
Kertesz, A, Kecskemeti, G, Oriol, M, Kotcauer, P, Acs, S, Rodríguez, M, Mercè, 
O, Marosi, AC, Marco, J and Franch, X

 Enhancing Federated Cloud Management with an Integrated Service 
Monitoring Approach

http://researchonline.ljmu.ac.uk/id/eprint/3982/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Kertesz, A, Kecskemeti, G, Oriol, M, Kotcauer, P, Acs, S, Rodríguez, M, 
Mercè, O, Marosi, AC, Marco, J and Franch, X (2013) Enhancing Federated 
Cloud Management with an Integrated Service Monitoring Approach. 
Journal of Grid Computing, 11 (4). pp. 699-720. ISSN 1570-7873 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


JoGC manuscript No.
(will be inserted by the editor)

Enhancing Federated Cloud Management
with an Integrated Service Monitoring Approach

A. Kertesz · G. Kecskemeti · M. Oriol · P. Kotcauer · S. Acs ·
M. Rodŕıguez · O. Mercè · A. Cs. Marosi · J. Marco · X. Franch

Received: date / Accepted: date

Abstract Cloud Computing enables the construction

and the provisioning of virtualized service-based appli-

cations in a simple and cost effective outsourcing to

dynamic service environments. Cloud Federations en-

visage a distributed, heterogeneous environment con-

sisting of various cloud infrastructures by aggregating

different IaaS provider capabilities coming from both

the commercial and the academic area. In this paper,

we introduce a federated cloud management solution

that operates the federation through utilizing cloud-

brokers for various IaaS providers. In order to enable

an enhanced provider selection and inter-cloud service

executions, an integrated monitoring approach is pro-

posed which is capable of measuring the availability

and reliability of the provisioned services in different

providers. To this end, a minimal metric monitoring ser-

vice has been designed and used together with a service

monitoring solution to measure cloud performance. The

transparent and cost effective operation on commercial

clouds and the capability to simultaneously monitor

both private and public clouds were the major design

goals of this integrated cloud monitoring approach. Fi-

nally, the evaluation of our proposed solution is pre-

A. Kertesz, P. Kotcauer, S. Acs, A. Marosi
MTA SZTAKI,
H-1518 Budapest, P.O. Box 63, Hungary
E-mail: {kertesz.attila,kecskemeti.gabor,kotcauer.peter,
acs.sandor,marosi.attila}@sztaki.mta.hu

G. Kecskemeti
Universität Innsbruck, 6020, Innsbruck, Technikerstraße 21a
on leave from MTA SZTAKI
E-mail: gabor@dps.uibk.ac.at

M. Oriol, M. Rodŕıguez, O. Mercè, J. Marco, X. Franch
Universitat Politècnica de Catalunya,
08034 Barcelona, c/Jordi Girona 1-3, Spain
E-mail: moriol@lsi.upc.edu, {nebrios2,oscar.mp10}@g-
mail.com, jmarco@lsi.upc.edu, franch@essi.upc.edu

sented on different private IaaS systems participating

in federations.

Keywords Cloud Computing · Cloud Federation ·
Service Monitoring · Cloud Brokering

1 Introduction

Cloud Computing [5,23] offers simple and cost effec-

tive outsourcing in dynamic service environments and

allows the construction of service-based applications ex-

tensible with the latest achievements of diverse research

areas, such as Grid Computing, Service-oriented com-

puting, business processes and virtualization. Cloud-

based, highly dynamic service environments [11] require

a novel infrastructure that incorporates a high-level mon-

itoring approach to support autonomous, on demand

deployment and decommission of service instances. Vir-

tual appliances (VA) encapsulate a complete software

system (e.g. operating system, software libraries and

the deployable services themselves) prepared for exe-

cution in virtual machines (VM). Infrastructure as a

Service (IaaS) cloud systems provide access to remote

computing infrastructures by allowing their users to

instantiate virtual appliances on their virtualized re-

sources as virtual machines. Nowadays, several IaaS

systems co-exist and they are independently offered by

several public service providers (like Amazon [43] or

RackSpace [49]) or by smaller scale privately managed

infrastructures. Cloud solutions are also spreading fast

in academia with the emerging open-source tools, such

as Eucalyptus [45] and OpenNebula [48,32], but these

solutions can hardly interoperate.

Related works have identified several shortcomings

in the current cloud infrastructures [34]: e.g. federated

clouds face the issue of scalability, self-management and



2 A. Kertesz et al.

lost of complete control on computing costs. The ever

growing user demands call for overextending the bound-

aries of a single cloud system. In these cases, users

need to handle the differences between various cloud

providers and have to negotiate their requirements with

multiple parties. Federated clouds aim at supporting

these users by providing a single interface on which they

can transparently handle different cloud providers, as

they would do with a single cloud system. Therefore it

is essential to construct federated cloud systems that

not only offer a single interface for their users, but also

automatically manage their virtual machines indepen-

dently from the currently applied cloud system. Recent

studies (eg. [12]) have also shown that significant per-

formance differences can be experienced on acquired

virtual resources in Clouds. Therefore an efficient cloud

selection in a federated environment requires a cloud

monitoring subsystem that determines the actual sta-

tus of available IaaS systems.

To overcome these challenges, we propose an archi-

tecture that copes with the varying load of user re-

quests, enables virtualized management of applications,

enhances provider selection, establishes interoperabil-

ity and allows users to reduce their operating costs

by simultaneously exploiting public, academic and pri-

vate cloud systems. This architecture incorporates the

concepts of meta-brokering, cloud-brokering and on-

demand service deployment, supported by a sophisti-

cated monitoring solution. Our architecture serves as

an entry point to the entire cloud federation by provid-

ing transparent service execution for users. Our meta-

brokering component allows the system to interconnect

various cloud-brokers available in the system. It is also

responsible for selecting a proper execution environ-

ment managed by a cloud-broker. This selection process

relies on a sophisticated monitoring component, which

provides up-to-date service availability and infrastruc-

ture reliability based on specific monitoring metrics.

The cloud-broker component is responsible for manag-

ing the virtual machine instances of the particular vir-

tual appliances hosted on a specific IaaS provider. Our

architecture also organizes virtual appliance distribu-

tion with its automatic service deployment component

that can decompose and deliver virtual appliances in

smaller parts.

Therefore the main contributions of this paper are:

(i) a holistic view of interoperable federated clouds with

integrated service monitoring solution managed by a

multi-level resource management architecture, (ii) the

introduction of an incorporated cloud service monitor-

ing solution together with a minimal metric monitoring

service to measure cloud performance on a cost effective

and provider independent way, and (iii) the evaluation

of the proposed integrated monitoring solution on pri-

vate IaaS systems with the help of the minimal metric

monitoring service.

This paper is organized as follows: first, we gather

related works in Section 2. In Section 3, we introduce

our proposed architecture and discuss its main compo-

nents. In Section 4, we introduce the minimal metric

monitoring service, and in Section 5, we present the

evaluation of our approach in different private clouds.

Finally, we conclude our research in Section 6.

2 Related work

In this section we describe the related works relevant

to our findings. First, we describe the different cloud

federation approaches found in the literature, then we

describe the evaluation mechanisms used for calculating

the performance of the cloud as the basis to establish

the most convenient deployment strategies.

2.1 Cloud federation approaches

Cloud federation refers to a mesh of cloud providers

that are interconnected based on open standards to

provide a universal decentralized computing environ-

ment, where everything is driven by constraints and

agreements in a ubiquitous, multi-provider infrastruc-

ture. Next, we summarize the relevant related works in

this field.

Buyya et al. [6] suggest a federation-oriented, just-

in-time, opportunistic and scalable application services

provisioning environment called InterCloud. They en-

vision utility oriented federated IaaS systems that are

able to predict application service behavior for intelli-

gent down and up-scaling infrastructures. They list the

research issues of flexible service-to-resource mapping,

user and resource centric QoS optimization, integra-

tion with in-house systems of enterprises, scalable mon-

itoring of system components. They present a market-

oriented approach to offer InterClouds including cloud

exchanges and brokers that bring together producers

and consumers. Producers are offering domain specific

enterprise Clouds that are connected and managed with-

in the federation with their Cloud Coordinator compo-

nent. Celesti et al. [9] proposed an approach for the

federation establishment considering generic cloud ar-

chitectures according to a three-phase model, represent-

ing an architectural solution for federation by means of

a Cross-Cloud Federation Manager (CCFM), a software

component in charge of executing the three main func-

tionalities required for a federation. In particular, the

component explicitly manages: i) the discovery phase in



Enhancing Federated Cloud Management with an Integrated Service Monitoring Approach 3

which information about other clouds are received and

sent, ii) the match-making phase performing the best

choice of the provider according to some utility mea-

sure and iii) the authentication phase creating a secure

channel between the federated clouds.

Bernstein et al. [1] define two scenarios that ex-

emplify the problems of multi-cloud systems: (i) VM

Mobility, where they identify the networking, the spe-

cific cloud VM management interfaces and the lack of

mobility interfaces as the three major obstacles, and

(ii) storage interoperability and federation scenario, in

which storage provider replication policies are subject

to change when a cloud provider initiates subcontract-

ing. Marshall et al. proposed an IaaS cloud solution

to elastically extend physical clusters with cloud re-

sources [26]. They created a so called elastic site man-

ager on top of Nimbus, which interfaces directly with

local cluster managers and three different policies were

examined for elastic site addition. GridBot [31] rep-

resents an approach for execution of bags-of-tasks on

multiple clusters, volunteer and service grids. It has a

Workload Manager component that is responsible for

brokering among these environments, which is simi-

lar to our approach, but we rather target multi-cloud

solutions and focus on highly dynamic service execu-

tions instead of tasks more suitable for volunteer grids.

Cuomo et al. introduced a volunteer-based approach

called Cloud@Home to form a federation in [10]. This

solution is only applicable to providers, who are will-

ing to voluntarily share their resources. Their work is

focusing on providing reliable service provisioning de-

spite the high degree of heterogeneity existing in such

systems.

Regarding recent Cloud Computing projects, the

OPTIMIS project [13] identified that commercial so-

lutions in the field of Cloud Computing have mainly fo-

cused on providing functionalities at levels close to the

infrastructure, and higher-level solutions, like Platform-

as-a-Service (PaaS) environments are limited to a sin-

gle infrastructure provider. Their goal is to build an

improved cloud service ecosystem that supports higher-

level concerns and non-functional aspects to achieve a

wider adoption of Cloud Computing. The project fol-

lowed a holistic approach for multiple coexisting cloud

architectures and they target cloud service life-cycle

optimization including cost, trust, risk and economic

goals. They also planed to enable market-oriented multi-

cloud architectures with clarified legislative background.

The Reservoir project [28] approach can be exem-

plified by the electric grid approach: for one facility to

dynamically acquire electricity from a neighboring facil-

ity to meet a spike in demand. In this vision, disparate

datacenters should be federated in order to provide a

seemingly infinite service computing utility. Regarding

their architectural view, a Reservoir Cloud consists of

different Reservoir Sites (RS) operated by different IPs.

Each RS has resources that are partitioned into isolated

Virtual Execution Environments (VEE). Service appli-

cations may use VEE hosts from different RSs simul-

taneously. Each application is deployed with a service

manifest that formally defines its SLA contract. Vir-

tual Execution Environment Managers (VEEM) inter-

act with VEEs, Service Managers and other VEEMs to

enable federations to be formed. A VEEM gathers in-

teracting VEEs into a VEE group that serves a service

application. This implies that a Reservoir service stack

has to be present on the resources/sites of IPs. Its fed-

erated IaaS cloud management model presented in [29]

argues that commercial cloud providers could also tem-

porarily lease excess capacities during high-demand pe-

riods. They investigate the problems faced by federated

cloud management solutions: (i) dynamic service elas-

ticity, (ii) admission control, (iii) policy-driven place-

ment optimization, (iv) cross-cloud virtual networks (v)

cross-cloud monitoring, and (vi) cross-cloud live migra-

tion.

The Contrail project [8] proposes an SLA-centered

federated approach to Clouds. Its goal is to minimize

the burden on the user with eliminating provider lock-

in by exploiting resources belonging to different cloud

providers regardless the kind of technology they use,

and to increase the efficiency of using Cloud platforms

by performing both a vertical and a horizontal integra-

tion. It follows an open-source approach toward tech-

nology and standards, and supports user authentication

and applications deployment by providing extended SLA

management functionalities. Its federation architecture

acts as a bridge among the users and the cloud providers,

and has three layers. The top layer (called Interface)

provides ways to interact with the federation. The mid-

dle layer (called Core) contains modules that fulfill the

functional and non-functional requirements of the fed-

eration. The federation runtime manager (FRM) op-

erates in this layer, which uses a set of heuristics that

consider different aspects to govern the federation, such

as to minimize economical cost and to maximize perfor-

mance levels. Finally, the bottom layer (called Adapters)

contains the modules that retrieve information and op-

erate on different cloud providers.

The mOSAIC project [27] offers the specification

of service requirements in terms of a cloud ontology

via an innovative API. The implementation of this ap-

proach will offer a higher degree of portability and ven-

dor independence. It also provides application program-

ming interfaces for building applications using services

from multiple cloud providers and plans to realize a



4 A. Kertesz et al.

self-adaptive distributed scheduling platform composed

of multiple agents implemented as intelligent feedback

control loops to support policy-based scheduling and

expose self-healing capabilities. They plan to foster com-

petition between cloud providers by enabling the selec-

tion of best-fitting cloud services to actual user needs

and efficiently outsource computations.

Our proposed approach also tackles the interoper-

ability problems of cloud federations, but it also goes

beyond this state-of-the-art by providing a generic so-

lution for monitoring service provisioning in different

IaaS systems.

2.2 Evaluation of cloud performance

Cloud federation approaches follow different deployment

strategies based on the evaluation of the performance

of the available clouds. We distinguish these strategies

either if they are based on offline or online performance

data.

Offline performance data. M. Schmidt et al. [30]

investigate different strategies for distributing virtual

machine images within a data center: unicast, multi-

cast, binary tree distribution and peer-to-peer distri-

bution based on BitTorrent. They found the multicast

method the most efficient, but in order to be able to dis-

tribute images over network boundaries (for a so called

cross-cloud solution), they have chosen BitTorrent. The

authors only investigated distribution methods within

the boundaries of a single data center, going beyond

that remained future work.

Online performance data. With respect to online

performance data, several monitoring solutions gather

the QoS of the different cloud systems. We distinguish

between those that monitor at the infrastructure level,

and those that monitor at the service or application

level.

Monitoring the infrastructure. Regarding commer-

cial cloud monitoring solutions, Amazon Web Services

launched Amazon CloudWatch [42] in 2009, which is a

supplementary service for Amazon EC2 instances that

provides monitoring services for running virtual ma-

chine instances. It allows gathering information about

the different characteristics (traffic shape, load, disk uti-

lization, etc.) of resources, and based on that, users

and services are able to dynamically start or release

instances to match demand as utilization goes over or

below predefined thresholds. The main shortcoming of

this solution is its strong bounds to a specific IaaS, be-

cause it introduces a monetary overhead by charging

every monitored instance by an hourly rate.

Nagios XI [47] is an infrastructure monitoring solu-

tion that also addresses clouds (the Amazon EC2 in-

terface is supported). It is a robust, comprehensive,

business-oriented solution that is capable of monitoring

a wide area of system components including services,

operating systems and network components. Even though

it has an open source core, it can be very costly to use

it in cloud federation. Our solution is focusing more on

monitoring of service component metrics.

The Cerebrata Azure Diagnostics Manager [44] is a

monitoring component of the Azure Platform designed

for monitoring the performance of Azure applications.

It can be regarded as a data and event logging system

usable in the Azure system only. Therefore, it is not

suitable for utilization in arbitrary providers of a fed-

eration.

An academic approach for cloud performance mon-

itoring is introduced by Yigitbasi et. al. [36], called C-

Meter. Using this framework, workloads can be submit-

ted to target clouds to analyze their performances. On

the contrary, our monitoring solution examines the real,

running applications instead of workloads, and does not

necessarily require additional deployments.

Another solution is presented by Baur et al. in [4]. In

their approach, they present an integrated monitoring

solution for heterogeneous Grid infrastructures, which

aggregates and provides the monitoring data from dif-

ferent Grids. To do so, they apply transformation rules

to the monitored data of each Grid in order to get an

homogeneous data model. However, contrary to our so-

lution, they require each Grid to have its own Grid mon-

itoring service to collect the data.

Monitoring the service level. Regarding monitoring

of the provisioned services, the existing technical ap-

proaches found in the literature to gather the required
data can be classified into two big categories. On the

one hand, some proposals rely on the use of monitoring

directives embedded into the services themselves using

Aspect Oriented Programming (AOP), and weaving the

monitoring code into the execution process, which is

commonly defined in BPEL [3,37]. The advantages of

this solution are a result of those of AOP, which iso-

lates the monitoring code from the business logic as

an aspect, providing low coupling and the ability to

add/modify the monitoring rules without affecting the

core code of the service. However, in the context of de-

ploying the service over cloud infrastructures, changes

over the monitoring rules would require dynamic weav-

ing processes on runtime, which might be somehow dif-

ficult if the cloud does not provide the required artifacts

for inserting these directives on the execution chain of

the service engine. For instance, Zhou et al. [38] make

usage of Model-Driven techniques to automatically gen-

erate monitoring code for Axis. As advantage, this so-

lution seems to be more efficient than the previous one



Enhancing Federated Cloud Management with an Integrated Service Monitoring Approach 5

since there is no weaving process. However, this ap-

proach depends on the technology used for service de-

ployment, in this case the engine, where the service is

installed.

On the other hand, other proposals use a proxy that

intercepts the messages to add monitoring capabilities

to the system without the need to be so intrusive into

the service or its engine and hence, being independent

of the technologies chosen in the implementation of the

services [2,35]. In this case, the same monitoring tool

can be used for all kind of services deployed in a cloud.

Its main drawback is that if the architecture is not prop-

erly built, the proxy can generate a bottleneck affecting

negatively the response time of the monitored services.

Monitoring multiple levels. A more sophisticated so-

lution is GMonE [21], a cloud monitoring platform aimed

at monitoring the different service levels (from SaaS to

IaaS) to support the lifecycle of services deployed in

the cloud. However, their solution requires the imple-

mentation of plug-ins that are highly coupled to the

infrastructure of each cloud provider, which makes it

unsuitable for cloud federations.

3 Federated cloud management with integrated

service monitoring

Figure 1 shows the Federated Cloud Management (FCM)

[20] architecture extended with an integrated service

monitoring approach. The figure reveals the interfaces

of our components and their relations with the currently

available IaaS systems. Our solution offers interopera-

ble access to a federated cloud environment through

the interface of the meta-brokering component. This

component is capable to decide between various cloud-

brokers based on metrics gathered from a service mon-

itoring subsystem. Cloud-brokers extend the current

IaaS functionality by analyzing and dispatching service

requests. Based on service demand patterns, they also

use the service deployment component to deploy or de-

commission the requested services as virtual machines

in specific IaaS systems. The generic integrated solution

highlighted in this figure can be used to monitor any ex-

isting component in the infrastructure of the providers

participating in the cloud federation, and provide this

information to the upper decision making layers of the

architecture.

In its present state, the FCM architecture is mostly

focused on the handling of stateless web services. As a

result, we have investigated monitoring solutions that

can also handle these kind of services [18,16,7]. Because

of its unique QoS attribute monitoring capabilities, we

have selected SALMon (Service Level Agreement Moni-

tor [25]) to act as the Service Monitoring layer of FCM.

SALMon’s advanced capabilities (relevant to the FCM

architecture) are discussed in detail in Section 3.3.

In this architecture users are able to execute services

deployed on cloud infrastructures transparently, in an

automated way. The Generic Service Registry (GSR –

see Figure 1) contains information of these services (in-

cluding WSDLs [50] and their virtual machine images

or virtual appliances). When a service is deployed on a

new host, the service deployment component registers

its new endpoint to the service registry. Upon decom-

missioning, these endpoint registrations are removed.

During operation, the SALMon monitoring subsystem

allows the components in FCM to order regular QoS

evaluation on the deployed services according to pre-

defined metrics coupled with the service’s description

in GSR.

In our system, users send service calls as request

submissions to the Meta-Brokering layer realized by

Generic Meta-Broker Service (GMBS). Federated call

submissions specify the requested service, the opera-

tion to be called, and its possible input parameters. The

GMBS checks if the service is registered to the GSR,

and if so, it selects a suitable Cloud-Broker for further

submission, otherwise rejects the request. Based on ser-

vice usage patterns (e.g. average service response time,

call frequency) the GMBS requests the monitoring of

service instances via SALMon. The monitoring results

are used by its matchmaking algorithm that combines

the just received dynamic data with information gath-

ered from the registry and with status information on

cloud-brokers and SALMon (gathered with the query

cloud metrics function in Figure 1). GMBS forms a

cloud federation by enabling the autonomous manage-
ment of the interconnected cloud infrastructures through

cloud-brokers.

Cloud-brokers are dedicated to specific IaaS systems

and offer a queue for incoming service calls. Incoming

service calls are scheduled to virtual machines available

in VM queues (Call ⇔ VM Association). The auto-

mated management of these virtual machine queues is

the main goal of our cloud-brokers. Members of the VM

queues represent those VMs that are ready to serve a

particular service call. For every virtual appliance (i.e.

kind of service) a VM queue is maintained. To meet

the respective service demand, the cloud-broker decides

the amount of required VMs meeting the actual request

load. If necessary, the cloud-broker requests VM instan-

tiation or decommission from the service deployment

component – see Figure 1. The default virtual machine

scheduling is based on the currently available requests

in the incoming service call queue, their historical ex-

ecution times, and the number of running VMs. The



6 A. Kertesz et al.

Single Private/Public 
IaaS cloud (B)

VM Init
VM Destruct
VA Delivery

VM Queue Mgmnt
Call <-> VM association

Cloud selection
Federated Call submission

Query Cloud Metrics

Meta 
Brokering

Cloud 
Brokering

Service 
Deployment

Service M
onitoring

VMVMVM

Single Private/Public 
IaaS cloud (A)

VMVMVM
Service 

Deployment

Cloud 
Brokering

Single Private/Public 
IaaS cloud (C)

VMVMVM
Service 

Deployment

Cloud 
Brokering

Generic 
Service 
Registry

getService
Metadata

Legend:
VMVMVM

Federatively
managed VMs

Compo
nent

External cloud 
extensions

for each IaaS

Fig. 1 The FCM architecture with enhanced monitoring

secondary task of a Cloud-Broker involves the dynamic

creation and destruction of the various queues.

The following subsections provide a detailed overview

on the main components of the architecture.

3.1 Meta-brokering approach for federating clouds

As we already mentioned in the beginning of this sec-

tion, brokering takes place at two levels in this ar-
chitecture: the service request is first submitted to a

meta-brokering component implemented by the Generic

Meta-Broker Service (which is a revised and extended

version of the Grid Meta-Broker Service described in

[17]), where a high-level decision is made to which cloud

infrastructure the call should be forwarded. Then the

service call is queued at the selected Cloud-Broker, where

lower level brokering selects the VM that will perform

the actual service execution.

Next we shortly summarize the role of GMBS within

FCM. This meta-brokering service has five major com-

ponents. The Meta-Broker Core is responsible for man-

aging the interaction with the other components and

handling user interactions. The MatchMaker compo-

nent performs the scheduling of the calls by selecting

a suitable cloud-broker. This decision making is based

on aggregated static and dynamic data stored by the

Information Collector component in a local database.

The Information System (IS) Agent is implemented as

a listener service of the meta-broker, and it is responsi-

ble for regularly updating static information gathered

from the Generic Service Registry on service availabil-

ity, dynamic information on service and cloud reliability

provided by SALMon (further discussed in Section 3.3),

and aggregated dynamic information collected from the

cloud-brokers including average virtual appliance de-

ployment and service execution time. The Invoker com-

ponent forwards the service call to the selected Cloud-

Broker and receives the service response.

Each Cloud-Broker is described by an XML-based
Broker Property Description Language (BPDL) doc-

ument containing basic broker properties (e.g. name,

managed cloud infrastructure), and the gathered dy-

namic properties. The scheduling-related attributes are

also stored in the description language document. More

information on this document format can be read in

[17]. Namely, the following data are stored in the BPDLs

of each Cloud-Broker:

– Static virtual appliance availability information for

each native repository according to the GSR reg-

istry;

– average VM deployment time and average service

execution time for each virtual appliance provided

by the cloud-brokers;

– and dynamic reliability information expressed by

metrics collected by SALMon.

The scheduling process first filters the brokers by

checking virtual appliance availability in the native cloud

repository, then a rank is calculated for each broker



Enhancing Federated Cloud Management with an Integrated Service Monitoring Approach 7

based on the collected dynamic data. Finally, the cloud-

broker with the highest rank is selected for managing

the actual service request.

3.2 Cloud-brokering and automated service

deployment in FCM

The Cloud-Broker, which is an extended version of the

system described in [19], handles and dispatches service

calls (i.e. requests) to resources and performs resource

management within a single IaaS system. It dynam-

ically creates and destroys virtual machines and VM

queues of different virtual appliances. Virtual machine

creation is supported in the registry by storing addi-

tional static requirements (e.g. its minimum disk, CPU

or memory requirements) about each appliance’s future

instances.

A VM queue lists resources capable of handling spe-

cific service calls, thus instances of a specific virtual ap-

pliance. New resource requests are inserted to the queue

of the appropriate appliance, while the need for resource

destruction is indicated by shortening the queue. Re-

source entries are managed by the VM Handler that is

designed to interact with the public interface of a spe-

cific IaaS system. It translates queue changes, as VM

creation and destruction requests, towards the IaaS sys-

tem. The VM creation process is further detailed in the

last paragraph of this subsection.

The service call queue stores incoming service re-

quests and a reference in the GSR registry to an appli-

ance for each call. There is a single service call queue in

each Cloud-Broker, while there are many VM queues.

Dynamic requirements for a virtual appliance may be

specified with the service call: additional resources (CPU,

memory and disk), and a unique id to identify service

calls originating from the same requester. If a unique

dynamic requirement is specified, then the Cloud-Broker

creates a new VM queue for them and starts the newly

requested VM. Most IaaS systems offer predefined classes

of VMs (CPU, memory and disk capacity) not adjustable

by the user, therefore the Cloud-Broker selects the VM

class that offers the requested extra resources. This may

lead to allocating excess resources in some cases (e.g.

the VM class that meets the extra CPU requirement

offers twice the requested memory). The Cloud-Broker

also schedules service call requests to VM’s and man-

ages the VM life-cycle. If a service call cannot be as-

sociated to any VM, the Cloud-Broker may decide to

start a new one for the request. The VM creation and

destruction decisions are based on the following:

– The number of running VMs available to handle the

service call;

– the number of waiting service requests for the ap-

pliance in the service call queue;

– execution time metrics of service calls provided by

the monitoring service;

– deployment time metrics of virtual appliances pro-

vided by the monitoring service;

– SLA constraints (e.g. total budget, deadline);

– and the billing period of the IaaS system.

If a destruction is needed, shutting down is per-

formed shortly before the end of the billing period of

an IaaS cloud with regard to its average decommission

time. The billing period is generally published by com-

mercial clouds in their SLA terms, and it is used to

determine the minimal time interval in which the users

have to pay for using the required resources. In aca-

demic clouds, resource usage quotas can be taken into

account for the same purpose.

IaaS systems require virtual appliances (VA) to be

stored in their native repositories, because only appli-

ances available in native repositories are usable to in-

stantiate virtual machines. FCM organizes the distri-

bution of user created appliances with the help of the

Automatic Service Deployment (ASD) [14] component.

To meet the demands of highly dynamic service envi-

ronments, appliance distribution is optimized by auto-

matically decomposing and replicating appliances. To

support the rebuilding of decomposed VAs, the ASD

requires appliances to embed minimal manageable vir-

tual appliances (MMVA - [15]). These special appli-

ances meet the following properties:

– Provide content management interfaces to add, con-

figure and remove new appliance parts;

– Offer monitoring interfaces to analyze the state of

their instances (e.g. provide access to their CPU

load, free disk space and network usage);

– And, they are optimally sized: only those files that

are required to offer the previously mentioned two

properties are present in the MMVAs.

As a result, the ASD always replicates the MM-

VAs to native repositories. When a native repository

does not hold the necessary appliance for the current

VM creation request, the VM Handler uses these min-

imal manageable appliances to reconstruct appliances

locally. Consequently, the VM Handler applies the fol-

lowing strategy if it faces a non available appliance.

First, it instantiates an MMVA within a VM suitable

for the non available appliance. Then, using the new

VM’s content management interfaces, the VM handler

requests the download of the complementary appliance

parts to the new VM. These parts are not present in the

native repository, so the download operation will use

the GSR registry. Therefore, the appliance is rebuilt in



8 A. Kertesz et al.

Monitoring ‐ SALMon

QoS data
Repository

Monitoring Engine

Get monitoring data

Store 
monitoring data

Monitoring
events

Enterprise Service Bus (ESB)

Service

SOAP 
messages

Monitor 
DDBB puller

Setup

SALMon
configurer

Tester
Measure

Instrument

«service»
Monitor

SOAP 
messages

Manage
MIs

Manage
Tester

Configure 
Monitor

QoS data

QoS data

Fig. 2 SALMon framework

a virtual machine originally based on the MMVA. Fi-

nally, the VM is ready to serve the scheduled requests

from the service call queue.

3.3 Cloud service monitoring with SALMon

SALMon [25] is a service monitoring framework that

has been integrated into our proposed FCM architec-

ture in order to gather reliability information on the

managed IaaS clouds. It is focused on monitoring the

QoS of software services, and is able to evaluate them

according to pre-defined conditions, and to notify the

results to the interested parties, which is the IS Agent

of the GMBS in our case.

The main features of SALMon that justify its use

to monitor the cloud infrastructure are (see [25] for de-

tails):

Technology independent. Some monitoring solutions are

attached to a particular service technology when mon-

itoring the service layer (e.g. BPEL monitoring [3,37],

SOAP-based [38], etc.), whereas others are attached to

a particular cloud when monitoring the infrastructure

layer (e.g. Amazon CloudWatch [42]). SALMon, in con-

trast, may operate on any available technology with

minor changes. The architecture of SALMon decouples

the different aspects of monitoring and their technolog-

ical dependencies are isolated, which allows an easy ex-

tension to different infrastructures (see implementation

details at [25]). In order to interoperate with FCM, we

have extended SALMon to be able to monitor services

deployed in the cloud.

Easily interoperable with other frameworks. Not all mon-

itoring solutions are easily interoperable. To this aim,

SALMon has been developed as a Service-Based Ap-

plication itself. On one hand, providing the monitoring

solution as a service facilitates the user to monitor the

cloud system easily by just deploying it and using the

service without worrying about technical details about

the instrumentation of the underlying technologies. On

the other hand, standard web service protocols ensures

the integration capabilities with any framework able to

deal with web service technologies. This approach is

similar to the solution proposed by Truong et al. [33] in

monitoring Grids. However, in their solution, they re-

quired each Grid provider to implement and provide the

monitoring service of their own Grid system to monitor

metrics at the infrastructure layer. In contrast, we over-

come this obstacle by complementing SALMon with

the M3S service (see section 4). SALMon can be eas-

ily deployed on the cloud as any other service by the

service deployment component, and communicate with

the other FCM services through standard SOAP-based

protocols.



Enhancing Federated Cloud Management with an Integrated Service Monitoring Approach 9

Easily extensible with new metrics. The monitor is com-

posed of several measure instruments. Each one is re-

sponsible for calculating a specific quality metric. Hence,

new metrics can be computed by implementing the cor-

responding measure instrument and adding it to the

monitor. By doing so, the monitor is able to compute

new metrics as they are required by the FCM in a fed-

erated cloud. A similar feature is also present in other

cloud monitoring solutions that uses plug-ins to con-

duct each monitoring task [21]. However, in contrast to

SALMon, they have not been implemented as a Service-

Based Application.

Combines passive monitoring and on-line testing. SAL-

Mon combines both passive monitoring and on-line test-

ing approaches, being able to configure each method ac-

cording to the preferences of the user. In FCM, SALMon

is used for testing purposes in order to gather the QoS of

the constituent services deployed in the cloud. This ap-

proach consists of periodically invoking a set of methods

of the target service and calculating the QoS over the

obtained results. The advantage of the testing approach

is that it is not intrusive with the real invocations of the

service.

When measuring a cloud system’s behavior, the SAL-

Mon service evaluates the services deployed in the par-

ticular cloud infrastructure. However, some measure-

ments (e.g. network related metrics) are heavily depen-

dent on SALMon’s connections to the particular cloud.

Thus, to allow informed decision making in GMBS, this

work proposes to eliminate the difficulties of SALMon’s

connectivity (cloud resources are usually behind fire-

walls) by deploying SALMon into the measured cloud

infrastructures. As a result, we have prepared SALMon

to be executed in a virtual machine to be deployed to

each cloud managed by FCM. To this aim, the new

components SALMon configurer and a Database query

tool named Monitor DDBB (Dynamic DataBase Bind-

ing) poller have been implemented. The SALMon con-

figurer enables SALMon to be configured dynamically

on the cloud, whereas the Monitor DDBB poller is used

to retrieve the measured QoS in a separated repository

outside the cloud.

The different components of SALMon involved in

this framework are depicted in Figure 2:

SALMon configurer. It is the component that config-

ures and starts the Monitor Service component of SAL-

Mon. The SALMon configurer includes a configuration

file named Monitoring Management Document (MMD

[24]), which is an XML file that specifies all the required

information to configure the monitor dynamically (i.e.,

services, operations, metrics and the testing or passive

monitoring approach). When a new SALMon virtual

machine starts up, the GMBS ensures the automatic

creation and use of an MMD document that points to

newly deployed services.

Monitor Service. It is responsible for managing all the

monitoring processes. During a testing approach, it pe-

riodically activates the tester component which will per-

form the tests. It also creates and manages the Measure

Instruments, which are responsible to obtain the spec-

ified QoS Data, when the services are invoked.

ESB. The invocations of the services are performed

with the Enterprise Service Bus (ESB) (i.e., instead of

invoking the services directly, all requests and responses

of the service are sent through the ESB). When an in-

vocation is intercepted by the ESB, it notifies it to the

Measure Instruments to compute the QoS. In such a

manner, when an invocation is performed, the ESB no-

tifies it to the Measure Instruments in order to compute

the QoS transparently and seamlessly to the target ser-

vice, and not attached to a particular technology.

Measure Instrument. This is the component that im-

plements the logic required to obtain the value of a con-

crete basic quality metric. The derived metrics are cal-

culated from the set of basic quality metrics by comput-

ing the required formula (e.g. average and maximums).

The Measure Instruments are activated by the Moni-

tor Service component based on the quality metrics to

measure. Since measure instruments are the core com-

ponents that actually retrieve the values of the basic

metrics, these components are technologically depen-

dent on the kind of service they are monitoring. The list

of Measure Instruments that are currently implemented

in SALMon includes: availability, response time, execu-

tion time and round trip time. Moreover, by combining

the Measure Instruments implemented with the M3S,

SALMon is able to compute also infrastructure-related

metrics such as CPU and network performance.

Publisher Service. It implements the observer pattern

for services in a Service-Based Application. This com-

ponent is used when new measures are obtained for no-

tifying the meta-brokering service. Using the observer

pattern, SALMon can be decommissioned as soon as the

values are retrieved, which reduces any possible over-

head due to the consumption of resources. This pattern

requires that the subscribed service (the observer, ie.

the GMBS in this case) implements the required inter-

face to receive such a notification. This is achieved by

defining a common interface with the notify method.



10 A. Kertesz et al.

QoS Data It is the repository where the gathered QoS

is stored. It is located outside the cloud to provide the

access to the data after the VM is destroyed.

Monitor DDBB Poller This is the controller to access

the data stored in the QoS Data repository. The Mon-

itor DDBB Poller is used by the GMBS to obtain the

required QoS.

4 The Minimal Metric Monitoring Service

The effects of multi-tenancy are observable even with

the strongly isolated virtualized environments of an IaaS

system. E.g., one could observe degrading connectivity

in a virtual machine if network-heavy virtual machines

are introduced to the underlying virtual machine mon-

itor (the next section provides further examples and

evidence for these effects). Thus multi-tenancy could

have significant effects on the reliability information

of a service instance deployed in cloud infrastructures.

These effects are imposed as seemingly added noise to

the measurements of SALMon. To cancel the effects of

this noise, we propose to detect the effects of multi-

tenancy with a basic service that we refer to as the

Minimal Metric Monitoring Service (M3S).

M3S allows SALMon to determine the basic char-

acteristics of the VM in which the M3S was deployed.

GMBS uses these measurements both to evaluate the

performance and to detect the effects of the internal

provisioning policies in a cloud. For performance, indi-

vidual measurements on the M3S service allows direct

comparison of providers that offer the same kind of vir-

tual machine types (e.g., similar VMs to the EC2 type

named “M1.small”). As a result, the system is capa-

ble to evaluate and to choose among both public and

private clouds based on the same kind of metrics. Fortu-

nately, these individual measurements are also subject

to the effects of multi-tenancy. Thus, to detect the in-

ternal provisioning policies, the Information Collector

component of GMBS statistically analyses and aggre-

gates measurements (e.g. it calculates their standard

deviation). Taking into account such dynamic informa-

tion at the meta- and cloud-brokering layers can result

in better inter- and intra-cloud management. E.g., for

services other than the M3S, the GMBS uses these ag-

gregated values to cancel the effects of multi-tenancy in

the measurements.

As with any monitoring system, M3S cannot avoid

the introduction of some overhead to the system in

overall (e.g. it increases the chances of having under-

provisioned virtual machines in the system). To reduce

its impact, we have designed M3S to function in its

own virtual machine and to be lightweight. Being in a

separate virtual machine is crucial, as it minimizes the

effects of M3S on other virtual machines hosted in the

same cloud system. The service is also lightweight in

terms of its appliance size and in resource usage. M3S’s

appliance is also minimized, so whenever it needs to

be deployed to take new measurements it is promptly

available and does not cause significant delays in the de-

cision making processes of the various layers in FCM.

The size is minimized by providing only the minimal

functionality required to determine basic VM charac-

teristics.

The M3S service offers 4 methods to evaluate the

basic capabilities of its hosting VM. SALMon uses the

response times of these four methods to express the

reliability of the particular cloud that runs the M3S

VM:

1. The method Ping() is a generalized ping test to

check the availability of the service. This method

returns a simple empty object to notify that the

service is up and running.

2. The method StressCpu() performs several mathe-

matical calculations in a large loop over a predefined

set of variables, consisting on integer and floating

point numbers in order to determine the computa-

tional capability of a given VM. The calculations in-

clude sums, multiplications, divisions, modulos, etc.

We use the response time of this method to esti-

mate the computational speed of the VM in which

M3S is deployed in. This estimate gives a general

overview on the performance of those VMs that have

the same type as the M3S VM. Using the histori-

cal values of this performance estimate GMBS could

even determine if there are multi-tenancy or under-

provisioning issues at the particular provider.

3. The method StressInputBandwidth(input) is used

to compute the download transfer speed of the sys-

tem – thus determines its inbound data transfer ca-

pability – , which receives from the invocations of

SALMon a considerably sized input to read. This in-

put consists of a pregenerated dataset of 6 MBytes.

Based on our experiments, 6 MBytes are enough for

rough bandwidth estimates, nevertheless this mea-

surement cannot significantly influence the monthly

data transfer bill of GMBS users concerning com-

mercial clouds.

4. The method StressOutputBandwidth() is used to

compute the upload transfer speed of the system –

that we later refer as the outbound data transfer ca-

pability – . This method responds with a 6-MBytes-

long string to SALMon.

Figure 3 exemplifies the operation of our proposed

integrated FCM solution. This figure reveals that the

GMBS continuously collects the monitored reliability



Enhancing Federated Cloud Management with an Integrated Service Monitoring Approach 11

Cloud Brokering

Service Deployment

Meta-Brokering

SALMon
DDBB

Q
ue

ry
 C

lo
ud

M
et

ric
s

(R
el

ia
bi

lit
y

In
fo

)

Se
nd

R
es

ul
ts

Single Private/Public IaaS cloud (C)

Ping

Stress
CPU

Stress
InputBW Stress

OutputBW

VM2

M3S
VA

VM1

SALMon
 VA

SALMon
 VA

M3S
 VA

Single Private/Public IaaS cloud (C)

Ping

Stress
CPU

Stress
InputBW Stress

OutputBW

VM2

M3S
VA

VM1

SALMon
 VA

SALMon
 VA

M3S
 VA

Single Private/Public IaaS cloud (C)

Ping

Stress
CPU

Stress
InputBW Stress

OutputBW

VM2

M3S
VA

VM1

SALMon
 VA

SALMon
 VA

M3S
 VA

Single Private/Public IaaS cloud (C)

Ping

Stress
CPU

Stress
InputBW Stress

OutputBW

VM2

M3S
VA

VM1

SALMon
 VA

SALMon
 VA

M3S
 VA

Single Private/Public IaaS cloud
(OpenNebula)

SALMon 
VA

M3S
VA

VM1

SALMon 
VA

VM2

M3S
VA

Ping Stress
CPU

Stress
InputBW

Stress
OutputBW

Te
st

M
et

ric
s

VMVMVM

Test/Regular
Load

Fig. 3 Integrated monitoring in FCM with M3S and SALMon

information from the SALMon DDBB. If the collected

information is due to expire, the GMBS initiates its

metric revival phase. As a result, it instantiates a new

SALMon and M3S VM in the cloud infrastructure rep-

resented with the almost expired data. To do so, GMBS

contacts the VM Handler part of the appropriate Cloud-

Broker to initiate a new deployment of the monitoring

VMs. During this deployment, the new SALMon VM is

configured to monitor the methods of the deployed M3S

test appliance. After deployment, the GMBS calls the

SALMon Configurer method of the new SALMon VM

to start monitoring (as shown in Figure 3 with arrows

on the right). Consequently, SALMon performs periodic

monitoring of the M3S methods using its monitoring

test cases obtained from a predefined MMD with the

required details, then it reports the metric values and

their aggregates (e.g. average or minimum/maximum)

to the DDBB. The IS Agent of GMBS (at the meta-

brokering layer of FCM) regularly queries the moni-

tored values and updates them in the appropriate de-

scription document fields of the responsible Cloud-Bro-

ker. Since keeping the monitoring VMs in the cloud

can be expensive, we have extended the IS Agent to

also initiate the decommission of these VMs after the

new metric values become available in the DDBB.

5 Evaluation of our proposed integrated

solution

In this section, we present the evaluation of our pro-

posed solution in three phases. First, we show that data

collected from an M3S service in a private cloud cor-

relates with the latent load of physical machine that

hosts the M3S virtual machine. Second, we present the

federative use of SalMon and M3S by collecting and an-
alyzing their metrics from three cloud providers in two

cloud federations. Finally, we offer an outlook on how

the FCM’s monitoring extension could improve user ex-

perience with heterogeneous cloud federations.

5.1 Detecting latent load with M3S metrics

The LPDS laboratory of MTA SZTAKI runs an Open-

Nebula 3.6 [48] based cloud infrastructure [46], which

is partitioned in two parts: a production service and an

experimental one. Both services use KVM-based virtu-

alization, and support the following interfaces: OCCI,

EC2 and the SunStone WEB frontend. Both services

are built on hardware with equivalent performance (e.g.,

the experimental service consists of 4 hosts including 64

CPU cores, having together 152 GBs RAM and 4.3 TBs

storage). The only difference between the two is the

guarantees they provide. The experimental service is

deployed for LPDS cloud developers and enables imme-



12 A. Kertesz et al.

diate reconfiguration of the entire infrastructure setup

and therefore it does not guarantee properly perform-

ing VMs at all times. This reconfiguration capability

enables us to perform detailed measurements for test-

ing all M3S functionalities. In this section we present

measurements that were taken while the experimental

service was under our exclusive control.

5.1.1 Deployment of the monitoring components

To automate the evaluation, we focused our attention

on the behavior of the IS Agent component of the GMBS.

This component was separated from GMBS for the ex-

periments to reduce the interferences that could possi-

bly be caused by other GMBS/FCM components and

the various cloud systems that GMBS connects with.

An independent metric collector script was developed

to manage the instances of SALMon and M3S virtual

appliances with the help of the Cloud-Broker. Upon re-

quest, this script first instantiates M3S, then SALMon

in the target cloud. During the initialization of the

SALMon VM, the script instructs SALMon to moni-

tor the VM of the M3S service and forward the results

to DDBB. The script then continuously monitors the

contents of DDBB and waits until at least one new mea-

surement is available for each of the monitored metrics

of the M3S service. After each metric is updated for the

target cloud the script ensures the termination of both

the M3S and the SALMon VMs. This final step allows

minimizing the cost of monitoring, but still maintains

recent data in the DDBB to be used during the deci-

sions regarding the target cloud by the GMBS.

In order to determine the usability of the reported
metrics, we have checked how these metrics behave un-

der various background load on the experimental pri-

vate cloud service of LPDS. To imitate the latent load

in cloud infrastructures, we have generated the follow-

ing kinds of artificial load during our measurements: (i)

with normal load on the hosts of the private cloud , (ii)

with an increased network load present on the infras-

tructure and (iii) with an increased CPU load present

on the hosts of the cloud. Under normal load conditions

some other developers run several virtual machines for

their experiments, but the CPU load never reached over

50% (this load was actually present in all three cases as

it represents more closely the production use of a cloud

infrastructure). Under network load situation, we have

introduced continuous transfers on between two phys-

ical nodes (a disk image sized 8GBs was transferred

over and over again) of our experimental cloud. During

the increased CPU load scenario, we have deliberately

created an under-provisioning situation on one of the

physical machines (i.e. we allocated more virtual CPUs

on the machine than it had in reality and we also en-

sured that they run compute-intensive operations).

In both cases with increased load, the preparation

of the testing environment is crucial, because too heavy

load would render our experiments useless (i.e., it is not

expected from any provider to sacrifice its user’s oper-

ations with such a high level of under-provisioning),

in contrast too little load could result no significant

changes in our measurements (thus GMBS cannot dif-

ferentiate between clouds). During network transfer over-

load, too heavy load may prevent transferring the VA

images to the hosts. It is evident that no measure-

ments could be done in these cases, therefore we avoided

such transfer loads. Regarding CPU load manipula-

tions, OpenNebula differentiates two parameters we can

vary: the ’CPU’ – that is reserved by OpenNebula on

a physical host for a VM, and the ’vCPU’ – that is the

number of CPUs a VM can actually utilize. Unfortu-

nately, in VM requests, when one specifies the ’CPU’

parameter only, the new VM will end up with an indefi-

nite number of processors. To avoid this unexpected be-

havior, we have ensured that the Cloud-Broker issues

VM requests that specify both parameters (for M3S

and SALMon we used the setup of CPU = 0.01 – to fit

in even heavily under-provisioned environments – and

vCPU = 1).

Although the scenarios could strongly influence M3S

and SALMon behavior, their actual deployment might

result in measurement errors. E.g., when the network

load is applied it should not occur in an isolated part

of the cloud, the network components used by M3S and

SALMon should be also influenced. Also, we should

avoid deploying SALMon and M3S on the same host

as networking between such virtual machines is not

comparable to regular networking capabilities. Simi-

larly to the increased network load situation, the in-

creased CPU load should also happen on the host where

M3S is deployed (thus influencing its performance met-

rics). Therefore, our independent metric collector script

enforced the Cloud-Broker to instantiate the M3S ser-

vices on one of the nodes that actually experienced the

artificial load. While the VM of SALMon has been de-

ployed on another machine, which actually also served

as the virtual machine image repository of the private

cloud, therefore this host has been used to transfer the

M3S VM to the utilised host during deployment. This

SALMon VM was instructed to measure the response

times (in milliseconds) of the previously defined meth-

ods on the M3S VM. With these preparations, our ex-

perimental cloud was ready for measurements.



Enhancing Federated Cloud Management with an Integrated Service Monitoring Approach 13

Table 1 Average and median values of the evaluations.

StressInBW StressCPU StressOutBW Ping
Avg (ms) Med (ms) Avg (ms) Med (ms) Avg (ms) Med (ms) Avg (ms) Med (ms)

Normal 5,97 5 1672,30 1657,5 87,94 68,67 2,91 2,75
Net load 6,39 6,5 1704,42 1659,5 86,47 74 2,89 3
CPU load 17,69 8,5 2319,27 2289,25 121,93 76 2,71 2,5

Fig. 4 Evaluation results for CPU intensive tests in the LPDS cloud

5.1.2 Measurements in the LPDS cloud

While running our artificial load setups we have repeat-

edly run the IS Agent of GMBS until the statistical

evaluation of the measurement results became more

stable (i.e. we could eliminate the discrepancies be-

cause of the continuously present normal load). Besides

this paper, the evaluation process is also exemplified

through a video available in [52]. In Table 1, we sum-

marize the results with basic statistical measures. The

table’s columns show the average and median response

times of all M3S functions depending on the artificial

load applied. The table presents the increased network

load situation with its ”Net load” row, while the row ti-

tled ”CPU load” reveals the data collected during CPU

under-provisioning in the infrastructure. The rest of the

section gives a detailed discussion on the behavior and

properties of the metrics collected on the clouds via

M3S.

In Figure 4 we can see that for the StressCpu()

method of M3S in the first and second phases (ie. nor-

mal and increased network load) of an evaluation run

we measured around the same CPU response times (that

are shown in milliseconds). The figure shows that for



14 A. Kertesz et al.

Fig. 5 Evaluation results for service availability tests in the LPDS cloud

a few cases the background load of our experimental

cloud was increased for short periods (e.g. Measure-

ment No. 14 under normal load), but otherwise under

both load situations the measurements remained sta-

ble (their standard deviation is really small – 55ms). In

contrast, in the increased CPU load scenario, the M3S

service not only responded around 1.5 slower, but the

standard deviation of its response times have increased

significantly (to 235ms).

Figure 5 shows the response times for the Ping()

method of M3S during all three artificial loads situa-

tions. Due to the applied granularity of measurements

the standard deviation of each measurement run is much

higher (i.e. even under normal load it is 327ns – 12% of

the average measured ping response time). However,

even with such diversity in measurement results the

standard deviation gives us a hint for under-provisioning

situations (e.g. it raises to 397ns and 417ns for network

and CPU load situations respectively).

Finally, the way the independent metric collector

is created allowed us to also measure and publish the

deployment times of the M3S and SALMon services in

the particular cloud infrastructure. As stated in Section

3.2, the average deployment time of virtual appliances

are reported by the VM Handler of the cloud-brokers to

the GSR registry, to help decision making for brokering

operations. We have gathered these deployment times

measured during the evaluation runs, and summarized

them in Table 2. In addition to the previous evaluation

runs we executed an additional phase, in which we fur-

ther increased the network load on the M3S host (there

were 10 times as many parallel transfers as before in our

regular increased network load situation). This phase is

denoted in the last row of this table.



Enhancing Federated Cloud Management with an Integrated Service Monitoring Approach 15

Table 2 Average deployment times of the monitoring appli-
ances.

Evaluation phases Deployment time (ms)

Normal 200,92
CPU load 228,2

Network load 245,45
Higher network load 379,69

Analysis. As we have expected, the results show that

the combined raise in deployment time of the M3S and

in response time for the median ping and bandwidth

stressing functions could be a good indicator for net-

work under-provisioning. Also, the increase in median

CPU load alone could be used to indicate CPU under-

provisioning. Unfortunately, our used bandwidth stress-

ing functionalities also dependent on the CPU on some

level. This dependency is revealed in the increased re-

sponds times of the bandwidth stressing functions dur-

ing heavy CPU load situations. Therefore, the current

set of measurements cannot detect concurrently occur-

ring CPU and network under-provisioning. As new ver-

sions of the M3S will be produced this constraint is

planned to be removed allowing the GMBS to take more

sophisticated decisions. Measuring these metrics in all

participant cloud infrastructures of a cloud federation

can contribute to a better performing execution envi-

ronment selection at the upper layers of the FCM archi-

tecture, resulting in a higher level of user satisfaction.

What we learned from the first round of measure-

ments performed on the LPDS local cloud is that other

running VMs in the cloud infrastructure can cause some

performance degradation to a user’s application, which

is proved by our measurements depicted in Figures 4

and 5. Since cloud providers usually do not give access
to information on the total number of running VMs

(and their dynamic load) in their datacenters, there is

a definite need for a monitoring solution capable of pro-

viding such information.

5.2 M3S metrics in the scope of cloud federations

After we finished examining the behavior of M3S in

a controlled environment, we have set up larger scale

experiments that would support the M3S’s integration

into the FCM architecture. We aimed at collecting M3S

measurements for various cloud systems to enable the

FCM architecture to make more informed decisions,

while federating them into a single cloud formation. To

identify the cloud infrastructures that we could exper-

iment on, we have checked out the various federative

partners of the private LPDS cloud. The LPDS cloud

is participating in two larger scale cloud federations:

one that is formed by the EGI Cloud Federation task

force [39], and the other one is formed by the SZTAKI

Cloud project [41].

5.2.1 The used infrastructures

First, we have contacted the EGI Cloud Federation to

determine which of their participants we can use for

our experiments. To reveal how M3S handles hetero-

geneous environments, we have aimed at an EGI site

with a different cloud setup as our local experimental

cloud. We received positive answer from the CESNET

cloud [40]. During our measurements, this cloud had 10

nodes, 2 of which were reserved for EGI FedCloud. The

hardware parameters of this cloud were: 24 cores, 96

GB RAM, 1 TB local storage (with RAID 0), and In-

finiBand Mellanox MT26428 QDR. Its software stack

uses OpenNebula v. 3.6 with nodes having Debian 6

Squeeze, XEN 4.1.2 hypervisor (with tap2 drivers), and

GPFS or NFS shared storage (44 TB, mounted IPoIB).

Though this cloud is also based on the OpenNebula

middleware, it uses a different virtual machine moni-

tor (namely XEN), which required the transformation

of the originally KVM based virtual appliances of the

M3S and SALMon services. These transformed appli-

ances were registered to the Generic Service Registry of

FCM (see Figure 1) to allow seamless deployment in-

dependently from the applied virtual machine monitor

in the actually monitored cloud infrastructure.

Second, the LPDS Cloud also participates in a larger

private federation of SZTAKI formed by the internal

project called “SZTAKI Cloud”. This federation offers

a central infrastructure service for SZTAKI that fed-

erates with the individually maintained infrastructures

of the various research laboratories in SZTAKI. The

central service runs a different version of OpenNebula

(version 3.8) allowing us to experiment M3S behavior

in an even more heterogeneous environment, when the

cloud toolset is not equivalent. Therefore we used the

SZTAKI Cloud central infrastructure to perform the

third series of measurements. This infrastructure con-

sists of 448 CPU cores, 1.75 TBs RAM and 66 TBs

storage.

In addition to the examined academic Clouds, we

have also performed preliminary evaluations on the Win-

dows Azure platform [51]. However, the performance

characteristics of the Azure cloud renders the results

practically incomparable, because even deploying a sin-

gle instance of the M3S service took around 10 minutes.

Thus, in the next section we only focused our measure-

ments to FCM-based academic cloud federation.



16 A. Kertesz et al.

5.2.2 Measurements

On the previously detailed infrastructures we have also

performed the same measurements that we introduced

for the LPDS Cloud in the previous subsection. As the

artificial CPU and network load could not fit in to our

usage quotas, we have only executed measurements un-

der the regular load of the particular cloud. The com-

parison of the appropriate test cases can be seen in

Figure 6. The figure represents the local LPDS cloud

with the label “LPDS”, the Czech cloud as “CESNET”

and the SZTAKI Cloud federation as “SZTAKI”.

Analysis. In order to summarize the evaluation results

we can state that they are heavily dependent on the

hardware characteristics, overall load and utilization,

and the policies (SLAs) of the actual cloud provider.

For example, the minimum values for the StressCPU()

measurements reveal the clear performance difference

between the individual cores of the clouds (LPDS uses

Intel(R) Xeon(R) CPU E5420 @ 2.50GHz CPUs, CES-

NET uses Intel Xeon E5649@2.53GHz CPUs and SZ-

TAKI uses AMD Opteron(TM) Processor 6272 @2.1GHz

CPUs) and their standard deviation reveals the usage

pattern of the infrastructure and the signs for under

or over-provisioning. This situation can be clearly ob-

served through the SZTAKI Cloud that has several pro-

cessing power slowdowns (e.g. see measurements around

iteration 15). In those cases the CPUs were under-provi-

sioned, and our measurements also reflect this situation.

Based on our deployment time measurements, we

managed to show that deploying similar services at dif-

ferent providers in a federation can result in highly dif-

ferent startup times, therefore for highly dynamic and

often upgraded service appliances our proposed FCM

solution can save significant time for the users by effi-

cient provider selection and VM management with the

help of its integrated monitoring solutions.

6 Conclusion and future work

The growing number of user communities in Cloud Com-

puting calls for overextending the boundaries of sin-

gle cloud systems. Federated clouds aim at supporting

these users by providing a single interface on which they

can transparently handle the different cloud providers

as they would do with a single system. In this paper,

we have presented an architecture that offers federated

cloud management and utilizes a sophisticated service

monitoring approach to evaluate basic cloud reliabil-

ity status, and to perform seamless service provisioning

over multiple cloud providers.

The architecture uses the Generic Meta-Broker Ser-

vice as the entry point for the users of the cloud fed-

eration. This service selects the most suitable cloud

provider to perform the service requests of the user

by investigating the current state of the participating

clouds according to the information stored in a generic

service registry and the reliability metrics collected by

the integrated SALMon service monitoring framework.

We also presented the concept of the Cloud-Broker that

is capable of handling service requests and managing

virtual machines within a single IaaS cloud system.

We have created a minimal metric monitoring service,

which is capable of measuring infrastructure reliabil-

ity together with the integrated SALMon framework in

public and private clouds.

Finally, we have evaluated our integrated federated

management solution using the minimal metric mon-

itoring service and SALMon to monitor service provi-

sioning reliability in three different private cloud infras-

tructures. The presented evaluation results show that

both service reliability and responsiveness do vary over

time and load conditions, and these measures can be

used by our federated cloud management solution to

select better execution environments for achieving a

higher level of user satisfaction.

Our future work aims at applying the proposed ap-

proach in other cloud federations including commercial

solutions. Since our SZTAKI Cloud project has recently

launched its federated Cloud service, now we are able to

manage local clouds of different laboratories by taking

into account the monitored service performance data.

Regarding cloud-brokering, we would like to rely more

tightly on the information provided by the monitor-

ing service, e.g., VM deployment and service execution

times. Using these and historic information collected

about the services, we would like to forecast load and

required VM count incorporating e.g., delays caused by

VM deployment times and maximum time limit con-

straints for services calls waiting in the service queue.

In these additional evaluations we will further exam-

ine the performance of centralized components in FCM

(such as the GMBS and GSR), and propose replicated

or decentralized versions for better scalability.

7 Acknowledgment

The research leading to these results has received fund-

ing from the European Community’s Seventh Frame-

work Programme FP7/2007-2013 under grant agree-

ment 215483 (S-Cube), and from the SZTAKI Cloud

project financed by the Computer and Automation Re-

search Institute, Hungarian Academy of Sciences (MTA

SZTAKI).



Enhancing Federated Cloud Management with an Integrated Service Monitoring Approach 17

Fig. 6 Comparison figures of measurements in 3 Clouds

References

1. D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond and
M. Morrow. Blueprint for the Intercloud – Protocols
and Formats for Cloud Computing Interoperability. In
Proceedings of The Fourth International Conference on
Internet and Web Applications and Services, pp. 328–
336, 2008.

2. E. Badidi, L. Esmahi, M. A. Serhani and M. Elkoutbi.
WS-QoSM: A Broker-based Architecture for Web Ser-
vices QoS Management. Innovations in Information
Technology, pp. 1–5, 2006.

3. L. Baresi, S. Guinea. Self-supervising BPEL Processes.
In IEEE Transactions on Software Engineering, IEEE
computer Society Digital Library, 2010.

4. T. Baur, R. Breu, T. Kalman, T. Lindinger, A. Milbert,
G. Poghosyan, H.Reiser, M. Romberg. An Interoperable

Grid Information System for Integrated Resource Mon-
itoring Based on Virtual Organizations. Journal of Grid
Computing, Volume 7, Issue 3, pp. 319–333, September
2009.

5. R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I.
Brandic. Cloud computing and emerging it platforms:
Vision, hype, and reality for delivering computing as the
5th utility. Future Generation Computer Systems, vol.
25, no. 6, pp. 599–616, June 2009.

6. R. Buyya, R. Ranjan, and R. N. Calheiros. InterCloud:
Utility-Oriented Federation of Cloud Computing Envi-
ronments for Scaling of Application Services. Lecture
Notes in Computer Science: Algorithms and Architec-
tures for Parallel Processing. Volume 6081, 2010.

7. O. Cabrera and X. Franch. A Quality Model for
Analysing Web Service Monitoring Tools. In proc. of
the Sixth IEEE International Conference on Research



18 A. Kertesz et al.

Challenges in Information Science, RCIS 2012, Valen-
cia, Spain, 16-18 May 2012.

8. E. Carlini, M. Coppola, P. Dazzi, L. Ricci, and G.
Righetti. Cloud Federations in Contrail. Euro-Par 2011
Workshops, LNCS 7155, pp. 159168, 2012.

9. Celesti, A., Tusa, F., Villari, M., and Puliafito, A.
(2010). How to Enhance Cloud Architectures to Enable
Cross-Federation. In IEEE 3rd Conference on Cloud
Computing (CLOUD). 2010.

10. A. Cuomo, G. Di Modica, S. Distefano, A. Puliafito,
M. Rak, O. Tomarchio, S. Venticinque, U. Villano. An
SLA-based Broker for Cloud Infrastructures. Journal of
Grid Computing, Volume 11, Issue 1, pp. 1–25, March
2013.

11. E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and
K. Pohl. A journey to highly dynamic, self-adaptive
servicebased applications. Automated Software Engg.,
vol. 15, pp. 313–341, December 2008.

12. R. R. Exposito, G. L. Taboada, S. Ramos, J. Gonzalez-
Dominguez, J. Tourino, R. Doallo. Analysis of I/O
Performance on an Amazon EC2 Cluster Compute and
High I/O Platform. Journal of Grid Computing, Online
First, March 2013. DOI: 10.1007/s10723-013-9250-y.

13. A. J. Ferrer et. al. OPTIMIS: a Holistic Approach to
Cloud Service Provisioning. Future Generation Com-
puter Systems, vol. 28, pp. 66–77, 2012.

14. G. Kecskemeti, G. Terstyanszky, P. Kacsuk, and Zs.
Nemeth. An Approach for Virtual Appliance Distribu-
tion for Service Deployment. Future Generation Com-
puter Systems, vol. 27, issue 3, pp 280–289, 2011.

15. G. Kecskemeti, G. Terstyanszky, P. Kacsuk and Zs.
Nemeth. Towards Efficient Virtual Appliance Delivery
with Minimal Manageable Virtual Appliances. to ap-
pear in IEEE Transactions on Services Computing, DOI:
10.1109/TSC.2013.12.

16. A. Keller and H. Ludwig. The WSLA framework: Spec-
ifying and monitoring service level agreements for web
services. Journal of Network and Systems Management,
11(1), pp. 57–81, 2003.

17. A. Kertesz and P. Kacsuk. GMBS: A new middleware
service for making grids interoperable. Future Gener.
Comput. Syst., vol. 26, pp. 542–553, April 2010.

18. Z. Li, Y. Jin and J. Han. A runtime monitoring and val-
idation framework for web service interactions. In proc.
of Australian Software Engineering Conference, 2006.

19. A. Cs. Marosi and P. Kacsuk. Workers in the clouds.
In PDP2011, Y. Cotronis, M. Danelutto, and G. A. Pa-
padopoulos, Eds. IEEE Computer Society, pp. 519–26,
2011.

20. A. Cs. Marosi, G. Kecskemeti, A. Kertesz, P. Kacsuk.
FCM: an Architecture for Integrating IaaS Cloud Sys-
tems. In proc. of the Second International Conference on
Cloud Computing, GRIDs, and Virtualization (Cloud
Computing 2011), IARIA, pp. 7-12, Rome, Italy, 2011.

21. J. Montes, A. Sanchez, B. Memishi, M. Perez, G. An-
toniu. GMonE: A complete approach to cloud monitor-
ing. Future Generation Computer Systems, In Press,
Corrected Proof, Available online 5 March 2013.

22. H. R. Motahari-Nezhad, R. Saint-Paul, B. Benatallah,
and F. Casati. Deriving protocol models from imper-
fect service conversation logs. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 2008.

23. B. P. Rimal, A. Jukan, D. Katsaros, Y. Goeleven. Archi-
tectural Requirements for Cloud Computing Systems:
An Enterprise Cloud Approach. Journal of Grid Com-
puting, Volume 9, Issue 1, pp. 3–26, March 2011.

24. C. Muller, M. Oriol, M. Rodriguez, X. Franch, J. Marco,
M. Resinas and A. Ruiz-Cortes. SALMonADA: A plat-
form for Monitoring and Explaining Violations of WS-
Agreement-compliant Documents. In proc. of the 4th
International Workshop on Principles of Engineering
Service-Oriented Systems (PESOS’12), 2012.

25. M. Oriol, X. Franch, J. Marco, D. Ameller. Monitoring
adaptable soa-systems using salmon. In Workshop on
Service Monitoring, Adaptation and Beyond (Mona+).
pp. 19–28, 2008.

26. P. Marshall, K. Keahey and T. Freeman. Elastic Site:
Using Clouds to Elastically Extend Site Resources.
T. IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid 2010), Melbourne,
Australia. May 2010.

27. D. Petcu, C. Craciun, M. Neagul, M. Rak, I. Lazcan-
otegui. Building an Interoperability API for Sky Com-
puting. In proc. of the Second International Workshop
on Cloud Computing Interoperability and Services (In-
terCloud 2011), IEEE CS, pp. 405-412, 2011.

28. B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Na-
gin. I. Lloriente, R. Montero, Y. Wolfsthal, E. Elmroth,
J. Caceres, M. Ben-Yehuda W. Emmerich, F. Galan.
The RESERVOIR Model and Architecture for Open
Federated Cloud Computing. IBM Journal of Research
and Development, 53(4), 2009.

29. B. Rochwerger, D. Breitgand, A. Epstein, D. Hadas,
I. Loy, K. Nagin, J. Tordsson, C. Ragusa, M. Villari,
S. Clayman, E. Levy, A. Maraschini, P. Massonet, H.
Munoz and G. Toffetti. Reservoir - When One Cloud is
not enough. Computer, vol. 44, i. 3, pp. 44-51, 2011.

30. M. Schmidt, N. Fallenbeck, M. Smith, and B. Freisleben.
Efficient distribution of virtual machines for cloud com-
puting. In Proceedings of the 2010 18th Euromicro Con-
ference on Parallel, Distributed and Network-based Pro-
cessing, IEEE Computer Society, pp. 567–574, 2010.

31. M. Silberstein, A. Sharov, D. Geiger, and A. Schuster.
GridBot, execution of bags of tasks in multiple grids.
In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis (SC ’09),
2009.

32. B. Sotomayor, R.S. Montero, I.M. Llorente, and I. Fos-
ter. Virtual infrastructure management in private and
hybrid clouds. Internet Computing, vol. 13, no. 5, pp.
14–22, IEEE, 2009.

33. H. Truong, T. Fahringer, S. Dustdar. Dynamic In-
strumentation, Performance Monitoring and Analysis of
Grid Scientific Workflows Jounal of Grid Computing
(JOGC), vol. 3, pp. 1-18, 2005.

34. Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres,
and Maik Lindner. A break in the clouds: towards a
cloud definition. SIGCOMM Comput. Commun. Rev.
39, 1, pp. 50–55, 2008.

35. X. Wang; H. Wang, Y. Wang. A Monitoring Frame-
work for Multi-Cluster Environment Using Enterprise
Service Bus. International Conference on Management
and Service Science, 2009.

36. N. Yigitbasi, A. Iosup, D. Epema, and S. Ostermann. C-
Meter: A Framework for Performance Analysis of Com-
puting Clouds. In the International Workshop on Cloud
Computing (Cloud 2009), 2009.

37. P. Zhang, B. Li, H. Muccini and M. Sun. An Approach
to Monitor Scenario-Based Temporal Properties in Web
Service Compositions. In Advanced Web and Network
Technologies, and Applications, 2008.



Enhancing Federated Cloud Management with an Integrated Service Monitoring Approach 19

38. C. Zhou, L. T. Chia and B. S. Lee. DAML-QoS ontology
for web services. In IEEE International Conference on
Web Services, pp. 472–479, 2004.

39. EGI Federated Clouds Task Force.
https://wiki.egi.eu/wiki/Fedcloud-
tf:FederatedCloudsTaskForce, 2012.

40. CESNET Czech academic network operator.
http://www.ces.net/about/, 2012.

41. SZTAKI Cloud. http://cloud.sztaki.hu/en/home, 2012.
42. Amazon CloudWatch. http://aws.amazon.com/cloud-

watch/, 2009.
43. Amazon Web Services LLC. Amazon elastic compute

cloud. http://aws.amazon.com/ec2/, 2009.
44. Cerebrata Azure Diagnostics

Manager. http://www.cere-
brata.com/Products/AzureDiagnosticsManager, 2011.

45. Eucalyptus cloud. http://www.eucalyptus.com/, 2011.
46. LPDS laboratory website. http://www.lpds.sztaki.hu,

2012.
47. Nagios XI monitoring solution.

http://www.nagios.com/products/nagiosxi/, 2012.
48. OpenNebula cloud. http://opennebula.org/, 2011.
49. Rackspace Cloud. http://www.rackspace.com/cloud/,

2011.
50. The World Wide Web Consortium.

http://www.w3.org/TR/wsdl, 2009.
51. Windows Azure Platform.

http://www.windowsazure.com, 2012.
52. Video demonstration of the moni-

toring capability integrated to FCM.
http://www.youtube.com/watch?v=uIewqw FJQc,
April 2013.


