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The threat to global food security of stagnating yields and population growth makes increasing crop productivity a critical goal
over the coming decades. One key target for improving crop productivity and yields is increasing the efficiency of
photosynthesis. Central to photosynthesis is Rubisco, which is a critical but often rate-limiting component. Here, we present
full Rubisco catalytic properties measured at three temperatures for 75 plants species representing both crops and
undomesticated plants from diverse climates. Some newly characterized Rubiscos were naturally “better” compared to crop
enzymes and have the potential to improve crop photosynthetic efficiency. The temperature response of the various catalytic
parameters was largely consistent across the diverse range of species, though absolute values showed significant variation in
Rubisco catalysis, even between closely related species. An analysis of residue differences among the species characterized
identified a number of candidate amino acid substitutions that will aid in advancing engineering of improved Rubisco in crop
systems. This study provides new insights on the range of Rubisco catalysis and temperature response present in nature, and

provides new information to include in models from leaf to canopy and ecosystem scale.

In a changing climate and under pressure from a
population set to hit nine billion by 2050, global food
security will require massive changes to the way food is
produced, distributed, and consumed (Ort et al., 2015).
To match rising demand, agricultural production must
increase by 50 to 70% in the next 35 years, and yet the
gains in crop yields initiated by the green revolution are
slowing, and in some cases, stagnating (Long and Ort,
2010; Ray et al., 2012). Among a number of areas being
pursued to increase crop productivity and food pro-
duction, improving photosynthetic efficiency is a clear
target, offering great promise (Parry et al., 2007; von
Caemmerer et al., 2012; Price et al., 2013; Ort et al.,
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2015). As the gatekeeper of carbon entry into the bio-
sphere and often acting as the rate-limiting step of
photosynthesis, Rubisco, the most abundant enzyme on
the planet (Ellis, 1979), is an obvious and important
target for improving crop photosynthetic efficiency.

Rubisco is considered to exhibit comparatively poor
catalysis, in terms of catalytic rate, specificity, and CO,
affinity (Tcherkez et al., 2006; Andersson, 2008), leading
to the suggestion that even small increases in catalytic
efficiency may result in substantial improvements to
carbon assimilation across a growing season (Zhu et al.,
2004; Parry et al., 2013; Galmés et al., 2014a; Carmo-
Silva et al., 2015). If combined with complimentary
changes such as optimizing other components of the
Calvin Benson or photorespiratory cycles (Raines, 2011;
Peterhansel et al., 2013; Simkin et al., 2015), optimized
canopy architecture (Drewry et al., 2014), or introduc-
ing elements of a carbon concentrating mechanism
(Furbank et al., 2009; Lin et al., 2014a; Hanson et al.,
2016; Long et al., 2016), Rubisco improvement presents
an opportunity to dramatically increase the photosyn-
thetic efficiency of crop plants (McGrath and Long,
2014; Long et al., 2015; Betti et al., 2016). A combination
of the available strategies is essential for devising tai-
lored solutions to meet the varied requirements of dif-
ferent crops and the diverse conditions under which
they are typically grown around the world.

Efforts to engineer an improved Rubisco have not yet
produced a “super Rubisco” (Parry et al., 2007; Ort et al.,
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2015). However, advances in engineering precise changes
in model systems continue to provide important devel-
opments that are increasing our understanding of Rubisco
catalysis (Spreitzer et al., 2005, Whitney et al., 2011a,
2011b; Morita et al., 2014; Wilson et al., 2016), regulation
(Andralojc et al., 2012; Carmo-Silva and Salvucci, 2013;
Bracher et al., 2015), and biogenesis (Saschenbrecker et al.,

[AU:2] 2007; Sharwood and Whitney, 2008; Lin et al.,, 2014b;

Hauser et al., 2015; Whitney et al., 2015).

A complementary approach is to understand and
exploit Rubisco natural diversity. Previous characteri-
zation of Rubisco from a limited number of species has
not only demonstrated significant differences in the
underlying catalytic parameters, but also suggests that
further undiscovered diversity exists in nature and that
the properties of some of these enzymes could be ben-
eficial if present in crop plants (Carmo-Silva et al,
2015). Recent studies clearly illustrate the variation
possible among even closely related species (Galmés
et al., 2005, 2014b, 2014c; Kubien et al., 2008; Andralojc
et al., 2014; Prins et al., 2016).

Until recently, there have been relatively few attempts
to characterize the consistency, or lack thereof, of tem-
perature effects on in vitro Rubisco catalysis (Sharwood
and Whitney, 2014), and often studies only consider a
subset of Rubisco catalytic properties. This type of char-
acterization is particularly important for future engi-
neering efforts, enabling specific temperature effects to be
factored into any attempts to modify crops for a future
climate. In addition, the ability to coanalyze catalytic
properties and DNA or amino acid sequence provides the
opportunity to correlate sequence and biochemistry to
inform engineering studies (Christin et al., 2008; Kapralov
et al., 2011; Rosnow et al., 2015). While the amount of
gene sequence information available grows rapidly with
improving technology, knowledge of the corresponding
biochemical variation resulting has yet to be determined
(Cousins et al., 2010; Carmo-Silva et al., 2015; Sharwood
and Whitney, 2014; Nunes-Nesi et al., 2016).

This study aimed to characterize the catalytic prop-
erties of Rubisco from diverse species, comprising a
broad range of monocots and dicots from diverse en-
vironments. The temperature dependence of Rubisco
catalysis was evaluated to tailor Rubisco engineering
for crop improvement in specific environments. Cata-
lytic diversity was analyzed alongside the sequence of
the Rubisco large subunit gene, rbcL, to identify po-
tential catalytic switches for improving photosynthesis
and productivity. In vitro results were compared to the
average temperature of the warmest quarter in the re-
gions where each species grows to investigate the role
of temperature in modulating Rubisco catalysis.

RESULTS
Variability in Rubisco Catalysis across Plant Species

Diversity in Rubisco catalytic properties determined
at 20, 25, and 30°C was measured across 75 species

belonging to 10 families, expanding the range of pre-
viously characterized Rubiscos (Fig. 1; full data set
available in Supplemental Table S1). This is the largest
data set of complete Rubisco catalytic properties pro-
duced to date. ANOVA revealed significant differences
in carboxylation efficiency (k. /K."; Supplemental
Fig. S1) and specificity (Sc,o; Supplemental Fig. S2).
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Figure 1. Range of Rubisco carboxylation rate (k. A), Michaelis-
Menten constant for CO, (K,; B), and specificity factor (S¢,,; C) at 20, 25,
and 30°C. The range of values previously reported for C, plants in the
literature at 25°C (Lit 25°C) is shown for reference. Literature data are from
a survey of publications available as of January 2016. Box plot lines
represent the median value and the 10, 25, 75, and 90th percentiles.
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Carboxylatlon rates (k) at 25°C ranged from 1. 9 s~

Yin Euphorbia helioscopia (Euphorbiaceae) to 7.1 ™' in
the C,-photosynthesis type annual grass Eragrostis tef
(Poaceae). Affinity for CO, was highest in rice (Oryza
sativa ssp. indica; K. =7 um at 25°C) and lowest in C,
grasses included in this study (K. ~34-37 um, E. tef and
Panicum spp.). Across the diverse group of species an-
alyzed, the CO,/O, specificity (S¢,o) showed a large
range of values, from a 25°C high of 111 in the grass Poa
palustris (Poaceae) to a low of 82 in the C, dicot Chrys-
anthellum indicum (Asteraceae). C; plants surveyed
ranged in S¢,, from 111 to 91. Catalytic values gener-
ally agreed with previously reported ranges (Ishikawa
et al., 2011; Galmés et al., 2014b; Occhialini et al., 2016).

Modeling of leaf photosynthesis shows that the direct
replacement of native Rubisco in a crop, such as soy-
bean (Glycine max), with two high-performing monocot
Rubiscos would support significant improvements of
leaf-level photosynthetic rates at current atmospheric
CO, levels and high irradiance (Fig. 2). Photosynthesis
improvement was particularly evident at low internal
CO, concentrations when leaf photosynthesis is typi-
cally limited by Rubisco activity.

Linking rbcL Sequence Variation with Rubisco
Biochemical Diversity

Accompanying the biochemical analysis of a large
range of species with an analysis of variation in the
highly conserved chloroplast rbcL gene, which encodes
the catalytic subunit of Rubisco, provides the oppor-
tunity to identify amino acid replacements potentially

40

35 4
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—Glycine max
Poa palustris
-Puccinellia maritima

0 200 400 600 800
Ci (pbar)

Figure 2. Potential photosynthetic improvement in soybean that would
result from replacement of native Rubisco with Rubisco from P. palustris
(yellow) or Puccinellia maritima (brown) at 25°C. Rates of net CO, as-
similation (A) were derived from the model of Farquhar et al. (1980) as
detailed by von Caemmerer (2000) and using in vitro measurements of
Rubisco catalysis. Modeling assumed: Rubisco content = 30 umol m~%;
Ry=0.015 X V. =1.75 X Ve and O, = 21%.

c,max’ J
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responsible for changes in Rubisco catalysis. Positive
selection analysis identified residue positions that were
correlated with particular catalytic properties, namely,
high carboxylation efficiency (k_,,*/K.*"), high k_,,, low
K™, and high S- . Five Rubisco large subunit residues
were associated with changes in particular catalytic
characteristics across the 75 species data set (Fig. 3),
with at least one residue linked to each parameter. The
full list of residue positions under positive selection,
their structural location, and possible molecular inter-
actions is provided in Supplemental Table S2.

Importantly, in a large analysis of sequence diversity
alongside catalytic properties, phylogenetically distant
species may have acquired similar changes in Rubisco
catalysis via different amino acid substitutions, which
makes finding common catalytic switches difficult.
Thus, a subsequent separate analysis of the monocot
and dicot species subsets (1 = 39 and 36, respectively)
was conducted. Different sets of residues associated
with catalytic changes were highlighted for these two
groups with little overlap (Fig. 3, A and B). Among the
six residues found within the monocots, three positions
were linked to high carboxylation efficiency, one to
high Si 5 and two to low K. In the dicot subset
analysis, two residue posmons were associated with
high catalytic rates (k_,"), while a further residue posi-
tion was linked to high carboxylation efficiency (k_,, /
K alr)

Correlations between Catalytic Parameters at a Range
of Temperatures

Using phylogenetically independent contrast analy-
ses, correlation coefficients between catalytic parame-
ters for each measurement temperature were calculated
(Fig. 4). The classical trade-off between increasing k.,
and decreasing CO, affinity (increased K_ or K*") was
evident (Tcherkez et al., 2006). However, the signifi-
cance and strength of this correlation varied at the dif-
ferent measurement temperatures examined. At 20 and
25°C, the strength and significance was high (P = 0.01),
while at 30°C, there was no significant correlation be-
tween increasing k¢ and CO, affinity (K. or K.*"). Sc/o
correlated positively with kCat , K, and K", most sig-
nificantly at 20 and 25°C, and negatlvely Swith carbox-
ylation efficiency at 25°C. The relationship between k_,,
and carboxylation efficiency was notably inconsistent
across the three measurement temperatures.

To explore how climate may correlate with Rubisco
catalysis in diverse species, the temperature of the
warmest quarter of the year (Tyo) where each species
grows served as a proxy for conditions during the main
part of the growing season. Tyyq was negatively corre-
lated with S., measured at 20 and 30°C (at 25°C the
correlation was not significant; Fig. 4), indicating that
Rubisco from species growing in higher temperature
climates had lower S . Oxygenation parameters (K,
and V) consistently showed a significant positive cor-
relation with Ty, Carboxylation efficiency was
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AAs - all species AAs - Monocots only Catalysis at 25 °C
142 183 189 262 449 95 99 142 183 251 B Kc”'-i
- Y N 4 21

Group 1 97 Puccinellia maritima
100 Puccinellia lemmonii
55 Puccinellia distans
Puccinellia nuttaliana
Deschampsia danthanoides
Poa palustris
Arctagrostis latifolia
Calamagrostis inexpansa
Calamagrostis foliosa
Agrostis stolonifera
Agrostis scabra
Calamagrostis nutkaensis
Calamagrostis arundinacea
Calamagrostis canescens
Festuca gigantea
Festuca pratensis
Lolium multifiorum
63 L—Lolium rigidum
Elymus farctus
Bromus anomalus
82 g2 — Triticurn aestivum
66 Triticum baeoticum
100 Hordeum brachyantherum
99 Hordeum murinum
60 —Panicum phragmitoides
100 Panicum amarum
87 Panicum dichotomiflorum
Eragrostis tef
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100 70 Oryza nivara
63 Oryza glaberrima
Oryza sativa ssp. Indica
96 Oryza eichingeri
Oryza gluaepatula
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Oryza sativa spp. Japonica
86 Oryza punctata
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Figure 3. Tree diagram illustrating Rubisco large subunit amino acid positions under positive selection linked to superior Rubisco
properties in monocot species (A) and dicot species (B). Eff, Carboxylation efficiency (k. /K.*". Color highlighting indicates
amino acid substitutions at residues that are under positive selection along phylogenetic tree branches leading to species with
particular catalytic properties (e.g. high k_,,). Dashed green lines indicate species groupings for analysis of temperature response.
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: Figure 4. Correlation coefficients of phylogeneti-

A 20¢ Ko KCM" Ko " Vo SC'O._ kca‘ch?i" TWQ“_ caglly independent contrasts ca]cu[ate(?fg/r Rgubisco
Keat® 0.730 0.312 -0.342 -0.104 _0.339 0.662 0.775 catalytic parameters of 75 species, using data from
Ke 0762 05297  0.22% 0.209 -0.885™ 0.538™ measurements at 20, 25, or 30°C. Significant cor-
K" 0.025 -0.265° 0519  -0.901™ -0.059 relations are marked: ***P < 0.001, **P < 0.01,
Ko 0.941""  -0.038 -0.132 0.742™ and *P < 0.05.
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Vo -0.231" 0.795™ 0.637™

Seio 0173  -0.233"

Koat K" 0.115

negatively correlated with Tyq at 20 and 25°C, but the
correlation was not 51gn1f1cant for measurements at 30°
C.

Temperature Response of Rubisco Catalysis

To examine the consistency of catalytic changes in
response to temperature, the 75 species examined were
divided into five natural groups based on their phylo-
genetic relationships (indicated in Fig. 3). A summary
of the catalytic properties for each group at each tem-
perature is shown in Table I, and nonlinear regression
analysis was used to assess the groups and species
variation in temperature response (Supplemental Fig.
S3). There was variation in the temperature response of
Rubisco catalysis for the diverse species and groups
analyzed, but the trend of the response was consistent.
The response of each catalytic property to temperature
in soybean is provided as a representative example (Fig.
5). Group 3 consisted of a range of dicots, including
Nicotiana tabacum and Artemisia spp., and could be fitted
with a single model that explained temperature re-

sponse of k" for the whole group (i.e. there was no

significant difference in temperature response of k_,*
between the species within group 3). For the other
groups and individual species, the temperature re-
sponse of k_,,” was similarly explained by a linear model
and, while individual species displayed a consistent
slope for the model generated, significant variation in
the intercept prevented the generation of a single model
to explain the entire group. These results show that the
relative increase in k, with temperature was consis-
tent, despite the 51gn1f1cant variation in absolute values
within groups.

A group level model for K *” could be fitted to groups
2 and 3, but not groups 1, 4, and 5. Bach of the 75 species
was modeled with a similar quadratic function; how-
ever, only groups 2 and 3 could have all its members
statisticaily explained by a single model. K *" increased
with temperature and the rate of increase was lower
above 25°C, reflected in the representative function
shown in Figure 5A. As mentioned above, S, de-
creased with temperature. Consistent with previous
data, this decrease was nonlinear and for each species/
group was best described by a quadratic function. The
decrease in S¢, was generally greater between 20 to

Figure 3. (Continued.)

Group 1, monocots, Poaceae/Musaceae (n = 39); group 2, Amaranthaceae (n = 5); group 3, Asteraceae/Solanaceae (n = 5); group
4, Euphorbiaceae/Curcubitaceae (n = 8); group 5, Fabaceae (n = 18).
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Table 1. Key Rubisco catalytic parameters for five phylogenetic groups

ke, Maximum carboxylation rate; K", Michaelis-Menten constant for CO, at atmospheric levels of O, (21%); S¢,, specificity for CO, versus O,.

cat 7

For details of the species within each group, see Figure 3. Values are means * st of the mean (n as indicated).

kcat( (Sil) Kcair (/J’M> Sc/o
Group  n . . . . . . . . .
20°C 25°C 30°C 20°C 25°C 30°C 20°C 25°C 30°C
1 34 2301 37*x02 57*x03 194x09 286=x12 344=x17 1149x08 1047 0.6 92.6 0.5
2 5 23*02 39*x03 56=*x01 148=*x17 31.0x29 401=*x36 1102=*x19 99.4 £2.2 86.8*09
3 4 23*01 40*x03 72*x03 188=*x39 395*x45 526=*83 110.0*+44 1013 =31 885=*19
4 8 19x01 3.1*x03 48=*x03 164=*x22 274*x19 30318 107.2=*1.1 99.8 £1.6 92113
5 18 19x01 32*x02 52*x02 158=x10 259=*x13 33.1*x24 1077 1.1 97.6 £ 1.2 872 1.1

25°C than 25 to 30°C (Fig. 5B). In group 3, this response
was reversed (greater decrease between 25 and 30°C).
Carboxylation efficiency (k,, /K. *") was also described
by a quadratic model with efficiency being highest at
20 and 30°C, and consistently lower at 25°C. Though
the drop in efficiency around 25°C varied between
species and groups, the quadratic effect was consistent
across the range of species, with variation evident in
both the slope and intercept of the functions generated
(Supplemental Fig. 54).

DISCUSSION

Significant Variation in Rubisco Catalysis among
Diverse Species

This study represents the largest single survey of
Rubisco catalysis to date. A large number of studies
have previously described Rubisco catalysis (for re-
view, see Parry et al., 2007, 2013; Whitney et al., 2011b;
Carmo-Silva et al., 2015). However, this still represents
a very small fraction of known lands plants (approxi-
mately 0.2% based on current literature). Unfortu-
nately, many studies have also only partially
characterized Rubisco catalysis, with specificity (S¢ )
in particular lacking from most available datasets
(Sharwood and Whitney, 2014). This study dramati-
cally expands upon our knowledge of Rubisco catalytic
variability through full characterization of 75 plant
species and provides a large comparative data set to
inform future engineering efforts. The results presented
here reinforce that despite the relatively highly con-
served nature of the Rubisco large subunit gene rbcL
(Kapralov and Filatov, 2007; Wang et al., 2011), key
catalytic parameters vary significantly across diverse
plant taxa. Carboxylation rates in particular varied by
almost 3-fold at 25°C. Leaf scale modeling predicted
that direct replacement strategies using newly charac-
terized Rubiscos could substantially improve maxi-
mum photosynthetic capacity, though this will likely
require further advances in our ability to test foreign
Rubiscos in tobacco-based systems (Whitney et al.,
2011a). Nevertheless, this demonstrates the potential
gains in photosynthetic capacity through Rubisco sub-
stitution. This data set characterizing a broad range of
species at multiple temperatures will also be of use in
modeling of photosynthesis at different scales (Smith

6

and Dukes, 2013) and complement in planta studies
seeking to adapt models of various scales for the in-
creased temperatures expected in many regions in the
coming decades (Bagley et al., 2015).

Targeting Improvements through Mutagenesis

The large subunit of Rubisco, encoded by the chlo-
roplast rbcL gene, contains the catalytic sites and is
believed to be primarily, though not solely, responsible
for the catalytic profile of the holoenzyme (Sharwood
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et al., 2008). A number of residues were identified that
warrant mutagenic testing in model systems, including a
number of new candidates not previously highlighted.
The residues identified differed dependent on the set of
species included in the analysis, demonstrating the need
to consider the phylogenetic background of a target
Rubisco when determining the potential impact of point
mutations. It may also signify the diversity of catalytic
solutions found by nature and the likely difficulty in
finding a “one size fits all” approach to targeted im-
provement of Rubisco. There is also some evidence for a
role of the small subunit in explaining some of the cat-
alytic variation found in nature, though further investi-
gation in this area is required (discussed below).
Potential unintended effects on assembly could be a
factor when mutating residues known to be involved in
interactions between the large and small subunits.
Careful consideration must also be given to avoiding
effects on holoenzyme assembly and compatibility with
ancillary proteins or assembly chaperones (Carmo-Silva
et al., 2015; Whitney et al., 2015). This presents a prom-
ising avenue for future work in model systems, testing
these residues either singly or in combination, with
previous studies having shown strong potential for
modifying Rubisco catalysis with targeted amino acid
substitutions (Whitney et al., 2011b).

The Effect of Temperature on Rubisco Catalysis

Few studies have explored the effect of temperature
on Rubisco catalysis beyond model species (Sharwood
and Whitney, 2014; Sharwood et al., 2016) and none at
the scale of this study. Recent work has begun to make
important inroads into this area (Perdomo et al., 2015;
Prins et al., 2016). Analysis of the correlations between
parameters at the three measurement temperatures
largely agreed with previous observations regarding
the trade-off between increasing carboxylation rate
(k) and decreasing CO, affinity (increasing K.:").
However, the tight linking of these parameters was not
evident at 30°C. This “uncoupling” at higher tempera-
tures suggests the possibility of finding superior
Rubiscos for operating at relatively high temperatures.
This study found a negative correlation between
warmer climates and specificity (Sc,o). Galmés et al.
(2005) found that in hot and dry conditions in the
Mediterranean, this correlation was positive, with high
Rubisco specificity found for plants from this region.
This suggests a more complex relationship between
climate and Rubisco specificity that is not solely based
on temperature, but also needs consideration of addi-
tional climatic data such as precipitation.

Higher temperature environments (Ty) did not
consistently correlate with carboxylation parameters
across assay temperatures, but did correlate with in-
creasing K, and V. The observed correlations suggest
that Rubiscos from warmer climates are less efficient at
lower temperatures. Fitting mathematical models to the
response of key parameters to measurement
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temperature resulted primarily in nonlinear models,
the exception being carboxylation rate (k). The type
of model that best explained temperature response of
each parameter was consistent across species, though
variation in the absolute values for each species largely
prevented fitting a single model to the species group-
ings. In many cases, species within a group had parallel
responses. This provides important new insights on the
response of Rubisco catalysis to temperature and its
consistency across diverse species, while further high-
lighting the diversity of catalysis. It is important to note
that a number of plant groups such as trees and basal
angiosperms remain either underrepresented in bio-
chemical data sets or have only just begun to be sur-
veyed (Galmés et al., 2014b) and provide potential areas
where additional valuable information can be gleamed
from characterization. Data are also lacking for crop
species, with few represented in the literature and often
with incomplete characterization. This is an important
gap in our knowledge that will be important when
targeting improvements to key crops. This study fo-
cused on C; species, and the potential for C, Rubiscos to
respond differently has received increased interest re-
cently (Boyd etal., 2015; Perdomo et al., 2015); however,
there remains a need to characterize more Rubiscos
from C, species for thermal response.

Tailored Solutions Are Required for Optimizing Crop
Carbon Assimilation

The variation in catalysis found during this study
provides important information for future efforts to
engineer improved Rubisco in crops via either re-
placement with a foreign Rubisco (Fig. 2) or point
mutations of the endogenous gene (Fig. 3). In C; plants,
20 to 35°C is considered the optimum temperature
range for photosynthesis (Blankenship, 2014); thus, the
effects of temperature on Rubisco catalysis should be
considered so that an appropriate Rubisco suited to the
growth environment can be engineered (Galmés et al.,
2014a, 2015; Sharwood and Whitney, 2014). The sub-
cellular environment of the crop is also an important
factor; it has been suggested that diversity in Rubisco
catalysis may have evolved, at least partly, as a conse-
quence of the variability found in the subcellular envi-
ronment of different plant leaves (Tcherkez et al., 2006;
Galmés et al., 2014c). This remains an important area
requiring investigation through the use of model sys-
tems such as tobacco and an important consideration
for coengineering improved Rubisco catalysis along-
side large anatomical changes, e.g. the conversion of C,
crops to C, photosynthesis (Driever and Kromdijk,
2013). Direct replacement of Rubisco will also likely
necessitate coengineering of ancillary proteins to ach-
ieve maximum results, as demonstrated recently
through work with the cochaperone RAF1 (Whitney
et al., 2015). The recent introduction of a faster cyano-
bacterial Rubisco that could sustain higher photosyn-
thetic rates, albeit at high CO, concentrations (Lin et al.,
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2014b; Occhialini et al., 2016), confirms the feasibility
and potential of interspecies Rubisco substitutions.

The interaction of large and small subunits and the
potential of the small subunit to influence catalysis also
warrant further investigation. For example, in a recent
study of close relatives of wheat (Triticum aestivumy), the
observed variability in catalysis appears unlikely to be
related to differences in rbcL. and may be the result of
differences in Rubisco small subunit gene (rbcS) se-
quence (Prins et al., 2016). Wheat is known to contain a
large rbcS family (Spreitzer, 2003); however, for many
species, the number and sequence diversity of rbcS
genes is unknown. The possible influence of environ-
mental conditions on Rubisco small subunit composi-
tion may also need to be considered (Cavanagh and
Kubien, 2014). The introduction of an rbcS gene from
Sorghum into rice showed how the introduction of for-
eign small subunits can alter catalysis (Ishikawa et al.,
2011) and reinforces the need for more information on
the variability of the number, sequence, and expression
of rbcS gene family members from wild species and
crops of interest.

CONCLUSION

This study improves our understanding of the vari-
ability of Rubisco catalysis present in nature. Interro-
gation of this large data set provides new insights as to
the consistency of the response of catalysis to temper-
ature across a broad range of species. Analysis of de-
tailed biochemical characterization alongside sequence
information suggests that targeted mutation of key
residues and/or replacement of crop Rubisco with su-
perior existing enzymes will aid in efforts to engineer
improved carbon assimilation in key crops. This work
highlights the importance of characterizing the bio-
chemistry of Rubisco at a range of key temperatures
alongside sequence information to improve our un-
derstanding of the relationship between structure and
function of this critical enzyme.

MATERIALS AND METHODS
Plant Material

Seeds and plant material were kindly provided by the Royal Botanic Gardens
Millennium Seed Bank (UK); the USDA, Germplasm Resources Information
Network (USDA-GRIN); International Rice Research Institute (IRRI); Mike
Birkett, Yi Chen, Belinda Townsend (Rothamsted Research, UK); Guoxiong
Chen (CAAS, Lanzhou, China); and Mel Oliver (USDA, Plant Genetics Re-
search). Plants were grown in a glasshouse with a 16/8-h day/night cycle with
temperatures of 26/19°C. During the day, supplemental lighting was used to
maintain a minimum light level of 200 umol m ™2 s™". Plants were kept well-
watered. For all analyses, samples of leaf material were taken from young,
healthy plants and immediately snap frozen in liquid nitrogen, then stored
at —80°C.

Climatic Data

Georeferenced coordinates for all species were downloaded from the Global
Biodiversity Information Facility (GBIF.org; accessed June-July 2015), and

climate data (BioClim, worldclim.org/bioclim; Hijmans et al., 2005) were
obtained using DIVA-GIS (diva-gis.org; Hijmans et al., 2001). Due to the in-
completeness of publically available distribution databases (Maldonado et al.,
2015), studies on climate niche typically use species mean values instead of
climatic limits. This study used mean values of the average temperature across
the warmest quarter for each species as a proxy for the main growing season,
when most of the photosynthetic (and hence Rubisco) activity occurs. This
value is referred to as Ty (temperature of the warmest quarter) throughout the
text, and values for each species are listed in Supplemental Table S1.

Rubisco Catalytic Properties

Rubisco was extracted and its catalytic properties determined essentially as
previously described (Prins et al., 2016), with the following alterations: reactions
were carried out in 0% and 21% O, conditions only, with two technical repli-
cates of each of these concentrations; and protein extracts were activated and
assayed immediately after extraction and desalting.

Rubisco Specificity Factor

Rubisco from each genotype was purified essentially as described by Prins
et al. (2016), with the exception that the final Sephacryl S-200 filtration step was
found to be unnecessary for most of the genotypes in this study. Testing con-
firmed that excluding this step did not influence the assay results. Rubisco
specificity (S¢/o) was determined using the oxygen electrode method as de-
scribed (Parry et al., 1989). For each species, at least four replicate measure-
ments were made at each temperature. Values were normalized to a value for
wheat (Triticum aestivum) at each temperature, as described by Parry et al.
(1989).

Rubisco Content

An aliquot of the soluble protein extracted for measuring catalytic constants
was used to determine total Rubisco content by '*C-CABP binding via either the
method of Parry et al. (1997) or Whitney et al. (1999). Testing confirmed that
using one or the other method did not influence the quantification results.

rbcL Sequencing

Genomic DNA was extracted from leaf tissue using the Qiagen DNEasy
plant kit. Amplification of partial rbcL fragments equivalent to codons 1 to
463 (~98% of the coding region) was carried out using Phusion HF polymer-
ase (Invitrogen). Forward primer (5'-TAATTCATGAGTTGTAGGGAGGG-3")
was paired with cp063R (Dong et al., 2013; 5'-TTTCCATACTTCACAAGCAGCA-
GCTAG-3"). PCR products were then sequenced using the following primers (Eurofins
Genomics): DRS19 (5'-GKGYTCCTATTGTAATGCATGACTACTTAAC-3'), rbel._F1
(5"-ATGTCACCACAAACAGAAACTAAA-3'), and 1bcl,_F3 (CCRCCBCAYGGNA-
TYCARG,). At least two independent PCR reactions were performed and had product
sequenced for each genotype. Sequences were submitted to EMBL (see Supplemental
Table S3 for accession numbers).

Rubisco L-Subunit Sites under Positive Selection

DNA sequences of rbcL were aligned using MUSCLE (Edgar, 2004). The
software MODELTEST 3.7 (Posada and Crandall, 1998; Posada and Buckley,
2004) was used to check for the best model before running the phylogenetic
analyses using maximum-likelihood inference conducted with RAXML version
7.2.6 (Stamatakis, 2006). Rubisco amino acid residues under positive selection
associated with particular kinetic traits were identified using codon-based
substitution models in comparative analysis of protein-coding DNA se-
quences within the phylogenetic framework using branch-site tests of positive
selection along prespecified foreground branches in the PAML v.4.7 package
(Yang, 2007) as described (Kapralov et al., 2011, 2012; Galmés et al., 2014b).
Branches leading to species with high or low K, k¢, K,, ke’ and S¢ o at 25°
C were marked as foreground branches. The Rubisco L-subunit residues are
numbered based on the spinach sequence. The location of sites under positive
selection was done using Rubisco protein structure from spinach (Spinacia
oleracea) obtained from the RCSB Protein Data Bank (http:/ /www.rcsb.org; file
1RCX; Karkehabadi et al., 2003).
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Phylogenetically Independent Contrasts

The Pearson correlation coefficient was calculated between pairwise com-
binations of the kinetic parameters K, K™, k., K, V,, and S¢ ¢ at the three
temperatures of measurement. Correlations arising within groups of related
taxa might reflect phylogenetic signal rather than true cause-effect relationships
because closely related taxa are not necessarily independent data points and
could violate the assumption of randomized sampling employed by conven-
tional statistical methods (Felsenstein, 1985). To overcome this issue, tests were
performed for the presence of phylogenetic signal in the data, and trait corre-
lations were calculated with phylogenetically independent contrasts using the
AOT module of PHYLOCOM (Webb et al., 2008) for the species phylogeny
described above. All these tests were considered significant at P < 0.05.

Statistical Analyses

The 75 species were divided into five groups based on phylogenetic rela-
tionships (Fig. 3). To establish the significance of variation between these
groups (and the species within the groups), the variation with temperature for
each group was assessed using nonlinear regression analysis and the fitting of
an asymptotic exponential/simple exponential model. The resulting best
models were plotted. Analysis was carried out using GenStat (VSN Interna-
tional). The five C, species in this study were not included when analyzing
temperature response. With the exception of S¢. ,, all data were transformed via
log function to conform to the assumptions of the analysis.

Accession Numbers

Sequence data from this article can be found in the GenBank/EMBL data
libraries under accession numbers mmm.

Supplemental Material

The following supplemental materials are available.
Supplemental Figure S1. Rubisco carboxylation efficiency (k. /K. ") at
20, 25, and 30°C.

Supplemental Figure S2. Rubisco specificity (S¢,o) at 20, 25, and 30°C.

Supplemental Figure S3. Temperature response of Rubisco catalytic pa-
rameters for the five groups.

Supplemental Table S1. Rubisco catalytic properties for 75 species mea-
sured at 20, 25, and 30°C.

Supplemental Table S2. Rubisco large subunit amino acid positions under
positive selection.

Supplemental Table S3. EMBL accession codes for rbcL sequences.

Supplemental Table S4. Model parameters used for plotting temperature
responses in Figure 5 and Supplemental Figure 3.
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