation in M1. 
However, while these processes may seem complementary and 
closely related, the present study did not provide direct evidence 
of causal inhibitory interactions between M1 and somatosensory 
areas during the observation of affective touch. Future research is 
needed to investigate these interactions further. 

No differences were found between hairy (i.e. hand dorsum) 
and glabrous (i.e. palm) skin sites, which are differently innervated 
by CT fibers (Ackerley et al. 2014b), but see also (Watkins et al. 
2021). On one hand, this result confirms our experimental setup
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Fig. 3. Scatterplots of correlation between emotional awareness (MAIA subscale) and ATS index for the ECR and FDI muscles. Dots represent observations; 
the dotted black line represents the regression line; the shaded gray area represents 95% confidence interval. 

that participants were exposed to similar movements on both 
skin sites, which were chosen to be matched in terms of size, 
thus ruling out that our findings could be influenced by different 
kinematics for touch delivery on the hand dorsum or the palm. 
On the other hand, this finding supports the idea that the motor 
system is attuned to the execution of CT-optimal touch but not 
to the body site on which the touch was delivered. Accordingly, 
we can speculate that this information may be more effectively 
retrieved by somatosensory simulation of the observed touch, as 
evidenced by previous research showing dissociable somatosen-
sory responses to touch on hairy and glabrous skin ( Schirmer et al. 
2022). Moreover, overlapping somatosensory activation patterns 
between felt and observed touch were found to encode informa-
tion about the location of touch (Smit et al. 2023). 

Higher reliance on bodily cues to be emotionally aware was 
associated with greater motor suppression for CT-optimal com-
pared to non-CT-optimal velocities. This correlation could be 
interpreted within the earlier mentioned speculation, namely, 
that suppression of motor resonance to affective touch might aid 
in understanding the touchee’s feelings during vicarious inter-
personal touch. Since simulation processes are rooted in their 
own embodied representations of the observed action (Gallese 
and Ebisch 2013), it could be that participants more aware of 
their bodily signals are better able to perceive the observed touch 
as if they were the touchee and may benefit from a suppres-
sion of motor resonance to facilitate somatosensory simulations. 
Consistently, previous research has shown that individuals with 
higher levels of interoceptive awareness exhibit greater responses 
in somatosensory areas for vicarious touch perception (Adler and 
Gillmeister 2019). In a related study, Bellard et al. (2023) reported 

that, after inhibition of the somatosensory area, the higher the 
liking to be touched, the higher the levels of emotional aware-
ness. Interoceptive awareness may thus partially account for the 
variability in vicarious touch experience and the inhibitory motor 
output found here. Overall, our result adds to previous literature 
pointing to a link between vicarious touch and interoceptive 
awareness (Schaefer et al. 2013; Lamm et al. 2015; Peled-Avron 
et al. 2016; Peled-Avron et al. 2019; Smit et al. 2023). 

It should be noted though that this correlation was found to 
be significant for the FDI but not for the ECR muscle. The FDI, 
as a distal muscle and part of the hand, is directly involved in 
touch actions. Therefore, it might provide more feedback about 
the motor intentions of the toucher, which could be decreased 
for CT-optimal touch to facilitate somatosensory simulation. On 
the other hand, the main analysis did not highlight an interaction 
effect of muscle with velocity, suggesting that the quadratic rela-
tion between MEP amplitudes and velocities was similar for the 
two muscles. Previous research has indicated that a nonmuscle-
specific modulation of motor resonance might reflect rapid and 
automatic processing related to social and emotional functioning 
(Lepage et al. 2010). The absence of this muscle specificity, how-
ever, could be due to the methodological choice to assess CSE well 
after the video onset. While this choice ensured that participants 
were exposed to the full unfolding of the action, it limited our 
ability to disentangle different stages of CSE modulation (Naish 
et al. 2014). 

To the best of our knowledge, this was the first study investi-
gating motor resonance to observations of affective touch. Nev-
ertheless, limitations must be acknowledged when interpreting 
the results of this study. First, the speculations advanced to
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explain our results need to be confirmed and further explored in 
wider samples. Specifically, the hypothesis that a decrease in CSE 
would facilitate understanding the somatosensory consequences 
of the observed touch should be directly tested in future research, 
e.g. testing somatosensory-evoked potentials vs. MEPs (Galvez-
Pol et al. 2020). In a similar vein, this speculation does not exclude 
that the motor suppression mechanism described here might 
influence vicarious experience of touch at higher representa-
tional levels rather than at early sensorimotor cortices (Kilteni 
et al. 2021; Smit et al. 2023). Although we manipulated stroking 
velocities as the main parameter to distinguish CT-optimal vs. 
non-CT-optimal touch, we cannot exclude that other touch fea-
tures, such as the perceived naturalness of the touch (Lee Masson 
and Op de Beeck 2018), might also influence motor resonance. 
Including control comparison conditions, such as observing CT-
optimal speed movements without tactile interaction or observing 
CT-optimal touch delivered on inanimate objects, would help 
disentangle which motor and tactile features of CT-optimal touch 
are mapped by the motor cortex. The absence of these control 
conditions limits the extent to which we can claim a selec-
tive sensitivity of the motor cortex to affective touch. To dis-
entangle specific stages of CSE modulation and muscle-specific 
effects, future studies may explore the distinct contributions of 
emotional reactivity and motor simulation to vicarious touch by 
investigating different time windows (Borgomaneri et al. 2012; 
Finisguerra et al. 2021). Moreover, even though the videos adopted 
here were previously validated and adopted to assess vicarious 
pleasantness, we did not ask participants to rate pleasantness 
for the observed touch. How motor simulation processes may 
influence mechanisms of touch execution appraisal should be 
examined in future research. Although the adoption of videos 
showing static touch represented an ecological condition and 
aligned with previous research (Bellard et al. 2022; Bellard et al. 
2023; Butti et al. 2024), in the future, comparing slow, CT-optimal 
touch with videos displaying very slow touch (e.g. 0.5 cm/s) could 
provide further insights into the CT-specific modulation of motor 
resonance. An a priori power analysis was conducted to determine 
the appropriate sample size for the primary aim of the study, 
which was to compare motor resonance to touch delivered at CT-
optimal and non-CT-optimal velocities. A medium-to-high asso-
ciation was observed between interoceptive awareness and MEP 
modulation; however, the study may have been underpowered to 
detect smaller correlations. Lastly, previous research consistently 
documented sex differences in the perception of affective touch 
(Russo et al. 2020). Although relatively balanced, the sample of 
this study was too small to explore sex and gender differences in 
motor resonance to vicarious touch, which should be explored in 
future research. 

In conclusion, this study provides novel insights into the 
neural mechanisms underlying motor resonance in response 
to the observation of affective touch. Our findings highlight 
a unique modulation of motor system activity, particularly a 
decrease in CSE when observing CT-optimal touch as opposed 
to non-CT-optimal velocities. This suggests a selective sensitivity 
of the motor cortex to affective, CT-optimal touch, potentially 
facilitating somatosensory simulation over motor simulation of 
the observed touch. The significant correlation found between 
emotional awareness and motor resonance further underscores 
the intricate relationship between interoceptive awareness and 
the processing of vicarious touch experiences. These results 
contribute to a deeper understanding of the complex interplay 
between motor and somatosensory systems in social touch 
perception and emphasize the importance of affective touch in 

human social interactions. Future research should aim to explore 
these mechanisms further, particularly how these processes 
integrate with the emotional and cognitive aspects of touch 
perception. This study not only advances our understanding of 
the neural basis of social touch but also opens new avenues for 
investigating the role of affective touch in social cognition and 
emotional empathy. 
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