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ABSTRACT

The aim of this research project is to develop an improved backcalculation procedure, for

the determination of flexible pavement properties from the Falling Weight Deflectometer
(FWD) test results.

The conventional backcalculation methods estimate the pavement layer moduli assuming full
adhesion exists between layers in the analysis process. The method developed in this
research can predict the interface condition between the wearing and the base courses in
addition to the layer moduli, which can be considered an improvement to the existing

procedures. A two stage database procedure has been used to predict the above parameters

and to facilitate the determination of the deflection insensitive parameters.

The need for this improvement arises from the large number of debonding failures which
have been reported in the literature between the wearing and base courses, and the

theoretical studies which identified the significance of including the interface bonding

condition in the analysis process.

The validation of the improved method has been carried out firstly by comparing the
backcalculated results for ninety theoretical pavements with their hypothetical values, and

secondly by comparing the improved procedure results with other well known programs
such as WESDEF and MODULUS.

Full scale pavement testing using the FWD has béen performed and the backcalculated
results compared with measured values for the pavement materials. Indirect tensile tests for
resilient modulus of bituminous materials were carried out on cores extracted for the
pavements, whereas Dynamic Cone Penetrometer (DCP) tests were conducted for the

unbound materials. The Backcalculated and the physically measured results correlated well,

validating the improved procedure.
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Chapter 1

INTRODUCTION

1.1 BACKGROUND TO THE PROBLEM

The majority of highway networks have been constructed during the 1960’s and 70’s in
many countries (1), therefore monitoring, evaluating and improving these highways to meet

the increasing traffic loading and frequency has become major concern for highway
engineers.

Pavements deteriorate after construction under traffic and environmental effects. The
assessment of existing pavement conditions with sufficient accuracy is an important part of
a pavement management system. Therefore, different maintenance and rehabilitation

schemes can be considered together with the financial constraints to achieve the optimum
rate of return.

Pavement condition can be classified as functional and structural (2):
1) The functional properties include the pavement ride quality related to surface
roughness and the pavement safety related to skid resistance.
i1) The structural properties include the strength of the pavement and its bearing
capacity. '
The structural condition will depend on the material properties and thicknesses of the
different layers in the pavement structure including the subgrade. Predicting the material

properties of the pavement layers to assess its structural performance is the main concern of
this research.



Pavement structural condition deteriorates gradually during its life to reach the state of
failure. Two main criteria are considered for flexible pavement failure, permanent

deformation or rutting, and fatigue cracking (3).

In the UK a rut depth of 10 mm in the wheel tracks has been proposed to describe the
pavement critical life. If the deterioration progresses the failure will be reached eventually at

20 mm rut depth or extensive surface cracking in the wheel path (4).

An evaluation method based on the maximum measured deflection under standard wheel
load to assess the pavement strength is also implemented. Empirical relationships between
the deflection and the residual pavement life developed from experience on full scale
experimental roads are used (5). However, this method describes the whole pavement as

one number which does not indicate the individual layers’ properties within the pavement.

With increasing use of the mechanistic pavement design and evaluation methods, which are
based on fundamental engineering principles, the knowledge of each pavement layer
property becomes important(2). The layers moduli can be use to calculate the stresses and

strains within the pavement structure and hence predict its life.

To determine the mechanical properties of the pavement materials two different approaches
can be employed; either laboratory testing on samples taken from the pavement structure or
by mean of non-destructive testing (NDT) on existing pavements. The former suffer from
many drawbacks such as the tests being tedious, time consuming, destructive to the
structure and can cause traffic delays. Furthermore, it is difficult, if not impossible, to
simulate an exact state of field stress in the laboratory testing of pavement materials (6).
NDT methods have gained popularity in the past decade because of their ease of use and

their ability to collect large amounts of data in a short time period (7).

Among the pavement responses to surface load such as stresses, strains and deflections, the
only practical measurements are deflections. Many NDT devices have been developed to
measure the pavement surface deflections. The Falling Weight Deflectometer (FWD) is one
of them, where an impact load is applied to the pavement surface and the deflections are
measured at seven locations. The FWD provides a pulse shape load that tends to simulate

moving-wheel load better than any other device (8). The deflection basin is analysed in a



procedure known as backcalculation, to predict the insitu elastic modulus for each
pavement layer. Knowledge of the pavement geometry (layer thickness) and the interface
condition between the layers is essential for the process. The pavement properties are then
input into a mechanistic pavement model to calculate stresses and strains resulting trom the
applied loads. These stresses and strains are used with fatigue and deformation distress

relationships to evaluate the pavement structural condition and predict the pavement failure.

The surface deflections under the falling weight retlect the real insitu pavement conditions in
term of layer moduli, thicknesses, Poisson’s ratios and the interface condition between the

individual layers.

Conventional backcalculation programs for flexible pavements have assumed that full
adhesion exists between the pavement layers in the analysis process. However, debonding
failure between the wearing course and base course has been reported in flexible pavements

(9,10,11).

1.2 OBJECTIVE OF THE PROJECT

The scope of the present research project is to develop and validate an improved
backcalculation procedure for flexible pavements. The process is based on mechanistic

analysis of the pavement response under the FWD.

The new two-stage backcalculation method should predict the pavement layer moduli and
the interface shear reaction modulus between the wearing and base courses from the FWD
test results. This can be considered as an improvement in the existing backcalculation
methods since the common assumption of full adhesion between the wearing and base

course has been relaxed.



1.3 OUTLINE OF THE THESIS

A review of literature relating to flexible pavement evaluation using the FWD and
backcalculation techniques, including pavement and materials modelling, deflection analysis,
assumptions and sources of errors in backcalculation methods are discussed in Chapter

Two.
The reported practical evidence of slippage failures and their causes, together with the
mathematical model and the existing methods for predicting the interface condition, are

presented in Chapter Three.

The effect of the interface bonding condition between the wearing and base courses on

backcalculated moduli and pavement life is discussed in Chapter Four.

Surface deflection sensitivity to pavement parameters is investigated in Chapter Five.

The development of the improved two-stage backcalculation procedure is detailed in

Chapter Six.

The theoretical and empirical validation of the improved method including the discussion of

the full scale pavements testing results are provided in Chapters Seven, Eight and Nine.

Finally, the conclusions of this thesis with the recommendations for further investigation are

given in Chapter Ten.



Chapter 2

FLEXIBLE PAVEMENT EVALUATION USING
THE FWD AND BACKCALCULATION
TECHNIQUES

2.1 INTRODUCTION

Pavement structural evaluation using the Falling Weight Deflectometer (FWD) and
backcalculation of its properties has been widely used (12). This is due to its economic and

environmental advantages, and its ability to represent the insitu pavement condition under

traffic load.

Pavement analytical design methods involve specifying the layers’ material property and
thickness and calculating the stresses, strains and deformations produced within the
pavement structure under design load employing an appropriate theoretical model. Hence
the proportions of the pavement and the constituent materials are adjusted until a design

results in which the stresses and strains are within their permissible limits (4).

Pavement structural evaluation, on the other hand, requires the measurement of its response
in terms of surface deflections under the FWD and optimising the best set of layers
properties to fit the deflection basin. These properties describe the existing pavement
condition. The predicted properties are used to forecast the pavement’s remaining life
employing empirical performance models. Therefore the rehabilitation requirements, such as
overlay, can be decided. However, overlay design is not the objective of this research and

only the pavement’s structural evaluation is considered.
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Therefore to understand the pavement assessment procedure the following elements need to

be detailed:

1) The pavement structure representation by an appropriate model.
i) The pavement materials behaviour modelling.
1i1) FWD testing.

iv) The analysis of deflection basin.

2.2 PAVEMENT MODELLING

The earliest model for calculating the stresses in a body subjected to a load on the boundary
surface is that developed by Boussinesq (13). Boussinesq solved the equilibrium equations
for a semi-infinite half-space, providing solutions that are accurate for a single-layer system.

The Boussinesq general equation for deflection due to point load (P), as reported by Zhou et

al (14), is:

(1+v)P[2(1-v)+Cos®0]
dz,r=

[2.1]
27t RE

where,
d ., , deflection at a depth z and radius r (see figure 2.1),
R, distance from point load to the location deformation occurs,
E , modulus of elasticity,
v, Poisson’s ratio,

6 , angle between centreline of the load and location of analysis.

Provided that the top layer is stiff, Boussinesq equations for point load will usually give
satisfactory results to evaluate the stresses, strains and displacements for a uniformly

distributed surface load (15).

To extend the use of these equations to a multilayered pavement structure, the method of
equivalent thickness can be applied. This method assumes that any two layers with similar

structural stiffness will distribute loading in the same way (14,15). According to this



assumption, all layers in a multilayered system can be transformed to a one layer system

with equivalent stiffness. The structural stiffness of a layer is given by:

EI
_ [2.2]
(1-v%)

where,
I, second moment of area of the layer = bh’ /12

h, layer thickness
b, unit width.

For a two layer structure, the equivalent thickness of a layer with a modulus E, and
Poisson’s ratio v, to a layer of thickness h;, modulus E; and Poisson’s ratio v; may be

expressed by equating the structural stiffness of both layers, that is:

E, h? E, h,’
12(1-v,%) 12 (1-v,%)
Rearranging the equation,
Ei(l - v2?) |
h2 = hl : ( vzz) [2'4]
E: (1 -w')

By expanding this concept for a multilayered system, a general form of the equation may

be written as:

[2.5]
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he; , equivalent thickness for the ith layer
h; , thickness of the ith layer

E; , modulus of the ith layer

E, , modulus of the nth layer



v; , Poisson’s ratio for the ith layer

Vi , Poisson’s ratio for the nth layer.

The thickness of n-1 layers of a multilayered structure above the nth layer is replaced by an

equivalent additional thickness (h,) of the semi-infinite half-space, as shown in figure 2.2.

Peattie and Ullidtz (15) suggested that a correction factor should be applied to the equivalent
thicknesses, varying between 0.8 and 1. A value of 0.9 is commonly adopted except for a

two-layer system where the factor should be 1.

Therefore by transforming the multilayered structure into its equivalent semi-infinite space,
Boussinesq’s equations can be used to evaluate stresses, strains and deflections. However,
Ullidtz (2) stated two limitations for using this method; namely: pavement layer moduli
should decrease with depth probably by a factor of at least two between consecutive layers

and that the equivalent thickness of a layer should preferably be larger than the radius of the
loaded area.

Burmister (16), presented the first solution for a multilayered elastic system by developing a
solution for deformation of specific two and three-layer systems. Full contact was assumed
at the interface between the layers. Acum and Fox (17) extended this analysis to include
deformations and stresses for three-layer systems and subsequently Peattie (18) presented

graphically coefficients which enable a range of three-layer structures to be evaluated.

In a layered linear elastic model of a pavement, each layer can be characterised by its
modulus of elasticity (E) and Poisson’s ratio (v) as shown in figure 2.3. Knowing these
elastic properties and the thickness of each layer together with the continuity condition at
the interface, a unique pavement response to circular surface loading can be calculated
numerically. A number of documented computer programs are now available to calculate
the pavement response such as BISTRO, BISAR, CHEVRON, ELSYMS and WESLEA
(19). Full adhesion is normally assumed at the interface between the layers, although some

programs (such as BISAR) are capable of varying the interface condition between the layers.



Several assumptions have to be made for using the multilayered elastic system theory (16).

These are:

1) Uniform static load is applied on a circular area of the surface.

ii) The material in each layer is linear elastic, homogeneous, isotropic for which
Hooke’s law is valid.

1i1) The first (n-1) layers overlaying the elastic half-space are weightless and finite in
thickness, but are infinite in the horizontal direction.

iv) The nth layer is infinite in the two directions.

v) The solution of the problem must satisfy certain boundary conditions, namely that
the top of the surface layer must be free of normal and shearing stresses outside the
loaded area and for the elastic half-space, stresses and displacement are assumed to
approach zero at a infinite depth.

vi) The solution of the problem must satisfy certain continuity conditions of stress

and displacement.

Some of the above assumptions are violated in real pavements, where both traffic and FWD
loads are dynamic. Furthermore bituminous mixes are visco-elastic with their mechanical
properties dependent on the temperature and the time of loading, while soil and granular
materials exhibit non-linear stress dependent behaviour. Therefore in the above theory the

modulus of each layer represents an equivalent or effective modulus.

Mamlouk et al (20) found that within the stress range of the FWD tests, the effect of

material non-linearity is negligible compared with the effect of spatial variability in material

properties.

Due to their simplicity, static multilayered linear elastic analysis methods are the most
widely used for pavement design and analysis (21-28). In principle it is possible to use
algorithms that account for dynamic effects and non-linear materials behaviour, but they

involve significantly greater computation times, which make them unacceptable for practical

use (28-30).

Currently, calculation of stresses, strains and displacements, may be applied through the use

of the following (29):



i) Traditional layered elastic programs based on numerical integration procedures
such as, BISAR, CHEVRON, ELSYM5 and WESLEA.

ii) The method of equivalent thickness instead of numerical integration.

ii1) Finite-element programs such as ILLIPAVE or MICHPAVE.

iv) Plate theory such as the Westergaard solution for concrete pavements.

v) Neural networks trained to reproduce the results.

2.3 PAVEMENT MATERIALS BEHAVIOUR MODELLING

The relationship between stress due to applied load and the corresponding strain is the most
important mechanical property of the material. Therefore to analyse the pavement structure
under the FWD it is necessary to determine the stress-strain model for each pavement

material.

Typical materials found in flexible pavements are bituminous materials, granular materials
and fine-grained subgrade soil. The complex characteristics and variability of the pavement
materials and their sensitivity to temperature and moisture, have lead researchers to
consider simplifying the models to describe, with reasonable accuracy, the materials
behaviour under FWD load.

The deformation of a pavement structure under loading is composed of two parts, the
resilient or recoverable component and the permanent or non-recoverable component (19).
In the case of transient loads the pavement strains are governed by the resilient

characteristics of the materials.

The resilient modulus 1s defined as the applied deviatoric dynamic stress divided by the
recoverable resilient strain, measured between successive stress application in the triaxial

test (22,31), namely;

M,=0y/& [2.6]
where,

Oy , repeated deviatoric stress ) - O3
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& , recoverable axial strain in the direction of principal stress o,

01, 02, O3, principal stresses.

2.3.1 Bituminous Materials

Bituminous mixes are visco-elastic materials, where the stress-strain relationship is a
function of temperature and loading time. At low temperature and short loading time, they

behave like fully elastic whereas at high temperature and long loading time they become

visco-elastic (32).

The modulus of bituminous material is usually represented by the complex modulus,
dynamic modulus or resilient modulus (33). Because of the short loading time associated
with pavement load, the response of the bituminous layer may be assumed to be linear
elastic (19). Mamlouk et al (34), indicated that the resilient modulus may be more
appropriate in analysing the FWD deflection basin using a multilayer elastic system than
other moduli. And the moduli predicted from NDT of pavements are more representative of
the insitu resilient moduli of the materials. Furthermore, other researchers (35,36) have
claimed that the Indirect Tensile Test (ITT) is the most suitable testing method for

estimation of the bituminous material modulus of elasticity in the laboratory.

The ITT for measuring the stiffness modulus of bituminous materials has been used for
many years (36). The principle of the test is that a cylindrical core extracted from the
pavement, or moulded in the laboratory, is subjected to a repeated load pulse along the
vertical diameter, and the resultant deformation along the horizontal diameter is recorded

(see figure 2.4). The stiffness modulus is a function of applied load, horizontal deformation,

Poisson’s ratio and the specimen thickness.

2.3.2 Unbound Materials

Modelling unbound materials is complex since their resilient modulus is a function of many

parameters such as, moisture content and stress level (37).
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A simplified approach widely used in pavement design, is to relate the unbound material
resilient modulus to the insitu California Bearing Ratio (CBR) value using the following

empirical equation (38):

E (MPa) = 10 CBR [2.7]

The Transport Research Laboratory (TRL) proposed other relationship (4):

E (MPa) = 17.6 CBR** [2.8]

Furthermore, many insitu test results can be correlated to the CBR value such as, the

Standard Penetration Test (SPT) (39) and the Dynamic Cone Penetrometer (DCP) (40).

The main advantage of using the CBR value as an indicator to the modulus of elasticity for
unbound material is its simplicity. However the CBR value should only be regarded as a

qualitative measure of the unbound material stiffness.

Uzan (12) describe the general model for non-linear behaviour of the unbound material

found in repeated load triaxial tests:

Mg = K; P, (0/ Py )** (Toa / P, )©° [2.9]

where,
Mg, resilient modulus of unbound material
0, bulk stress or first stress invariant (G; + G2 + O3 )
Tost, Octahedral shear stress or second deviatoric stress invariant
= (V2/3)( 01 - 0,) in the triaxial test
P,,  atmospheric pressure used in the equation to make the coefficient
independent of the unit used

K, K», K3, material parameters.

Two types of unbound materials are found in pavement structures namely granular materials

and fine grained subgrade soil. The stiffness of the fine soil is predominantly a function of
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the deviatoric stress. This stress decreases with depth resulting in an increase in effective
stiffness. Sandy or granular materials are affected by both the confining pressure and the
deviatoric stress. The weight of the materials causes the confining pressure, and thus the
bulk stress, to increase with depth. This and the decreasing load-related stress result in a

rapid increase in effective stiffness (26)

However, in the backcalculation techniques, including the non-linear behaviour of the
unbound materials will result in a large number of parameters to be predicted. This is not

likely to produce an effective and reliable solution (12,26).

It has been suggested that linear elastic system computation can analyse granular layers with
sufficient accuracy when an appropriate modulus value is assigned to them (41). Similar is
the difficulty of establishing a feasible model for the subgrade which can accurately deal
with all situations that may occur. It seems that a linear elastic layered model is a necessary

approximation provided that an appropriate modulus is assigned to the subgrade (20).

Rohde et al (26), suggested accounting for changes in subgrade stiffness with depth, using a
layered elastic approach, by including a rigid layer underlying the subgrade. Many
backcalculation programs assume an apparent stiff layer at certain depth into the subgrade to

simulate its non-linear behaviour.

2.4 THE FALLING WEIGHT DEFLECTOMETER (FWD)

The FWD has been established as the most effective testing device for the structural
evaluation of a pavement (42). A trailer-mounted NDT device applies an impact load to the
pavement surface by mean of a falling weight on 300 mm diameter circular plate. The load
magnitude can be adjusted by varying either the mass of the weight or the drop height. The
impact load has a total duration typically between 25 to 30 ms and a peak force up to 125
kN. The applied force is measured with a load cell. Peak deflections at the centre of the load
plate and at six other locations, away from the plate, are obtained by velocity transducers

(geophones) in contact with the pavement surface (see figures 2.5 and 2.6).
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The geophones settings are usually selected to be 300 mm apart, therefore the seven
deflection values can represent the deflection basin under the FWD load, assuming

symmetry around the load.

The FWD has the following advantages over laboratory testing (6,14,43):

i) Low operating cost. A laboratory test programme for measuring layer moduli will
be 60-80 times more costly than a corresponding field test program using the FWD
(43). This includes factors such as traffic control cost and the monetary value of
project delay.

i) Short test duration and rapid data collection,

iii) Simple testing procedures.

iv) No physical damage to the pavement structure.

v) No disturbance effect to the sample.

vi) It can simulate the effect of moving traffic loads.

vii) Full scale model test where the test measures the insitu pavement behaviour

under traffic load.

2.5 ANALYSIS OF DEFLECTION BASIN

Typical deflection analysis involves estimating the modulus of each layer to describe the
structural condition of the pavement. However, since there is no direct solution that predicts
the layer moduli from surface deflections, the procedures generally utilise iterative inverse
solution techniques, which have been termed as backcalculation. The backcalculation

procedure has the following steps (see figure 2.7):

i) Assume the initial seed layer moduli.

ii) Calculate the pavement surface deflection using any structural analysis model,
such as BISAR (44).

iii) Compare the calculated deflections with the measured deflections under the
FWD.

iv) Adjust the layer moduli until the two deflection basins match within an

acceptable tolerance.
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2.5.1 Backcalculation Methods

Some backcalculation programs use the properties of the deflection basin to adjust the layer
moduli, where these moduli influence different parts of the deflection basin as shown in
figure 2.8. These methods form the basis of many backcalculation programs such as,

PADAL (42), the New Mexico State Department of Transport (45) and MODCOMP2 (46).

Brown et al (42), studied the moduli influence indices for certain pavement structures. The
variations in the deflections relative to the variation in the considered modulus are
calculated at each deflection location, and named as the stiffness influence. The influence
index (II) of the deflection basin is defined as the ratio of the stiffness influence calculated at
a specific radial position to the maximum stiffness influence computed at any radial position.
The index number, ranging from O to 1, measures the sensitivity of the change of deflection
to the change in layer modulus. When the influence index equals one, the radial position

which is most sensitive to the change of modulus is located.

By allocating to each layer modulus a deflection location from the influence index, the initial

seed assumed modulus can be adjusted using the following equation (42):

(Enew)j = (Eold)j ( de/ dw )ik [2 lO]

where,
E..w and Egq , new and old computed modulus respectively for layer j,
d. and d,, , calculated and measured deflections respectively at radial location i,

k , an index number which increases as iteration progresses.

Thus the iteration process continues modifying the moduli of all the layers until a

satisfactory match is achieved between the calculated and measured deflection basins.

De Almeida et al (47) at Nottingham University considered that the above method which

they used earlier in PADAL backcalculation program (42), has some limitations, i.e.
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i) It requires a decision on which geophone location should be assigned to each
parameter.
ii) The remaining deflections are ignored in the deflection matching and,

consequently, more poorly matched.

Therefore they concluded that all measured deflections should be taken into account in the

backcalculation procedure, using the concept of a least squares method.

The method of least squares was first conceived by Hou (48) and has been used in many
iterative backcalculation programs. Newton’s method for adjusting the pavement
parameters, in order to minimise the error between the measured and the calculated

deflections, is used.

Starting with an initial estimate of the solution (P), a linear Taylor expansion of the response

function f( P + AP ) is taken around (P), i.e.
f(P+AP)=f(P)+ Vf. AP [2.11]

where f( P+ AP ), is the measured response corresponding to the value of the function at

the solution (P + AP ), and f( P) is the value of the function at the solution (P).

Equation [2.11] is written in matrix form as follow

9 fi

aP,

AP, [2.12]

fi(P+AP)-fi(P)=

Equation [2.12] can be non-dimensionalized by dividing both sides by f; ( P ),

r=F.a
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or Fl.r=F .F.a [2.13]

fi(P+AP)- fi(P)

The vectorr = r; ]T , and . =

fi(P)

where, f; (P + AP ), represent the measured surface deflection at sensor location i of the
FWD and f; ( P ) represent the most recently calculated surface deflection at the location i.

Therefore the vector r is completely determined.

The matrix F=[F; ], and F;=

oP;  fi(P)

The matrix F is usually called the sensitivity matrix, because its elements (F;; ) reflect the
sensitivity of the deflections to pavement parameters. Since the analytical solution is not
available the derivatives ( @ f;/ 0 P;), where f; (i = 1,2,..m) represent the pavement
deflections and P; (j = 1,2,...n) represent the pavement parameters, are computed
numerically using the forward derived differences. The initial parameters are increased by
5% and the resulting deflections are calculated using the BISAR program. For these small
variations the derivatives (  f;/ 8 P;) can be assumed equal to (A f; / AP;). Thus the
sensitivity matrix (F) can be generated by n + 1 runs of BISAR program.

The vector o = [ay I, and o=

The unknown vector a reflects the relative changes of the parameters. The set of equations
can be solved using any equation solver, such as a Gauss elimination method. As soon as o

is obtained, a new set of parameters is determined as, P, =Py (1 + ).

The iteration process is continued until the observed convergence is reached, i.e. the changes
in the pavement parameters are sufficiently small and the computed and measured

deflections match closely.
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Wang and Lytton (49), at Texas Transportation Institute developed the System Identification
method (SID) for backcalculating the pavement layer properties. The parameter adjustment

algorithm used in their program (SID) was identical to equation [2.13] in the method of least

squares.

Other computer programs have been developed by the US Army Corps of Engineers at the
Waterways Experimental Station (50). They are named BISDEF, CHEVDEF, ELSDEF and
WESDEF, using different forward calculation programs, i.e. BISAR, CHEVRON, ELSYMS5
or WESLEA. These programs employ a gradient search technique for iteration toward the
correct set of layer moduli, where a successive linear least squares approach is used. All the

above programs use the multilayered elastic system for the forward calculation method.

The method of equivalent thickness can be used as a forward model to convert the
multilayer system to a single layer. Therefore backcalculation will be faster and simpler.
Both ELMOD (2) and BOUSDEF (14) programs use this method, however as stated earlier

in this chapter this method has some limitations.

A completely different approach is used by MODULUS program (51) which has been
developed at Texas A&M University. A database is computed for deflection basins using
the BISAR program with layer moduli that cover the range of moduli anticipated in the
field. The database is stored before the actual backcalculation process starts. The measured
deflection basin is compared with the database and a pattern search algorithm is used to
predict the layer moduli that minimises the error between the measured and calculated
basins. When a large number of deflection measurements are made on pavements with the
same configuration, the MODULUS program will be distinctly faster than the iterative
methods. This is because of the reduction in computing time, since the database will be the
same for all cases. The MODULUS program excludes the user dependency in selecting the

initial seed moduli.

A table listing of the most common backcalculation procedures was presented by the
Strategic Highway Research Program (SHRP), and shown in table 2.1. These programs were
used by SHRP for backcalculation software selection and do not represent a comprehensive

list of all available programs.
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2.5.2 Problems Encountered in Backcalculation

Non-unique solution is one of the main problems of backcalculation techniques. It is
possible for two or more combinations of pavement parameters to result in the same
deflections (52, 53, 54). Engineering judgement is the prime measure used to decide if the
process has converged to the correct parameters or not. However, reducing the number of
backcalculated parameters by combining pavement layers with the same properties will

decrease this problem (27,61).

May and Van Quintus (27), in describing the proposed ASTM standard for backcalculation
suggested assigning the thin wearing course modulus a known value in the backcalculation
process. This is because the thin layer modulus has little influence on deflection and its
contribution to the structural pavement strength is small, therefore its prediction will be

difficult and may cause a non-unique solution.

An other problem encountered in backcalculation is the irregularity in pavement deflection
measurement, due to the difference between measured pavement response and the
theoretical models used to predict that response (29). These irregularities may result from a
number of reasons, including pavement distress, variation in layer thickness, non-linear

material response, presence of bedrock or other stiff layers and moisture and temperature

effects.

Uzan et al (55), summarised the possible sources of error in backcalculated moduli as

follows:

1) Measuring devices, which include deflection sensors and load cell.
ii) Pressure distribution on the loaded area.

iii) Pavement structure geometry and condition.

1v) Material modelling.

v) Analysis technique.

2.5.2.1 Errors due to measuring devices and pressure distribution

These errors can be minimised by repeating the FWD test several times at the same location.



2.5.2.2 Errors due to pavement geometry and condition

The errors associated with the geometry and the condition of the pavement structure are:

i) The layer thickness variation with location.
i) The existence of voids and cracks.
iii) The existence of water table or bedrock.

vi) The adhesion properties between the layers.

20

Theoretically, surface deflection at specified location ( 1 ), under the FWD load is a function

of pavement parameters, i.e.
di = f(Ej, v, by, Ky) [2.14]

where,
E;, v;, h;, modulus, Poisson ratio and thickness of layer j

K » interface shear reaction modulus between layers j and j +1

Most backealculation techniques seek to define layer moduli E; on the basis that all other

pavement parameters are assumed or known. The surface deflections under the falling
weight reflect the real insitu pavement conditions in terms of layer moduli, thicknesses,
Poisson ratios and the interface condition between the individual layers. Therefore any
errors in assuming one parameter will affect the backcalculated moduli, and this error

depends on the sensitivity of surface deflections to this parameter.

Layer thicknesses can be measured from cores extracted from the pavement or from ground

penetrating-radar test (56). However some computer programs can backcalculate the
thicknesses in addition to the moduli (49,57). Poisson ratios appear to have insignificant

effect in predicting the pavement moduli (24,58,59).

Full adhesion is commonly assumed to exist between the layers in flexible pavement

evaluation. However, variations in the bonding condition may cause some errors in
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predicting the layer moduli (60). Lee (30) stated that the actual interface behaviour is not

fully understood and therefore it was not considered in the backcalculation procedures.

However, the interface condition can be assigned as full smooth in some backcalculation

programs, if the forward calculation model can handle this condition.

2.5.2.3 Errors due to material modelling

The lack of an accurate material description may introduce an error in the pavement
evaluation. Assuming the materials as elastic, isotropic and homogeneous does not represent
their real behaviour. Using the multilayer pavement model, the subgrade thickness is
assumed to be infinitely thick and has a uniform linear stiffness. The actual condition varies
considerably from this model where the thickness of subgrade is not infinity and often a
rigid layer or bedrock occurs at certain depth. Furthermore, subgrade stiffness changes with

depth due to the stress dependent characteristics of most soils.

Rohde et al (26) suggested, in analysing the deflection basin, placing an apparent rigid stiff
layer of high modulus below the multilayer elastic system to account for an actual bedrock,

a non-linear elastic subgrade or both.

Many backcalculation procedures include this layer at some depth, normally six metres, into

the subgrade (27).

Rada et al (61), proposed using the radial modulus to indicate the degree of non-linearity of
subgrade. Calculating the radial modulus of the pavement at each radial distance can be
carried out using the measured deflection data as input into Boussinsq’s one-layer half-space

deflection equation:

p.a’(1-V*).C
E, = [2.15]
d.r

where,
E, , Radial composite modulus,
p , applied pressure by the FWD,

a, load plate radius,



v, Poisson ratio of the subgrade,

d , measured deflection at a given radial distance (r) from the load centre,

C, deflection constant = 1.1 Logye (r/a ) + 1.15.

Plotting the radial modulus against radial distance as shown in figure 2.9, will give a clear

indication of the degree of subgrade stress dependent properties.

In FWD testing it is known that the outermost deflections are completely controlled by the
subgrade (2,42) and therefore the computed radial moduli corresponding to these sensor
deflections reflect the subgrade contribution. According to Ullidtz (2), if the radial moduli
(Es and Eyy) calculated at the sixth and seventh radial locations are identical, the subgrade
response is linear, and if E and E,; are not identical, the response is non-linear. The

nonlinearity might occur because of subgrade behaviour, the presence of a rigid layer at a
shallow depth, or both.

Some backcalculation programs such as MODULUS and ELMOD can detect the presence
of a rigid layer using regression equations (26). Hossain et al (62), presented a method for

detecting the rigid layer depth from deflections under the FWD. They backcalculated the
subgrade thickness as any other modulus.

2.5.2.4 Errors due to the analysis technique

Most of the current backcalculation procedures use static analysis to model the pavement
response under the dynamic FWD test. Only the peak deflections and the peak load are
considered in the analysis. A comparison between static and dynamic analysis for surface
deflections was carried out by Mamlouk and Davis (63). They found small differences for

stiff pavements but the differences were large for weak and thinly surfaced pavements.

Zaghloul et al (64), used dynamic analysis of the FWD test results employing the finite
element model. Dynamic analysis suffefs from many disadvantages such as the
computational capacity and time required to run the program and the additional parameters
needed to characterise the materials. In a dynamic analysis, the viscous and visco-elastic
properties of the materials should be considered, Poisson’s ratio becomes more critical

when using wave propagation and the density of the different materials must also be known
(29).
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2.6 SUMMARY

The Falling Weight Deflectometer has been in use for many years for pavement evaluation

due to its ability to simulate the insitu conditions of the pavement under traffic load.

Static analysis for a layered linear elastic system is the most widely used method for

pavement design and assessment, and it can be considered appropriate for many practical

applications.

The analysis of pavement deflections to predict the effective layer moduli can be performed
using the backcalculation technique. Some backcalculation programs aim to determine a set
of layer moduli, in an iterative manner, that minimise the error between the calculated and
measured deflections employing a suitable convergence criterion. Other programs build a
database for different pavement structures, from which the layer moduli can be determined

using an appropriate search technique.
In predicting the layer moduli, some errors might arise due to the following:

1) Material modelling as linear elastic homogeneous.

ii) Static analysis of the dynamic FWD test results.

iii) Variation in layer thicknesses and the presence of stiff layer.
iv) Variation in the interface condition between layers.

v) Non-unique backcalculation solution.

However to obtain a reliable solution, engineering judgement has to be employed and some

simplifications have to be made in order to minimise the number of predicted parameters.



Table 2.1, List of the common pavement layer moduli backcalculation programs (29).

Program | Developed | Forward Forward Back- Rigid layer Seed
name by calculation | calculation | calculation | analysis moduli
method | subroutine | method
Multilayer
BISDEF USACE elastic BISAR Iterative Yes Required
WES theory (proprietary)
BOUSDEF Zhou et al Equivalent | Equivalent Iterative Yes Required
thickness thickness
Multilayer
CHEVDEF USACE elastic CHEVRON Iterative Yes Required
WES theory
ELMOD Ullidtz Equivalent | Equivalent Iterative Yes None
thickness thickness (variable)
Multilayer
ELSDEF USACE elastic ELSYM5 Iterative Yes Required
WES theory
Multilayer
EMOD PCS/LAW elastic CHEVRON Iterative No Required
theory
Multilayer
EVERCALC | Mahoney elastic CHEVRON Iterative Yes Required
etal theory
Muitilayer
FPEDD1 W. Uddin elastic BASINPT Iterative Yes Program
theory (variable) generated
Muldlayer
ISSEM4 R. Stubstad elastic ELSYMS5S Iterative No Required
theory
Muitilayer
MODCOMP L. Irwin elastic CHEVRON Iterative Yes Required
theory
Multilayer
MODULUS Texas elastic WESLEA Database Yes Program
Trans. Inst. theory (variable) generated
Multilayer
PADAL S.F. Brown elastic UNKNOWN | Iterative Unknown Required
et al theory
Multilayer
WESDEF USACE elastic WESLEA Iterative Yes Required
WES theory
Multilayer
MICHBACK | Michigan elastic CHEVRON Iterative Yes Required
State theory
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Figure 2.1, Boussinesq ‘s half-space loading system (14).
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Figure 2.2, Conceptual representation of method of equivalent thicknesses (14).
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Figure 2.3, Multilayer linear elastic model of pavement.
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Figure 2.4, Repeated load indirect tensile test for stiffness prediction (35).
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Figure 2.5, Configuration of the FWD.
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Figure 2.6,

The Falling Weight Deflectometer.

27



[ Measured deflections under FWD. ]

Assume structural properties.

Structural analysis.

Compare

calculated Not OK

and measured
deflections.

Effective elastic moduli.

Figure 2.7, Flow diagram for a typical backcalculation procedure (37).
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Figure 2.8, General influence of layer on deflection basin (42).
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Figure 2.9, Radial modulus (E;) Vs radial distance (61).
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Chapter 3

BONDING CONDITION BETWEEN
PAVEMENT LAYERS

3.1 INTRODUCTION

Slippage failure between bituminous layers is hardly a new phenomenon in flexible
pavements (65). If the bonding between the wearing course and base course is poor,
slippage arises. This is a failure condition which is local and does not imply complete

structural failure of the road, though it obviously becomes unserviceable (66).

The state of adhesion at the interface between various layers affects the pavement
performance through its influence on the stressing level of the materials (67). This fact is of
significant importance, since the upper layers are sometimes constructed in stages, causing

poor adhesion between the existing surface and the new layer.

In the UK a large number of debonding failures between wearing and base courses have
been reported in road pavements (9,10,66,68). As a result the Transport Research
Laboratory (TRL) investigated the factors which might contribute to slippage failure by
testing existing pavements (9). Pavement structural condition was assessed with the
Deflectograph. The Ring and Ball softening point of the binder recovered from the wearing
courses were also measured. Figure 3.1 shows the relationship between deflection, hardness
of the wearing course binder and the slippage. The results illustrate that slippage can occur
on a stiff pavement if their binder has been hardened unduly and also on a weak pavement

whose wearing courses have been hardened to a normal extent.

TRL also carried out full-scale experiments on pavements under controlled conditions (9).

The results show that the slip plane is most likely to develop with wearing course rolled at
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elevated temperatures on chilled base courses founded on pavements of inadequate stiffness.
Therefore the following recommendations have been suggested to reduce the risk of

slippage:

1) Improving the quality of unbound materials used in roadbases and subbases by

paying attention to compaction.

i) Avoiding high rolling temperatures when laying the wearing course.

Pell (69) stated that neither the above TRL laboratory experiments nor site studies throw
much light on the development of slippage at the slip plane.

During late 1980, the Department of the Environment for Northern Ireland observed a
number of premature debonding failures on several pavement sections of recent overlaid
roads (65). Whereas in France, a 1986 survey showed that the slippage problem affected
5% of the French highway network at that time (11).

The studies of Van Cauwelaert et al (50) indicated that partial friction is the best
representation of the insitu interface condition between pavement layers but no experimental

data to quantify this parameter has been reported.

The report of the discussion group on practical limitations of pavement non-destructive
testing using the FWD and backcalculation techniques (70), stated that “the methodology is

not sensitive to the degree of bonding between pavement layers”.

Brown and Brunton (66), stated that relatively little is known about the actual shear

strengths at the interface, and that more research is needed.

Therefore the common assumption of full adhesion between pavement layers in the design

and evaluation of flexible pavement does not represent the real conditions.
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3.2 CAUSES OF PAVEMENT LAYERS DEBONDING

Good bonding between bituminous pavement layers is clearly desirable since it improves
the strength of the overall structure. However slippage occurs when the shear stress at the

interface is greater than the adhesion or bonding between the layers (68).

Shuab (71) summarised the connection between the types of failures in flexible pavements
and the reasons for the damage. Table 3.1 shows an extract from his table which includes

the effect of poor bonding between pavement layers and slippage failure.

Pavement corrugation is a deformation parallel to the direction of vehicles progress, where
the waves are short in length but relatively large in amplitude. This deformation type can
be caused by instability of the asphalt pavement, lack of base layer or poor bonding
between layers (71). Moreover slipping, peeling and i)lucking of the wearing course can

develop due to insufficient adhesion between the wearing course and the layer under it

(71).

Previous works (11,65,67,68,71) suggested that a slip plane may develop between

pavement layers due to many reasons such as:

1) Lack of binder coat or defficient binder coat.
ii) Pollution of the base before spreading of the binder.

iii) Surfacing or overlaying in cold weather.

iv) Construction in stages.
v) Insufficient compaction of the base.
vi) Absorption of the binder coat by the base materials.

vii) Under designing of the wearing course resulting in excessively large shear

stresses at the interface.

As a result the interface will fail to ensure the continuity of displacements between the

layers, hence the slippage will start to progress under the effect of traffic and

environmental conditions.
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3.3 MATHEMATICAL MODEL

A numerical solution of a multilayered system requires the knowledge of the boundary
conditions between layers in order to predict the structural responses to surface loading.
These conditions can be either full bonding, with the same shear stresses on both sides of
the interface, or complete debonding where no shear stress will transfer between layers. A

more general fundamental model to describe the interface condition is needed.

Considering the interface as a thin layer of thickness (t), the shear stress (7) at the interface

produces shear strains (y) according to the following equation;
t=GYy [3.1]
where, G is the shear modulus of the interface material.

For small horizontal displacements of the thin interface layer, the shear strain may be
defined as;

y=Au/t [3.2]

where, A u is the relative horizontal displacement of the two faces at the interface.

Therefore;
T=G(Au/t) [3.3]
T=K;(An) [3.4]

where, (K= G/ t) is the horizontal shear reaction modulus at the interface.

This equation represents Goodman's constitutive law to describe the interface behaviour
(72).

This model has been used in many pavement analysis programs, such as BISAR, to predict

the stresses and strains in multilayered system due to surface load.
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3.4 THEORETICAL EFFECT OF THE SHEAR REACTION MODULUS ON
PAVEMENT PERFORMANCE

Many researchers have demonstrated theoretically the effect of the bonding condition

between layers on overall pavement performance (67,73,74,75).

Romain (73), carried out a systematic theoretical investigation into the influence of the
interface condition in several four-layer pavements. He presented the variation of stresses, .
strains and deflections due to bonding conditions. Table 3.2 illustrates the summary of some

of his finding as cited by Uzan et al (67).

The actual magnitude of stresses, strains and deflections for three cases of different interface
conditions relative to the stresses, strains and deflections computed for the case of full
adhesion at all the interfaces were presented in table 3.2. It can be seen that in most cases,
stresses, strains and deflections increase when any one of the interfaces changes from prefect
adhesion to full debonding. Table 3.2 also shows an increase in tensile strain at the bottom

of the layer which is located adjacent to the interface whose properties have been changed.

Uzan et al (67), demonstrated the distribution of the radial strains within the pavement layers
by changing the interface condition between the first two layers, using the BISAR program.
They stated that by changing that interface from full rough to complete smooth, the tensile
radial strain at the bottom of the first layer becomes higher and the tensile radial strain at the
top of the second layer reverses to compression (see figure 3.2). Similar results were

presented by Shahin et al (75) in figure 3.3.

Brown and Brunton (66) investigated the effect of poor bonding between layers on the lives
of pavements (see table 3.3). As a reference case, the structures were initially analysed with
rough interfaces, which implies complete bonding. Subsequently the structures were re-
analysed with the top interface, then the lower interface, being taken as partly rough and
smooth, but with all other interfaces rough. Table 3.3 shows the poorly bonded pavements’
lives as percentage of the good bond case. However for good bonding at both the interfaces

all the results would be 100 per cent. Brown and Brunton concluded that a very poor bond
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would lead to premature local failure and a mediocre bond at either interface could reduce

pavement lives by up to 30 per cent.

The above authors expressed the importance of including the actual interface condition

between layers in the design and assessment of pavements.

3.5 THEORETICAL EFFECT OF THE SHEAR REACTION MODULUS ON
PAVEMENT FAILURE MECHANISM

A pavement does not fail suddenly, its deterioration is considered as a fatigue phenomenon
in that it is the result of the stresses and strains in the pavement caused by the magnitude

and number of load applications.

The two main failure mechanisms in flexible pavement are rutting and fatigue cracking.
Rutting arises from the accumulation of permanent strain throughout the pavement
structure. If the vertical strain at the top of subgrade is kept below a certain level, excessive
rutting will not occur unless, of course, poor bituminous mix design and inadequate
compaction are involved. Cracking of the bituminous materials on the other hand is
considered to arise from repeated tensile strain, the maximum of which occurs at the bottom
of the bituminous layer. The crack, once initiated, propagates upwards and causes a gradual

weakening of the pavement (76).

The distress mode due to fatigue cracking may be influenced by the presence of layer

debonding in two possible scenarios:

i) The crack will initiate at the bottom of the bituminous layer and propagate
towards the surface. If the crack reaches a debonded or partially bonded interface it
may propagate in the horizontal direction causing more slippage between the layers,

rather than vertically as shown in figure 3.4.

ii) If complete slippage occurs between pavement layers, additional tensile strain will
result at the bottom of the bituminous layer above the interface as the two layers will

act independently (see figures 3.2 and 3.3). Therefore two cracks may initiate at
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both bituminous layers as shown in figure 3.5. This will lead to a faster deterioration

in the bituminous layers and quicker pavement failure.

The effect of interface debonding on theoretical and practical failure mechanisms in a
flexible pavement is not the objective of this research. However it is stated here to show the
importance of predicting the condition of bonding at the interface in order to analyse the

causes of pavement failure.

3.6 EXISTING METHODS FOR PREDICTING THE INTERFACE CONDITION

Vergne et al (74) used the shear box test for measuring the interface shear reaction modulus
(K,) between any two concrete materials prepared in the laboratory, employing Goodman’s
law, i.e.

1=K (Au)

The slope of the shear stress-relative displacement curve can describe the shear reaction

modulus at the interface as shown in figure 3.6.

Uzan et al (67) carried out an extensive testing programme to investigate the interface
properties between laboratory prepared bituminous materials using the shear box test. They
studied the effect of tack coat rate, testing temperature and normal pressure during testing.

An example of their results is shown in figure 3.7.

The reported tests were conducted at only one rate of shear (2.5 mm/min). Uzan et al stated
that this rate is appropriate for bearing capacity computations, but not for stress analysis in
flexible pavements where the loading rate is dictated by the vehicle velocity. Hence, the

measured interface shear reaction modulus should be corrected.

They reported a value for K, between bituminous layers at 25 °C of 10* MN/m®. However
the practical prediction of the interface condition from existing pavement using the shear

box test has some limitations such as;
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i) The difficulty in cutting intact square samples from an existing pavement for
laboratory shearing.

i1) It is destructive testing.

ii1) Many testing parameters will affect the measured K, , such as sample size, rate
of shearing and the magnitude of the applied normal load during shearing. Therefore
it is difficult to select the appropriate testing configuration to represent the real
insitu pavement conditions.

iv) The non-linear properties of the interface condition between bituminous layers,
where the relationship between the shear stress and relative displacement is not

linear (see figure 3.7).

Woodside et al (77,78), used the shear box test on circular cores to investigate the
properties of Stress Absorbing Membrane Interlayer (SAMI). Similar tests can be carried
out at the layer interface on cores extracted from an existing pavement. However, coring

may damage the interface properties through the torque applied by the cutter.

Researchers at the “Laboratoire Central des Ponts et Chausees” in France have developed a
wave propagation technique (COLEBRI) to diagnose the state of adhesion between the
pavement layers (11). The COLEBRI is designed to measure the impedance of pavement
materials in the frequency range 300 to 3000 Hz. The ongoing French development, which
is at the early prototype stage, is considered to offer a promising approach to the detection
of pavement layer debonding in bituminous pavements. Test results suggest that pavement
impedance measured at the wave propagation frequency of 1500 Hz, is most sensitive to the
presence of layer debonding. Future work is aimed at developing a robust version of the
COLEBRI and at obtaining a better understanding of the factors that affect the reliable
detection of layer debonding. However the test results are indicative only and can not be

incorporated in the structural analysis model for pavement evaluation.

Tschegg et al (79) have recently developed a wedge splitting test for evaluating the bonding
condition on cores extracted from the pavement. They used the energy required to fracture

the core at the interface by splitting to describe the interface behaviour (see figure 3.8). The
load-displacement curve is obtained by plotting the force (Fy) versus the displacement () as

illustrated in figure 3.9. The energy required to fracture the specimen (G) is derived from
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the area below this curve. The specific fracture energy (Gg) is obtained by dividing the

fracture energy through the fractured area;
Ge=G/A [3.5]

While this method describes fundamentally the interface condition the results can not be
incorporated into the structural analysis model for multilayered elastic system, such as the
BISAR program, to calculate the pavement strains and its remaining life. Furthermore,
some other limitations can be highlighted such as the sample stressing conditions not being

the same as in the pavement and the likelihood of interface damage during coring.

3.7 SUMMARY

Considering the literature stated above and the practical evidence of debonding failure in
flexible pavements, it is certain that the common assumption of full adhesion between the
pavement layers does not represent the real insitu condition of the pavement. Therefore a
method for predicting the insitu interface condition in addition to the pavement structural
properties is required for a more reliable pavement model. These parameters need to be

included in the structural analysis model to predict the pavement performance and its

remaining life.

Goodman’s constitutive law has been suggested to describe the interface condition.

Several testing methods are under development for predicting the interface condition,

however their results can not be incorporated into the pavement analysis model, based on

non-destructive testing techniques.



39

(urena) = D “A[odIT =1 *9[qissod = d )

1

[a®

A

SYIOM SOURUIUTRU JOO]
uononnsuod redosdury
Sukeids yusroryjasuy

[ | y-Duyth .

A

[a®

QA A

JoA®[ JO uIpuiq 1004

[ < PRI Iy Py Py Py PRy . B | @5 ) PR QPR QG

RERT- VRN B . VR VI VR

Ay

LIS R |

|

" At

- O

A

LI - Py =¥

' AR

A By By

f A Ay

v A

O

A

LIS S S e

v Al A

2

O

(R G |

ocoUAAMD

[=®

&)

(I T I B

=R

(O I G -

O

JUAUOD PIOA MO]

JU2)U0D P1oA Y3TH

91egai33e arendorddeuy
uonisodwoo sedoxdury

uswniq jung

Anuenb uownq seudorddeuy
ssoupreq uawmiq oreudorddeut
Suruapim paronnsuod A[1004
1Y oeq JO aIn[ieg

aseq jo uonoedwos 1usnbasqng
Knoeded Juwreaq 1uL1d13JNSU]
osn [eulIou J3re

a3eurep mer pue 101
Kougioryop 95eurRI(g

UONIPUOD [BOO] S[qRINOARJU(]
yeam Areurpioenxg

dyjen pesieue])

oujen Mo[S

PEO[ [RIUOZLIOY PIsBaIou]

peof oiyen AaeaH

Suresg

Suiddng

199J3p
Juiof 10e]

Suryoen
Terngoirg

3unjoed
[es1oAsuRIy,

guryoer)
BN

gunypoen
IeH

uonednio))

Sumny

SSamSIp JO asne)

ad£ 1, amyreq

"(1L) syuswaaed 9[qrxa[y ur aInre] Jo sad£) pue sasned Ay uoamiaq drysuone[ay ‘1°¢ S[qel




Table 3.2, Relative results of four layer pavement with different interface conditions (73).

First interface = Smooth Rough Smooth
Interface condition Second interface = Rough Smooth Smooth
Third interface = Rough Rough Rough
First layer Max. compressive stress 0.79 1.07 0.89
Max. tensile stress 2.19 1.92 2.69
Max. compressive strain 2.83 1.07 3.07
Max. Tensile strain 1.93 1.10 2.07
Deflection 1.20 1.19 1.43
Second layer Max. compressive stress 1.74 0.98 1.81
Max. tensile stress 1.08 2.26 2.73
Max. compressive strain 1.27 1.72 2.25
Max. tensile strain 1.30 1.44 1.89
Third layer Max. compressive stress 1.55 1.48 2.29
Max. tensile stress 1.38 1.23 1.77
Max. compressive strain 1.28 0.92 1.18
Max. tensile strain 1.22 0.92 1.29
Fourth layer Max. compressive stress 1.40 1.74 2.40
Max. compressive strain 1.37 1.37 1.97
Deflection 1.19 1.39 1.58

40
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Table 3.3, The lives of pavements with poorly bonded layer expressed as percentages of
the good bonding case (66).

Structural 1st interface: Ist interface: | 2nd interface: | 2nd interface:
details Partly rough Smooth Partly rough Smooth

40mm HRA 79% 48% 100% 37%
60mm DBM
60mm DBM
330mm S-base

40mm HRA 86% 61% 69% 32%
60mm DBM
230mm DBM
450mm S-base

40mm HRA 81% 65% - -
60mm DBM

190mm W-mix
330mm S-base

40mm HRA 87% 43% 82% 25%
60mm HRA
50mm HRA
330mm S-base

40mm HRA 93% 61% 82% 23%
60mm HRA
125mm HRA
450mm S-base

Average 85% 56% 83% 29%

HRA, Hot Rolled Asphalt,
DBM, Dense Bitumen Macadam,
S-base, Subbase,

W-mix, Wet mix.
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Figure 3.1,  Relation between deflection, hardness of the binder in the wearing course

and the incidence of slippage (9).
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Figure 3.2,  Distribution of radial strain (e;) with depth using different interface condition
between the top two layers (67).
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Figure 3.3,  Horizontal strain under centreline of a single DC-9 wheel (75).
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a) Possible crack shape when there is no debonding failure.
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Figure 3.4,  Effect of debonding between layers on crack's propagation in flexible
pavement.
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Figure 3.5,  Effect of debonding failure on possible crack initiation in flexible pavement.
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Figure 3.6,  Shear stress-relative displacement curve at the interface as a function of
normal load (74).
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Figure 3.7,  Shear test results for bituminous materials at 25 °C (67).



Interface /

Figure 3.8, = Wedge splitting test to measure the interface properties (79).
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Figure 3.9,  Load displacement curve under wedge splitting test (79).

46



47

Chapter 4

SIGNIFICANCE OF THE BONDING
CONDITION BETWEEN WEARING AND BASE
COURSES ON PAVEMENT LIFE AND
BACKCALCULATED MODULI

4.1 INTRODUCTION

Most flexible pavement design and evaluation methods have assumed that full bonding
exists between the pavement layers in the analysis process. This is probably due to
modelling limitations and the assumption that good quality control will take place during
construction. However, debonding failure has been reported between wearing and base

courses in flexible pavements (9,10,11).

The literature review in the previous chapter showed that the adhesion properties between
the pavement layers affect the performance of flexible pavement through their influence on

the stressing level of the materials (67).

Therefore, in this chapter the investigation of the theoretical influence of bonding condition
between wearing and base courses has been carried out. Firstly the reduction in the
pavement life calculation during the design stage has been studied and secondly the
reflection of the interface condition modelling error on backcalculated moduli has been

analysed.

The study of the impact of the bonding condition between wearing and base courses for this

research is due to the following reasons:
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i) Practical evidence of slippage failure that has been reported between the wearing
and base courses.

ii) Lepert et al (11) indicated that the road base subbase interlayer is rarely damaged
in bituminous and semi rigid pavements. In contrast the interlayer between the

wearing course and the layer just below it is most often defective.

However in principle the bonding condition between any two layers of the pavement can be

investigated.

4.2 PAVEMENT LIFE PREDICTION

Most of the analytical design procedures for flexible pavements adopt the concept of
limiting the horizontal tensile strain at the bottom of bituminous layer to control fatigue
cracking and the vertical compressive strain at the top of subgrade to control permanent
deformation. In this study the semi-empirical relationship developed by Transport Research
Laboratory (TRL) (4), between the above strains and the pavement life in terms of the

number of standard axle load of 80 kN was used, namely

Log N;=-9.38-4.16 Log e, [4.1]
LogN,=-721-395Loge, [4.2]
where,
N, is the number of standard axle load to cause fatigue cracking,
N, , is the number of standard axle load to cause permanent deformation,
et , 1 the horizontal tensile strain at the bottom of bituminous layer,

e, , is the vertical compressive strain at the top of subgrade.

The final pavement remaining life (N) is the smallest of the fatigue and deformation lives.

The selection of the above relationships is due to their wide use in the UK.



49

4.3 PAVEMENT STRUCTURE MODELLING

Here the pavement is modelled as a layered linear elastic system. The stresses, strains and
displacements within the structure due to external load are calculated numerically, using the

BISAR program (44).

Four theoretical structures were investigated in this study to represent a wide range of
flexible pavements in terms of strength. Weak, medium, strong and very strong pavement
terms were used for comparison purpose. The thicknesses and Poisson ratios were fixed in
all pavements whereas the moduli of wearing course, base, subbase and subgrade were
varied as shown in figure 4.1. The pavements consist of four layer systems with an
additional rigid layer at 6m depth, to represent either bedrock or the depth where the

vertical deflection is negligible.

For each pavement structure the interface shear reaction modulus between the wearing and
base courses was changed gradually from complete debonding to full adhesion, with Ky
varying as, 10', 10%, 10°, 104, 10° MN/m®. All other interface conditions were kept constant

and assumed as full adhesion.

Numerical analysis using the BISAR program to identify the range of shear reaction

modulus between wearing and base courses for flexible pavements has been carried out.

The BISAR program was used to calculate i) the surface deflections at the load centre, at
300 and 600 mm radial distance, and ii) the two critical strains for pavement life under 40
kN load for the four pavements. The 40 kN load is selected to represent the impact of
traffic loading (80). The shear reaction modulus between wearing and base courses was

changed gradually from 1 to 10’ MN/m’ for each case.

Figures 4.2 and 4.3 show the deflections and strains respectively as a function of (Kj;) for
the four structures. Two limits can be established from the above figures, beyond them there

are no significant changes in pavements response such as deflections and strains.

Therefore (Kq) can be taken to vary from 10 MN/m’ (complete debonding) to 10° MN/m’®

(full adhesion) in flexible pavements.
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The effect of K, on surface deflections decreases as the radial distance increases with its
maximum influence on the deflection at the load centre (do) (see figure 4.2). Hence

deflections beyond the 600 mm radial distance were not considered in the analysis.

4.4 INFLUENCE OF THE SHEAR REACTION MODULUS BETWEEN WEARING
AND BASE COURSES ON DESIGN LIFE OF PAVEMENTS

Flexible pavements are designed, in term of material selection and layer thickness, to carry
traffic load during a specified life. However if a slip plane develops between the wearing and
base courses, due to lack of binder coat or surfacing in cold weather, the stress distribution

within the structure will change, reducing the pavement performance and life (75).

The four pavement structures shown in figure 4.1 have been studied in this section. The two
calculated critical strains were used to predict the fatigue and deformation lives employing
the TRL equations mentioned above, for each bonding condition. The pavements’ lives

were presented for each case in table 4.1.

Figure 4.4 shows the percentage reduction in pavement lives due to variation in the first
shear reaction modulus from full adhesion. An average decrease in pavement life of 20%
was recorded in figure 4.4 when the value of Ky reached 10* MN/m®. Further reductions of
up to 50% were observed when complete debonding occurs between wearing and base

COurses.

These findings agree with the results of Brown and Brunton (66) shown in tablé 3.2.

4.5 INFLUENCE OF THE SHEAR REACTION MODULUS BETWEEN WEARING
AND BASE COURSES ON PAVEMENT BACKCALCULATED MODULI

Most of the procedures followed in this section are based on the methodology proposed by

Briggs and Nazarian (81), in studying the effects of unknown rigid layer on backcalculated

moduli.
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Five surface deflection basins under 40 kN load were calculated for each pavement
structure shown in figure 4.1 using the BISAR program. Each basin represents an interface

condition between wearing and base courses, with K varying as, 101, 102, 103, 104, 105

MN/m3. The twenty deflection basins were assumed as the measured basins under Falling
Weight Deflectometer (FWD) tests.

The twenty basins were used to backcalculate the layer moduli. The pavement parameters
assumed in the backcalculation process were identical to those in the theoretical structures
shown in figure 4.1, except the first interface condition was fixed as full adhesion as is

commonly found in most backcalculation programs.

The moduli of the second, third and fourth layers were backcalculated, and the modulus of
the 40 mm wearing course was fixed as recommended by May and Van Quintus (27), in
describing the proposed ASTM standard for backcalculation. These backcalculated moduli
should carry some errors to compensate for modelling the interface conditions as full

adhesion rather than the actual values.

Figure 4.5, illustrates the ratio of backcalculated to actual modulus of the layer 2 versus the

ratio of actual to assumed interface condition between bituminous layers, (note that log Kg;

was used in the graphs). The above moduli ratio of layer 2 has decreased on average by

35% for a full adhesion assumption instead of complete debonding in the backcalculation

procedure.

Figure 4.6, shows the ratio of backcalculated to actual modulus of the layer 3 versus the
ratio of actual to assumed interface condition between bituminous layers. The ratio of
backcalculated to actual subbase modulus varied between 70% and 120%. These results
may be interpreted not only as error in modelling K, but also as error in predicting the
subbase moduli. The prediction of a weak subbase modulus for a pavement with a strong

bituminous base will be difficult, since its contribution to the structural pavement response
is small (47).
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Figure 4.7, demonstrates the ratio of backcalculated to actual modulus of the layer 4 versus
the ratio of actual to assumed interface condition between bituminous layers. It is apparent
that by modelling the interface condition as full adhesion instead of the real cases, there is

no significant effect on backcalculated E,.

4.6 SUMMARY

Lower pavement life than the specified design value may result if a slip plane develops
between the bituminous layer during construction. Up to 50% reduction in pavement life
was recorded when complete debonding exists between the wearing and base courses and

therefore weaker pavement will be produced.

Flexible pavement evaluation using the FWD and backcalculation of moduli, assuming full
adhesion between wearing and base courses may cause some errors in moduli prediction.

For the analysed structures, a maximum errors of 35% was recorded for bituminous base.

Due to the above results and all the practical evidence of debonding failures, an
improvement in the existing backcalculation methods is required to give better modelling
possibilities. The new method should predict the interface shear reaction modulus between

the wearing and base courses in addition to the layer moduli from FWD test results.



a) Pavement structure

h; =40 mm Bituminous Wearing Course
Layer 1 v, =04
K, = variable
h, =200 mm Bituminous Base
Layer 2 v,=0.4
K., = full adhesion
h; =300 mm Granular Subbase
Layer 3 v3=0.3
K; = full adhesion
h, = 5460 mm Subgrade
Layer 4 v,=0.4

b) E values of different pavements
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Pavement E, E, E; E,
(MPa) (MPa) (MPa) (MPa)
Weak (W) 1000 2500 80 40
Medium (M) 2500 4000 100 80
Strong (S) 5000 7000 200 80
Very Strong (VS) 7500 10000 500 200
Figure 4.1,  Summary of pavements properties.
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Surface deflection as a function of first shear reaction modulus (K,) for the
Weak (W), Medium (M), Strong (S) and Very Strong (VS) pavements.
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Figure 4.3, Horizontal strain at the bottom of bituminous layer (e,) and vertical strain at
the top of subgrade (e,) as a function of first shear reaction modulus (K,)
for the Weak (W), Medium (M), Strong (S) and Very Strong (VS)
pavements.



Table 4.1, Effect of variation of first shear reaction modulus on pavements life in
million of standard axle (msa).
K, (MN/m’)
Pavement 10 10* 10° 10* 10°
(full debonding) (Full adhesion)
Weak 0.8 0.9 1.1 1.5 1.7
Medium 5.6 5.6 6.5 9.8 12.2
Strong 48.5 48.5 54.0 80.2 109.2
V.Strong 460.2 460.2 504.2 671.9 1018.8
é 100% + .‘ :
§ —A
i °T —@—Vs
3 =l
k] o 0% T
% S 4o
§ 20% 4
g 0% — t + —
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Shear reaction moduius (Ks1), MN/m3
Figure 4.4, Reductions in pavements life due to variations in the first shear reaction

modulus, as percentage of full adhesion case.
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57



14 1
W
F 124
2
& —o—W
< 1_0w mM
T
2 —A—S
[+
3087 —@—Vs
S
S 06+
2]
m

0.4 + —+ — {

0.2 0.4 0.6 0.8 1

Actual / Assumed, Log Ks1

Figure 4.7,  Influence of the first shear reaction modulus modelling error on
backcalculated modulus of subgrade.

58



59

Chapter 5

THE INFLUENCE OF PAVEMENT
PARAMETERS ON SURFACE DEFLECTIONS

5.1 INTRODUCTION

The pavement surface deflections under the falling weight deflectometer reflect the real
insitu pavement conditions in terms of layer moduli, thicknesses, Poisson ratios and the
interface condition between the individual layers. Theoretically all the above parameters can
be predicted from the surface deflections, however the number of parameters should be
reduced to eliminate the likelihood of a non-unique solution from the backcalculation

process (27).

In this chapter, the influence of each pavement parameter on pavement deflection variation
is determined. The result of the analysis together with the practical applications and
mathematical limitations will be used for the selection of the parameters to be
backcalculated, and hence the development of the proposed improved backcalculation
procedure.

5.2 SURFACE DEFLECTION SENSITIVITY TO PAVEMENT PARAMETERS

3.2.1 Methodology

The methodology used to investigate the deflection sensitivity analysis is summarised in the

following steps:

1) Assume a standard pavement structure with known properties.
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11) Vary one parameter at the time keeping the remaining as in the standard
structure, and calculating the resulted deflection basin using the BISAR program.

ii1) Analyse the variation in both the shape and magnitude of the deflection basin

due to the parameter variation.

The larger the influence of the parameter on surface deflections the higher its contribution to
the pavement strength and the easier its backcalculation (1,2,12,42). Therefore a strong thick

layer will be backcalculated more reliably from surface deflections than a weak thin layer.

Conventional backcalculation programs predict the layer moduli assuming all the other
pavement parameters are known. Hence any error in assuming one parameter will affect the

backcalculated moduli, and this error depends on the sensitivity of surface deflections to this

parameter (60).

Figure 5.1 illustrates a four layer pavement with additional bedrock at 6m depth from the
surface. This standard structure represents a typical flexible pavement with two bituminous

layers, i.e. wearing and base courses, and granular subbase over subgrade.

The properties of the standard pavement in term of moduli, layer thickness, Poisson’s ratio
and the interface condition between layers are shown in figure 5.1. The deflection basins for

this structure were computed using the BISAR program (44) under 40 kN surface load.

5.2.2 Deflection Sensitivity to the Layers Moduli

Each layer modulus was changed by +50% from the original value, keeping all the other
parameters as in the standard structure, and the deflection basins were calculated under 40
kN load for each case. Figures 5.2 to 5.6 demonstrate the influence of varying the modulus
of each layer on surface deflections. It is observed that changes in the modulus of
bituminous layers only influence the deflections close to the load centre, up to a distance of
900 mm. However the modulus of the wearing course has very little effect on the deflection

compared with the base modulus.



61

The moduli of subbase and subgrade influence the whole deflection basin with E4 having the
largest effect on surface deflections. However the quantification of these effects will be
carried out later in this chapter. The modulus of the rigid bedrock (Es) has no influence on
the deflection basin, and therefore its assumed value will not affect the backcalculated

parameter results.
5.2.3 Deflection Sensitivity to the Layers Thickness

Figures 5.7 to 5.10 show the effect of layer thickness variations on surface deflections. The
base layer thickness has the largest influence on deflection near the loaded area, whereas the
depth of the bedrock has influenced the whole deflection basin. Both the thicknesses of

wearing course and subbase have little effect on surface deflection.

Therefore, accurate measurements of bituminous layer thickness and the depth of the rigid
layer, especially if it exists at shallow depth, is essential for a good estimate of the
backcalculated parameters. These results support the finding of many researchers

(27,57,61,81).
5.2.4 Deflection Sensitivity to the Poisson’s Ratio

Figures 5.11 to 5.15 present the effect of Poisson’s ratio variations on surface deflections.
Poisson’s ratios of all the pavement layers including the rigid bedrock have insignificant
influence on surface deflections and therefore on predicting the pavement parameters

(24,58,59).
5.2.5 Deflection Sensitivity to the Interface Shear Reaction Moduli

The influences of the interface shear reaction modulus (K;) between the pavement layers on
deflection basins were illustrated in figures 5.16 to 5.18. The (K,) value has changed from a
standard structure of full adhesion with K, = 10° to an intermediate case of 10" and tinally to

10 MN/m® which represents complete debonding.

The upper layers’ interface properties have most influenced the deflections near the loaded

area, whereas most of the deflection basin has been affected by the bonding condition
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between the lower layers. Generally (K;) has little influence on surface deflections compared

to that exerted by the thick layers’ moduli.

5.2.6 The Selection of the Pavement Parameters to be Backcalculated

The following findings can be drawn from the above studies:

The upper pavement properties mostly affect the deflections near the load centre, whereas
the deflections far from the loaded area are influenced only by the lower properties. These

findings are supported by other researchers (1,21,42,82).

The modulus of the thin wearing course has very little influence on deflection. Therefore
assigning its modulus as a known value in the backcalculation process, as recommended by
May and Van Quintus in describing the proposed ASTM standard for backcalculation (27)
and SHRP’s layer moduli backcalculation procedures (61), will be acceptable. The modulus
value may be measured in the laboratory, using the Nottingham Asphalt Tester (NAT) for
indirect tensile test for resilient modulus of bituminous mixtures (35), or mathematically
estimated using the Asphalt Institute regression equations (83) or Shell International -

monographs (84).

The modulus of the rigid layer has no effect on surface deflections, therefore a typical value
of 7000 MPa is to be assumed for this layer in the calculation process as found in the
literature (50,85).

The layers’ thicknesses have variable influences on the deflection basin, however their value

can be measured physically and they can be excluded from the backcalculation process.

Poisson’s ratios for all the layers have not influenced the surface deflections, hence they can
be assumed as known values in the backcalculation procedure. A typical value for each

material can be assumed in the backcalculation process as found in the literature (37).

The shear reaction moduli between layers (K;) have varying influence on deflections.
However, as explained in previous chapters and from the practical evidence of debonding

failure, the interface condition between the wearing and base courses prediction is the
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objective of this work, and the other interface conditions are to be assumed as full adhesion

in the analysis process.

Therefore, the moduli of bituminous base, subbase and subgrade in addition to the shear
reaction modulus between wearing and base courses (K1) are the only parameters to be
backcalculated from surface deflections, using the proposed improved backcalculation

procedure. However, if the radial modulus investigations indicate the presence of a rigid
layer at shallow depth, the subgrade thickness should be included in the backcalculation

process.

These parameters are commonly predicted using the conventional backcalculation programs
apart from the shear reaction modulus between the wearing and base courses, which is the

proposed improvement to the current methods.

5.3 THE DETAILED ANALYSIS OF THE INFLUENCE OF THE SELECTED
PARAMETERS ON SURFACE DEFLECTIONS

The percentage variations in surface deflections due to the effect of each layer modulus and
the shear reaction modulus between wearing and base courses (K;), are investigated for the
Weak (W), Medium (M), Strong (S) and Very Strong (VS) pavements shown in figure 4.1
(see chapter 4).

The absolute relative errors in deflections at the load centre due to each of the above
parameter variations are presented in figures 5.19 to 5.23. Maximum deflection errors of
5%, 22%, 12% and 46% were recorded when varying the moduli of wearing course, base,
subbase and subgrade respectively by 50%. The interface condition variation from full
adhesion to complete debonding between wearing and base courses has changed the central

deflection by up to 15% as shown in figure 5.23.

Similar studies have been carried out to investigate the influence of the above parameters on
the whole deflection basin. The absolute sum of the relative errors in deflection locations

due to each parameter variation is illustrated in figures 5.24 to 5.28.



Maximum deflection errors of 18%, 50%, 69% and 535% were found due to 50%

alternation in E,, E,, E; and E4 respectively, whereas a maximum value of 44% was

recorded in figure 5.28 for (Kq).

The subgrade modulus has the largest influence on surface deflection followed by both the
base and subbase. The shear reaction modulus (Kg;) has a lower effect on surface
deflections, hence its prediction may be more difficult. Finally the modulus of the thin
wearing course has the lowest influence on deflections, therefore the literature
recommendation of fixing the wearing course modulus in the backcalculation process is
acceptable. However, it is not likely to estimate the wearing course modulus from

laboratory testing with 50% error and a small variation in its value will not affect the

calculation results (27).

However, if the wearing course thickness is more than 75 mm its modulus should be

included in the backcalculation process (27,61).

5.4 CONCLUSIONS

The results of the deflections sensitivity to pavement parameters and the mathematical
limitation of the backcalculation process in reducing the number of parameters to be

predicted, lead to the following recommendations for the proposed improved method:

i) Radial modulus analysis should be performed to detect any rigid layer at shallow

depth.

ii) If the wearing course is a thin layer, as commonly used in the UK (86), its
modulus should be assigned a fixed value as recommended in the literature.
However a small variation in this modulus will not influence the calculation process

since it has little effect on surface deflections.

ii1) The shear reaction modulus between the wearing and base courses in addition to
the normal layer moduli of base, subbase and subgrade are to be backcalculated

from surface deflections using the proposed improved backcalculation procedure.



h; =40 mm Bituminous Wearing Course
E, = 2500 MPa v; =0.4
K, =10° MN/m?, full adhesion
hy =200 mm Bituminous Base
E,= 4000 MPa v, =0.4
K, =10° MN/m’, full adhesion
h; =300 mm Granular Subbase
E; = 100 MPa V3 = 0.3
K =10° MN/m?, full adhesion
hs = 5460 mm Subgrade
E; =80 MPa vs=0.4

65

Figure 5.1,

Standard pavement structure for the sensitivity analysis.
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Figure 5.2, Effect of variation of the wearing course modulus (E,) on surface deflections.
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Figure 5.3, Effect of variation of the base modulus (E,) on surface deflections.
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Figure 5.4, Effect of variation of the unbound layer modulus (E;3) on surface deflections.
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Figure 5.5, Effect of variation of the subgrade layer modulus (E4) on surface deflections.
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Figure 5.6, Effect of variation of the rigid layer modulus (Es) on surface deflections.
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Figure 5.7, Effect of variation of the wearing course thickness (h;) on surface deflections.

. . —&—15h2
Radial distance, mm
Stand.
o o (@] 8 8 8
S 6 & & 1 ® —A—0.5h2
o ™m (e} (o)} -~ -~ -~
0 f f —t —

Deflection, micron

Figure 5.8, Effect of variation of the base layer thickness (h,) on surface deflections.
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Figure 5.9, Effect of variation of the unbound layer thickness (hs) on surface deflections.
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Figure 5.10, Effect of variation of the rigid layer depth on surface deflections.
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Figure 5.11, Effect of Poisson’s ratio of the wearing course (v;) on surface deflections.
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Figure 5.12, Effect of Poisson’s ratio of the base layer (v2) on surface deflections.
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Figure 5.13, Effect of Poisson’s ratio of the unbound layer (v3) on surface deflections.
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Figure 5.14, Effect of Poisson’s ratio of the subgrade (v4) on surface deflections.
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Figure 5.15, Effect of Poisson’s ratio of the rigid layer (vs) on surface deflections.
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Figure 5.17, Effect of the second shear reaction modulus (K;;) on surface deflections.
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Figure 5.18, Effect of the third shear reaction modulus (Ks3) on surface deflections.
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modulus variations.

16%
14% +

12% +

10% + M Ks1=1000

OKs1=10

8% -

6% -

4% -

Percentage relative error in dO.

2% A

0% -
w M S Vs

Pavement type.

Figure 5.23, Absolute relative error in deflections at the load centre due to the interface
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Chapter 6

DEVELOPMENT OF THE
BACKCALCULATION PROCEDURE

6.1 INTRODUCTION

In the previous chapters the need to develop the existing backcalculation procedure and the
influence of the pavement parameters has been established. The development of the new
model, which can backcalculate the bonding condition between the wearing course and base
course in addition to the layer moduli from Falling Weight Deflectometer (FWD) test

results, is detailed in this chapter.

An optimisation procedure using the common method of least squares (48) is firstly
employed to try and predict the above parameters for a given hypothetical theoretical
pavement. This method failed to estimate the pavement parameters accurately from the
surface deflections. Hence, a two-stage backcalculation procedure is developed to overcome

the limitations of the first method.

6.2 ASSUMPTIONS FOR THE BACKCALCULATION PROCEDURE

A simple static analysis for a layered linear elastic system, which is the most widely used
due to its simplicity (12, 27, 29), is adopted for the backcalculation method. As concluded
from chapter five the moduli of the bituminous base, unbound subbase and subgrade, in
addition to the interface shear reaction modulus between wearing course and base course,

are the only parameters to be backcalculated.
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The analysis results of the previous chapters have lead to the following assumptions for the

improved backcalculation procedure:
i) Assumptions inherent in the use of layered linear elastic theory are applied (16).
ii) Deflections and load measurements are accurate.

ii1) The modulus of the thin wearing course is assigned as a known value in the

backcalculation process.

iv) Only the interface shear reaction modulus between the wearing and base courses (Ky) is

to be backcalculated, and all other interface conditions are assumed as full adhesion.

v) Typical values of Poisson ratios for UK pavement materials are used (37). These values
are assumed to be exact. This would be seen reasonable since results show that small
variations in Poisson ratios do not have any significant effect on pavement response

(26,58,59).

vi) All bituminous layers except the wearing course are combined into one layer and the
unbound pavement layers above the subgrade are also combined. The combination of
pavement layers with similar properties has been used in many backcalculation programs to

reduce the number of parameters to be predicted (27,61).
vii) The thickness of each layer is assumed to be known and exact.

viii) An apparent rigid layer is assumed at a depth of 6m from the surface to represent either
bedrock or the depth where the vertical deflection is negligible (27,61). However, if the
shoulder boring data or other similar information indicates the depth of bedrock, then it
should be included in the backcalculation procedures. This layer is used in many
backcalculation procedures to simulate the stress dependent modulus of subgrade. Research
has shown that the results of the backcalculation analysis can be significantly inaccurate
when not including such a layer or by not locating this stiff layer near the actual depth,

particularly if the actual depth is less than 4.6m. (27). The radial modulus of the pavement
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at different radial distances from the load can indicate if the rigid layer exists at shallow

depth (see chapter 2).

6.3 THEORETICAL PAVEMENT STRUCTURE

The hypothetical theoretical pavement structure is shown in figure 6.1. The BISAR
program is used to compute the deflection basin under FWD load for this pavement, and
this is assumed to be the measured basin. Then the pavement parameters are backcalculated

and the results compared with the hypothetical values shown in figure 6.1

6.3.1 Backcalculating the Theoretical Pavement Parameters Using the Method of

Least Squares

This method has been used in backcalculation of the four parameters of the theoretical
pavement shown in figure 6.1. The method of least squares is the most widely used

optimisation process for the parameters adjustment in the backcalculation procedures (12).

The initial seed parameter values have very large influence on the backcalculation results
(27), the closer the seed values to the real parameters the more likely that the results will
converge to the correct solution of parameters. However, the problem of a non-unique

solution still needs to be overcome in many cases.

In developing the sensitivity matrix using the forward derived differences (see section
2.5.1), it was decided to consider log (K¢ ) instead of (K1), because the latter has little

influence on the deflection basin.

Table 6.1, illustrates the results of the backcalculation process using the above iterative
method. Different numerical trials have been performed to backcalculate the moduli of base,
subbase and subgrade (E;) and the first interface shear reaction modulus (K1) and these

include:

i) Using different seed values for the pavement parameters.
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ii) Changing the rate of parameter variation in the forward derived differences necessary for

the calculation of the sensitivity matrix, where one of the following combinations are varied

by 5% as explained in chapter 2:

Ej and Ksl ’
E; and Log (Ky)),
Log (E)) and Log (Ks1)-

iii) Changing the parameters to be backcalculated. This approach will accelerate the speed
of convergence of certain parameters compared with others. The parameters considered
were:

E;and K; »

E; and Log (K)),

Log (E;) and Log (Kyy),

E; and 1/ (Ky;),

E; and o, (a dimensionless parameter which represents the first interface condition

given by,
E, /(1 +v)(@)K)

o=
1+ [E /(1 +v)(@)(K)]
where (a), the diameter of the loaded area by the FWD (see reference 44)).

E*; and K*;, , (rescaled parameters). Rescaling the parameters before
backcalculation has been used in the ADAM program (8). After scaling, all the
parameters will be between (-1 and +1). This method will convert the parameters to

the same magnitude and help to eliminate some numerical problems in the

backcalculation process.

Table 6.1, demonstrates acceptable results for backcalculation of E; and E, for the subbase

and subgrade respectively in most cases. However, E, and K, are not very accurate

compared with their theoretical values shown in figure 6.1.
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6.3.2 Possible Reasons for the Inaccurate Results

The main reason for the inaccuracy in the above results is that both E, and K, influence the
same portion of the deflection basin (see the deflection sensitivity analysis in chapter 4) . To
study this phenomenon, the deflections of the theoretical pavement shown in figure 6.1, are
computed for different combinations of E, and K, using the BISAR program. E, was varied
to cover a wide range from 2000 to 10000 MPa and K, varied from complete debonding (10
MN/m?) to a full adhesion case (10° MN/m’).

Figure 6.2, shows the deflection contours in microns, at the load centre d, and at 300 and
600 mm from it, for the pavement structures. The non-un.queness problem can be seen in
that a pavement with an E, value of 4000 MPa and K; of 10° MN/m® can produce the same
surface deflections as a pavement with an E, value of 6000 MPa and K; of 10 MN/m’ . In
the same manner a pavement with E, of 6000 MPa and K; of 10* MN/m’ can produce the
same surface deflections as a pavement with E, of 8000 MPa and K, of 10 MN/m’ .

Figure 6.3, illustrates the deflection basin of the pavement shown in figure 6.1 with E, of
6000 MPa and K; of 10° MN/m’, and the identical basins caused by reducing the first shear
reaction modulus (K;) to 10 MN/m’, or the base modulus (E, ) to 4000 MPa.

Therefore backcalculating these deflection basins may lead to convergence to either set of
values. Engineering judgement and / or additional destructive testing are currently the main

means to select the correct parameters.

Roque et al (54), have studied the effect of changing the FWD test configuration to
discriminate between backcalculated parameters with a similar effects on deflections. They
used dual-load FWD and measured the longitudinal as well as the transverse basins to
backcalculate different parameters. They found that the transverse deflection basin has been
influenced in different locations by changing the pavement parameters. Therefore they used
the transverse basin to predict the surface modulus, and the longitudinal basin to compute

the base modulus.

A similar approach has been followed in this research to discriminate between the modulus

E, and shear reaction modulus K, for the theoretical pavement. Figure 6.4 shows a plan of
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the dual-load FWD configuration, figures 6.5 and 6.6 demonstrate the longitudinal and the
transverse basins under dual-load FWD for the same pavements shown in figure 6.3. It can
be seen that the deflection basins are almost identical and therefore this approach failed to

discriminate between the effect of E, and K, on deflections.

De Beer et al (87), used a multidepth deflectometer under dual-load FWD to validate the
backcalculation results. Theoretical study of the influence of E; and K; on deflections at
different depth was carried out for the same pavements shown in figure 6.3. Figure 6.7,
illustrates the deflections' results at different depths from the surface. Again this approach

failed to discriminate between the effect of the above parameters on deflections.
The non-unique solution problem can arise from to a number of possible factors, such as:
i) Two combinations of pavement parameters producing the same deflections.

ii) Each parameter having a different influence on deflections, e.g. (Kq) has very little
influence on deflections compared with E4. K; has not significantly influenced the

deflections in the sensitivity matrix and therefore it was kept close to its seed value after the

backcalculation process.

111) The difference in the magnitude of the pavement parameters to be backcalculated being

too large.

iv) The seed values are far from the real pavement parameters. The selection of the seed
values far from the real parameters will result in convergence to a local minimum rather than

to a global minimum in the optimisation process.

v) The nature of the influence of (K;;) on deflections, i.e. (Ky) below 10 and above
10° MN/m® have no effect on deflections and therefore in the backcalculation process the

program will not result in any deflection’s amendment after iterations beyond these limits.

The above reasons are common to all iterative backcalculation programs except the last
one, since no method backcalculates (Kq) in the analysis process. However some programs

combine different layers with the same properties to reduce the number of parameters,
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eliminating parameters with little influence on deflections from the backcalculation process

and using a database for the initial prediction of the seed values (12).
6.3.3 Suggested Solutions to the Problems

To reduce the influence of the above factors on the backcalculation results, the following

can be considered:

i) Reducing the number of parameters to be backcalculated, as suggested by May and Van
Quintus (27).

ii) Separating the parameters in the backcalculation procedures, each parameter being

predicted from the whole deflection basin.
iii) Using the database backcalculation approach to overcome the results' sensitivity to seed
values. A data bank can be developed for the analysed pavement with different

combinations of the parameters.

iv) A two stage backcalculation process, first predicting the parameters which have a larger

influence on deflections, then the remaining parameters.
v) Using engineering judgement to discriminate between results.

vi) Carrying out physical measurements to support the backcalculation finding, such as

destructive testing on cores extracted from the pavement.
Of all the above, an improved backcalculation process was developed.
6.3.4 The Improved Two Stages Backcalculation Procedure

The assumptions made in section 6.2 are still applicable in the improved backcalculation

procedure.
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If the radial moduli of the pavement structure indicate the presence of the bedrock at
shallow depth (see chapter 2), the thickness of the subgrade layer can be backcalculated as a
parameter in the first stage of the procedure. Otherwise, an apparent rigid layer is assumed

at 6 m depth from the pavement surface.

Figure 6.8 illustrates the flow diagram for the improved method.

The surface deflections under FWD, materials' types, layers' thickness and Poisson ratios

have to be known for each pavement to be analysed.

Sensitivity study has shown that K, has little influence on deflections compared with the
subgrade and thick bituminous moduli (see chapter 5). Therefore the backcalculation
procedure involves predicting first the parameters which have significant influence on
deflections, such as subgrade, subbase and bituminous base moduli, then computing the
interface shear reaction modulus between wearing and base courses with little adjustment to
the bituminous layer modulus. Chapter 4 has shown that changing the interface condition
has the largest effect on adjacent layers. Uzan et al (67), noticed variations in the tensile
strain in adjacent layers to the interface whose properties have been changed. Therefore the

subbase and subgrade were kept fixed in the second stage.

The first stage involves developing a deflections database for the analysed pavement with
different combination of moduli, using any forward calculation program such as BISAR
(44). The detlection locations should be selected to correspond with the sensors of the
FWD. Seven locations are commonly used, at the FWD load centre and at six other radial
positions with 300 mm spacing. Multi-variable regression analysis (88), for each modulus as
dependent variable with the deflections as independent variables was performed. Finally,
statistical models for moduli prediction from measured deflections can be found. This model
is unique for each case and has to be selected carefully, i.e. the model with the highest

coefficient of correlation (R*) should be considered.

The search technique for the best model using the multiple regression analysis is performed
in a systematic manner for each dependent parameter as follows;
tirstly considering that the moduli E; are the dependent parameters whereas the independent

variable are all term of d; , 1/ d;, V' d;, and Log;o (i) separately and collectively
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(1, deflection sensor of the FWD test),
secondly considering 1/E; , v E;, and Logio (E;) as the dependent parameters respectively

with all the above combinations of the independent variable (d; ).

For each case a multi-variable regression analysis is carried out using statistical software
(MINITAB)(89), which predicts a model with a coefficient of correlation to describe how
well this model fits the database values. Sixteen runs for each parameter are performed and

the model with the highest (R?) should be selected for the modulus prediction.

Each modulus has been predicted separately from the measured deflection basin. The
moduli of the lower layers need to be fixed in the next stage, therefore a good match in the
deflections far from the loaded area (which control these moduli) is essential for an accurate

calculation.

The second stage involves developing another deflection data base with bituminous base
modulus varied by 25% from the values found from the first stage, and the first interface
condition varied from complete debonding to full adhesion. The 25% variation in the
bituminous layer modulus is a fine tuning to reflect the error which might occur at the first
stage due to the assumption of K as 10° MN/m? rather than the real value (see Chapter 4).
The deflection at the loaded area and the three next deflections are to be used for the data
base (i.e. doo, do3, dos and dos ), since they control the moduli and parameters of the upper
layers. The calculated deflection basin which has the lowest error compared with measured

values is considered for parameters' prediction.
Finally the moduli of the lower layers as found from the first stage together with the
modulus of the base layer and the first interface condition as found from the second stage

are considered as the backcalculated parameters.

Engineering judgement and the knowledge of the deflection sensitivity to pavement

parameters are still needed to direct the process to better prediction of parameters.

The above procedure has the following advantages:

i) The database approach excludes the user selection of the seed values.
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ii) The two stage procedure reduces the number of backcalculated parameters to three in
this case, which can be predicted accurately if the suitable model is found from the
regression analysis search technique, though the base modulus is to be adjusted in the
second stage. However fixing the interface condition in the first stage at any value,
preferably at the most probable value of 10* MN/m* (67), will not affect the results

significantly since it has little influence on deflections.

iii) Fixing the predicted E; and E4 and varying E; by * 25% in addition to Ky , will magnify
the influence of K on deflection. Therefore a suitable model can be found for computing
the two parameters in the second stage. Furthermore the data base in the second stage will
cover the whole range of the interface condition from complete debonding to full adhesion

and hence it forces the prediction process to the correct solution.

iv) The separation in the parameter prediction will reduce the effect of their interaction in
the backcalculation process. However the data base generated by the BISAR program

reflects the influence of the combination of the parameters upon the deflections.

6.3.5 Backcalculating the Theoretical Pavement Parameters Using the Improved

Procedure

The four parameters (modauli of the bituminous base, unbound subbase and subgrade in
addition to the first interface shear reaction modulus) of the theoretical pavement shown in

figure 6.1 were backcalculated using the improved procedure:.

BISAR is used to compute the deflection basin under 40 kN surface load for the theoretical

pavement and the results are assumed as the measured basin.
The measured theoretical deflections (in microns) at different radial distances are,

d%.0 = 444, d% 3 =372, d"96 =297, d"oy = 231, d“,, = 177, d"; 5 = 135

and d™ 5 = 102 micron
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A database is developed for the three pavement moduli, i.e. bituminous base subbase and

subgrade, assuming all the other parameters as constant. Layers' thickness, Poisson ratios as
in figure 6.1. The interface conditions were assumed as full adhesion except K, was fixed as
10 MN/m”. The moduli were selected to cover the whole range for the type of materials as
recommended in the literature (37), and the deflections for each combination are computed

using the BISAR program at the seven locations. Table 6.2, illustrates the combination of
moduli with their deflection database.

The resulting models from the multi-variable regression analysis search for the above
pavement are,

Logio (E2) = 3.6402 - 0.0039499%* dgo + 0.0011255* dgs - 0.017751* d;»

+0.014026* dy 5 + 55.65/ doo + 101.63 / do3 - 84.4 / dos + 105.67 / dos
-79.44/ dis - 26.62/d;5+27.03/ dig

(R? = 96 %)

Logio (E3) = 2.2887 + 0.0022259* dgo - 0.009775* do - 0.0007* di2 + 0.01616* dys

+38.75/ doo - 58.35/ do3 +168.32/ dos - 62.44 / doo - 13.74/ d; 2
+19.6/dys-16.12/d;3

R*=172.6 %)

Logio (Eg) = 1.99341 - 0.00014153* doo - 0.0001512* dge - 0.001466* d, ,

-0.006114* dy 3 +3.104 / doo + 3.581 / do3 - 3.584 / dos - 5.348 / doo
+8.827/di2+5.315/d15+0.893/d s

(R?=99.9 %)

Substituting the above measured deflections in the regression equations, the first stage

moduli results can be computed as,

E,=5113 MPa
E3 =108 MPa
E, =40 MPa.

The new deflection data base is developed for the second stage using the BISAR program
for E, and Ky, , as shown in table 6.3.
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The calculated deflection basin which has the lowest error compared with the measured

basin is considered and the backcalculated values for the second stage are,

E, = 3835 MPa
Kq = 10* MN/m?>.

And the final backcalculation results using the improved method are,

E, = 3835 MPa
E; = 108 MPa
E4 =40 MPa

K, = 10° MN/m>.

These results can be considered acceptable compared with their theoretical values,

E, = 4000 MPa
Es; = 100 MPa
E4 =40 MPa

K, = 10* MN/m®,

6.4 CONCLUSIONS

For the pavement considered, the improved two stage database backcalculation method
yields results which compare favourably with the theoretical parameters, especially for the

parameters with little influence on deflection basin such as the first interface shear reaction

modulus.

However there is a clear need to validate the above method and study its robustness. Hence

three different approaches were adopted, and are explained in the next chapters, i.e.

1) Theoretical validation by comparing the backcalculation results for assumed pavements
with their theoretical values. Ninety pavements were selected to cover a wide range of

structures in term of thickness and materials properties.



i) Empirical validation by comparing the backcalculated moduli for real pavements tested

under FWD load and physically measured moduli.

iii) Validation by comparing the backcalculated moduli with the results from other well
known programs, such as WESDEF (50) and MODULUS (51), when identical pavement

conditions are assumed.
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Table 6.1, Pavement backcalculation results using the method of least squares.

Theoretical values
E; E; E, K

Test Seed Values Sensitivity Back 4000 100 40 10*
No. matrix for; calculate;
Backcalculated values
E; E; E, Ka
(MPa) (MPa) (MPa) (MN/m’) E; E3 Eq K
(MPa)  (MPa) _ (MPa) (MN/m’)
1 |2500 150 70 10> | Ej, Log(Ky) Ej, Ky 5522 103 39 87
2 |[2500 150 70 10°| Ej, Log(Ky) Ej,Log(Ky) | 5158 142 39 172
3 |2500 150 70 10? | Log Ej, Log(Ky;) Ej, Ky 3537 193 40 63
4 2500 150 70 10? [ Log Ej, Log(Ky) | Ej, Log(Ky) 5370 79 39 71
5 |2500 150 70 10> | Ej, Log(Ky) Ej, 1/(Ky) | 5490 103 39 117
6 |2500 150 70 10> | Ej, Log(Ky) Ej, o 5678 87 39 10
7 (2500 150 70 10| Ej,LogKy) | Ej* Log(K*y) {1000 63 116 478
8 |2500 100 70 10° Ej, Ky Ej, Ky 5029 82 40 577
9 [2500 100 70 10° | Ej, Log(Ky) Ej, Ky 378¢ 99 40 3.2%10°
10 | 2500 100 70 10* | Ej, Log(K) Ej, Kg 3578 122 40 1.9*10*
11 | 2000 200 70 10° | Ej, Log(Ky) Ej, Ky 708 340 38 1.6*10°
12 | 6000 150 60 10° | Ej, Log(Ky) Ej, Kg 4723 107 39 566
13 {6000 200 70 102 | Ej, Log(Ky) Ej, Ky 5371 113 39 120
14 | 8000 60 30 10> | Ej, Log(Ky) Ej, Ky 6109 53 41 263




Table 6.2, Deflection database for the hypothetical theoretical pavement with different
moduli combination.

E. Es E4 doo dos dos dos di2 dis dis
MPa MPa MPa | micron | micron | micron | micron | micron | micron | micron
1000 50 40 852 602 393 259 176 124 90
1000 150 40 668 465 325 233 171 126 95
1000 150 100 457 266 157 100 68 48 36
1000 150 160 390 205 108 63 41 29 22
1000 250 40 589 410 300 224 169 128 97
1000 250 100 399 230 144 97 68 49 37
1000 250 160 337 173 98 62 42 30 22
1000 250 220 305 143 75 45 30 22 16
3000 50 40 592 478 357 258 186 134 98
3000 150 40 499 399 305 230 173 130 98
3000 150 100 322 229 154 103 91 50 37
3000 150 160 266 176 109 68 44 30 22
3000 250 40 453 362 282 218 168 129 99
3000 250 100 289 204 1M a8 70 51 38
3000 250 160 236 154 98 64 44 31 23
3000 250 220 208 128 76 47 31 22 16
5000 50 40 497 418 329 249 187 138 103
5000 150 40 432 361 287 223 172 132 101
5000 150 100 273 207 148 104 73 52 38
5000 150 160 222 159 106 69 46 32 23
5000 250 40 399 333 268 212 166 130 101
5000 250 100 250 188 137 98 71 52 38
5000 250 160 201 142 96 65 45 32 23
5000 250 220 177 118 76 49 32 23 16
7000 50 40 441 380 308 241 185 140 106
7000 150 40 391 334 273 217 170 132 102
7000 150 100 245 192 143 103 74 53 39
7000 150 160 198 148 103 70 47 33 23
7000 250 40 365 311 256 206 164 130 102
7000 250 100 226 177 132 97 71 53 39
7000 250 160 181 133 94 65 45 32 24
7000 250 220 157 111 74 49 33 23 17
9000 50 40 403 352 291 232 182 140 107
9000 150 40 362 314 261 211 168 132 103
9000 150 100 225 181 138 102 74 54 40
9000 150 160 181 139 100 69 48 34 24
9000 250 40 340 294 247 201 162 129 102
9000 250 100 210 167 128 96 72 53 40
9000 250 160 167 126 91 65 46 33 24
9000 250 220 145 105 73 49 34 24 17
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Table 6.3, Deflection database for the second stage backcalculation procedure.

E: Ke1 do.o dos dos dos
MPa MN/m® micron micron micron micron
3835 10 500 410 317 239
3835 10* 490 401 310 234
3835 10° 465 382 299 230
3835 10° 444 3711 296 230
3835 10° . 438 370 296 230
5110 10 457 383 304 234
5110 10* 449 376 298 230
5110 10° 428 360 288 226
5110 10* 412 352 285 225
5110 10° 407 350 285 255
6390 10 425 362 292 229
6390 107 418 356 287 225
6390 10° 401 342 279 221
6390 10* 388 335 276 221
6390 10° 383 334 276 211
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h; =40 mm Bituminous Wearing Course
E[ = 2500 MPa V)= 0.4
K, = 10* MN/m’
h, =200 mm Bituminous Base
E, = 4000 MPa v, =04

K, = 10° MN/m? (full adhesion)

h; =300 mm Granular Subbase
E, =100 MPa v3=0.3
K = 10° MN/m® (full adhesion)
Subgrade
E,= 40 MPa Va4 = 04
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Figure 6.1,

Standard pavement structure.
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Figure 6.3,  Deflection basins caused by reducing the base modulus to 4000 MPa or the
first shear reaction modulus to 10 MN/m®, under single load FWD.
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Figure 6.5,  Longitudinal deflection basins caused by reducing the base modulus to 4000
MPa or the first shear reaction modulus to 10 MN/m?, under dual loads

FWD, (see figure 6.4).
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MPa or the first shear reaction modulus to 10 MN/m?, under dual loads
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FWD test results: Number of Layers (n). Estimate the thin wearing
1. Number of geophones. Layer thickness (h). course modulus (E, ):
2. Measured deflection at each Poisson’s ratio (V).
geophone (d™). N LITT
3. Load magnitude and radius || Assume K,; = 10* MN/m’ 2. Shell monograph ,
of loaded area. K , Kg = full adhesion. 3. Asphalt Institute equations.

+ + +

Compute the deflection basin database to cover the range of material’s moduli Ej using BISAR.

~
i=2,n |‘
~
Depend = Ej
MRA
Call MRA
Perform multiple regression
analysis for Depend as the Depend = 1/E;
dependent parameter and di,
1/di, V di and Log di as the Call MRA
independent parameters
separately and collectively. Depend =V Ej
~
Find the statistical models
and compute the coefficient
of correlation (R?) for each Depend = Log Ej
model.
Call MRA
RETURN| | getect the statistical model with the highest R2.
Compute Ej from the measured deflections.
-~
j=j+1
For j =3, n, fix the values of Ej Second Stage
e

Compute second deflection database for E; = 75% E,, E;, 125% E, and
Ka=10',10*,10°, 10*, 10° MN/m’ using the BISAR program.
~>-
For each deflection basin compute Er = > 1 d;" - df I, for (i=1,4).
s
Select the basin with the lowest error.

~
Output the layer moduli Ej and Kj,.

Figure 6.8,  Flow chart for the improved method back-calculation procedure.
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Chapter 7

THEORETICAL VALIDATION OF THE
IMPROVED BACKCALCULATION
PROCEDURE

7.1 INTRODUCTION

Potential errors in backcalculation are associated normally with the deflection measurement

device, pavement geometry, material modelling, analysis technique and non-unique solution.

Assuming that static analysis for layered linear elastic pavement is suitable and that the
FWD device can produce deflections with reasonable accuracy, the correctness of the
backcalculation method depends primarily on the ability of the procedure to converge to the

appropriate parameters.

The aim of this theoretical verification is to examine the capability of the inverse solution
technique and the uniqueness of the solution. Therefore the improved backcalculation
method is evaluated by comparing the backcalculated parameters with hypothesised values

for theoretical pavements.

The pavement properties in term of layers’ moduli, thickness, Poison ratios and the interface
condition between layers are assumed. BISAR is used to generate a simulated deflection
basin. Seven deflections are computed under a 40 kN surface load, at the load centre and at
six other radial distances at 300 mm uniform spacing. This basin is considered as the

measured basin under the FWD and used as input to the backcalculation procedure.
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The moduli of bituminous base, subbase and subgrade in addition to the interface condition
between wearing and base courses are backcalculated from this basin. The three layer
moduli were computed firstly from a multiple regression analysis technique. An interface
shear reaction modulus between wearing course and base is assumed as 10* MN/m" in the
first stage. Then a second database for the modulus of the bituminous base and the first
interface condition is developed to predict the remaining two parameters, as described in
Chapter 6. Finally the backcalculated parameters are compared with the theoretical assumed

values to verify the backcalculation procedure.

The numerical correlations and the engineering knowledge of the materials properties are

the main criteria to evaluate the success of the backcalculation methods.

7.2 THEORETICAL PAVEMENTS

Ninety hypothetical theoretical pavement structures are assumed to cover wide range of
moduli (E;), thickness (h;) and the interface condition between wearing and base courses
(Kq). The thickness of wearing course, Poisson ratios, depth of bedrock and the remaining

interface conditions are kept constant in all pavements as shown in table 7.1.

Nine groups of pavements are considered, each group having unique moduli values, two
combinations of layers thickness and a variety of interface conditions between wearing and
base courses. Two subgroups are considered according to layers’ thickness, either 100 and
200 mm or 300 and 300 mm for bituminous base and granular subbase respectively. The
first interface condition is changed gradually from complete debonding to full adhesion in

each subgroup, with K, varying as, 10", 10%, 10°, 10*, 10> MN/m" (see table 7.2).

Table 7.2 illustrates the calculation results. The four backcalculated parameters for the
ninety structures are close to the theoretical assumed values from engineering point of view.
However, the backcalculated moduli of the subbase are less accurate which can be
explained by the fact that the contribution of this layer to the structural response of the
pavement structure is small relative to that of the thick bituminous layer and subgrade (47).

Therefore, it is difficult to obtain a reliable estimate of the granular layer modulus, since
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even large differences in its value do not change the overall pavement load response

significantly (90).
7.2.1 Layer Moduli Comparison

A comparison between the theoretical and backcalculated moduli is shown in figure 7.1 for
the ninety pavement structures. A very high correlation of 97.7% was found between the
two sets of moduli, indicating that the improved method has the capability of
backcalculating the pavement parameters. However considering each layer modulus
correlation individually will result in lower values. Figures 7.2 to 7.4 illustrate the

correlation for base, subbase and subgrade modulus respectively.

A coefficient of correlation of 86.6% was found between the backcalculated and theoretical
moduli of bituminous base, whereas the subbase moduli correlation is lower due to the
reasons stated earlier, with a coefficient value of 35.7%. Figure 7.4 shows very good
subgrade moduli correlation (99.9%), which is the case in most backcalculation programs

due to the large influence of the subgrade on surface deflections.
7.2.2 Interface Bonding Condition Comparison

The theoretical interface shear reaction moduli between the wearing and base courses (K,)
were not compared numerically with their backcalculated values. Numerical comparison
for (K,;) has some disadvantages since a large variation in the value of (K;) will not
indicate large differences in the bonding conditions (K, value of 10° MN/m’ is ten time

bigger than 10 MN/m’ and they still considered as good bonding).
Therefore the range of (K;) was divided into three parts:
i) K, < 10> MN/m? (debonding)

i)  10*<Kg <10* MN/m? (intermediate case)
i) K, >10* MN/m® (adhesion),
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and a good estimate of the state of adhesion between wearing and base courses can be

established, as weak, intermediate or strong.

Figure 7.5 presents a comparison between the theoretical and backcalculated (K;,) on the
range's basis, where the percentages of the compatibility between the estimated and
theoretical values were indicated. A white space on the graph means a ‘winner’ case where

the estimated (K;) has fallen within the same range part of its theoretical value. Figure 7.5

shows 62% of the ninety pavement structures as ‘winners’.

Some values were predicted outside their ranges, however they can still be considered as
good estimates since they are close to their theoretical values. These cases occur when the
(K,;) theoretical value is 10° and predicted as 10* MN/m” or the theoretical value is 10 and
predicted as 10> MN/m”’. These cases have been named as ‘semi-winners’ and presented as
grey areas in figure 7.5. The dark spaces represent the ‘losers’ where the estimated results
are very far from their theoretical values, (e.g. when the theoretical value of Ky is 10°

MN/m® and predicted as 107 or as 10 MN/m* ). No ‘loser’ from the ninety analysed

pavements was recorded in figure 7.5.

However, from a practical point of view, the maintenance engineer needs to know if the
interface between the wearing and base courses exhibits good adhesion or poor bonding.

This can established by dividing the (Ky) range into two separate sections:

i) Kq < 10* MN/m® (poor bonding)
ii) Kq > 10* MN/m® (good bonding).

Figure 7.6, demonstrates a comparison between the predicted and the theoretical bonding

condition for the ninety pavements, where 80% of the estimated results agree with their

hypothetical values..

7.3 COMPARISON WITH OTHER BACKCALCULATION PROGRAMS

The aim of this section is;
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i) to study the errors which might evolve by assuming the interface conditions as tull
adhesion,

i) to verify the improved backcalculation procedure by comparing it with other programs
when identical pavement conditions are assumed in the analysis process,

i1) to show the improvement in the moduli prediction result from including the first shear

reaction modulus in the backcalculation process.

The same ninety deflection basins for the theoretical pavements are used to backcalculate
the moduli of bituminous base, granular subbase and subgrade using different
backcalculation programs. WESDEF (50) and MODULUS (51) are used assuming full

adhesion between pavement layers, as is commonly found in backcalculation procedures.

These moduli should carry some errors to compensate for modelling the first interface

condition as full adhesion rather than the actual value.

Table 7.3, illustrates the comparison between the theoretical and backcalculated moduli

using the improved, WESDEF and MODULUS programs for the ninety pavements.

Figures 7.7, 7.8 and 7.9, demonstrate the relative error in predicting the moduli of
bituminous base, subbase and subgrade respectively, using the improved and WESDEF

programs for the ninety structures.

Table 7.3 and figure 7.7 show that the backcalculated modulus of bituminous base is most
affected by first interface condition modelling errors. The weaker the pavement the larger
the reduction in the modulus values, and the closer the real interface condition to the
assumed values ( full adhesion with K = 10° MN/m3) , the lower the effect on
backcalculated base modulus. Up to 60% reduction in base modulus was recorded in the
extreme cases using the WESDEF program to compensate the modelling error. Therefore
an improvement of up to 40% was observed in base modulus when complete debonding

occurs.

The estimated moduli of subbase and subgrade have not been affected by the above
modelling error (see figures 7.8 and 7.9), however the results show some scattered valucs

for subbase moduli in all backcalculation programs. This conclusion will validate the
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assumption made in the improved backcalculation procedure, of fixing the moduli of lower

layers in the second stage and tuning only the base modulus and the interface condition (see

chapter 6).

The backcalculated results of the theoretical pavements having full adhesion between
wearing and base courses (Kg = 10° MN/m’), ie. pavement's number with their last digit as
a (5), are compared for different backcalculation methods. Figure 7.10, illustrates a
comparison between the improved method and WESDEF moduli for the eighteen
pavements with full adhesion between layers. Similarly figure 7.11 shows the comparison

between the improved procedure and MODULUS moduli.

Very good correlation between the improved method and both WESDEF and MODULUS
results can be seen in figures 7.10 and 7.11 for the eighteen pavements. Coefficients of
correlation of more than 97% were observed for both cases, hence the improved
backcalculation method has been validated by comparing its results with other known

programs.

Table 7.3 also presents the improvement in.the backcalculated moduli over the conventional
methods, when the interface condition between wearing and base courses is considered in
the backcalculation process. This improvement was mostly noticed when complete

debonding occurs between wearing and base courses.

Figures 7.12 to 7.15 demonstrate the relationship between the hypothetical moduli and the
WESDEF backcalculated values for the three layers together, the bituminous base, subbase
and subgrade respectively. In the same manner the comparisons were presented for the

ninety structures using MODULUS program in figure 7.16 to 7.19.

Coefficients of correlation of 86.5% and 85.8% for all the moduli were recorded for
WEDDEF and MODULUS program respectively, compared with 97.7% using the

improved method.

Considering each modulus relationship individually, coefficient values of 42.7% and 41.3%

were found for bituminous base using WESDEF and MODULUS respectively, compared
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with 84.6% for the improved method. These low values are mainly due to the first interface

condition modelling error which affects mostly the adjacent layers.

Coefficients of 35.9% and 23.2% were predicted for subbase modulus relationship whereas
99.8% and 99.4% were found for subgrade moduli using WESDEF and MODULUS
respectively. On the other hand the improved method coefficients of 35.7% and 99.9% were

presented in figure 7.3 and 7.4 for subbase and subgrade respectively.

No improvement was noticed for both the subbase and subgrade since (Ks) has no influence
on lower layer moduli. The poor agreement between the backcalculated moduli of subbase

and their theoretical values using the three procedures is explained earlier in this chapter.

Therefore the improved method has advantages in predicting the layers moduli if the
bonding conditions were not perfect between the wearing and base courses. The
improvement was mainly noticed in the estimation of bituminous modulus, where up to 40%

improvement was recorded. The subbase and subgrade moduli were predicted with the

same accuracy as the conventional methods.

7.4 SUMMARY

Flexible pavement's evaluation using the FWD and backcalculation of moduli, assuming full

adhesion between layers may cause some errors in the predicted moduli.

The backcalculated modulus of the bituminous base was most affected by the first interface
condition modelling errors, the modulus of subbase was not significantly influenced,

whereas the subgrade was not affected by the above errors.

The improved backcalculation procedure has been verified by comparing the backcalculated

parameters with hypothesised values for theoretical pavements.

The improved backcalculation method has been also validated by comparing the

backcalculated moduli with other programs’ results, i.e. WESDEF and MODULUS.
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Employing the improved method will result in a better moduli prediction compared with the

conventional programs. Moreover, the ability of this method to detect poor bonding

between the wearing and base course can demonstrate the improvement achieved by the

developed procedure.

Table 7.1, Properties of hypothetical theoretical pavement structures.

Layer Category Properties
Bituminous wearing course | Modulus (MPa) 2500, 5000, 7500
Thickness (mm) 40
Poisson ratio 04
K. (MN/m®) 10, 10%, 10%, 10%, 10°
Bituminous base Modulus (MPa) 4000, 7000, 10000
Thickness (mm) 100, 300
Poisson ratio 04
Ko (MN/m?) 10°
Granular subbase Modulus (MPa) 100, 150, 200
Thickness (mm) 200, 300
Poisson ratio 0.3
K (MN/m?) 10°
Subgrade Modulus (MPa) 40, 80, 120, 160
Thickness (mm) 6000 - (pavement thickness)

Poisson ratio

0.4




Table 7.2, Theoretical and backcalculated parameters for structures 2, 3 and 4.
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Theoretical Parameters

Backcalculated Parameters

St.No. hz h3 E1 Ez E3 E4 Ksl Ez E3 E4 Ksl
mm|mm| MPa MPa MPa MPa MN/m® | MPa | MPa | MPa | MN/m®
2A-1 {100]200| 2500 | 4000 100 40 10! 3340 | 65 40 10°
2A-2 10* 3970 | 68 40 10°
2A-3 10° 4040 | 87 40 10°
2A-4 10* 4900 | 77 40 10*
2A-5 10° 6235 | 73 40 104
2B-1 [300]300| 2500 | 4000 100 40 10! 4010 | 96 41 10
2B-2 10? 4010 | 111 41 10
2B-3 10° 4350 | 130 39 10?
2B-4 10* 4125 | 123 40 10°
2B-5 10° 3650 | 114 40 10°
3A-1 |100]200| 5000 | 7000 150 40 10 6350 | 66 41 10°
3A-2 10* 6390 | 75 41 10
3A-3 10° 4050 | 129 40 10*
3A-4 10* 6455 | 155 40 10*
3A-5 10° 8160 | 145 40 10*
3B-1 |300]300| 5000 | 7000 150 40 10! 6790 | 114 | 40 10?
3B-2 10* 7930 | 106 41 10!
3B-3 10° 6160 | 147 40 10°
3B-4 10* 6740 | 151 40 10°
3B-5 10° 7630 | 147 40 10°
4A-1 |100[200| 7500 | 10000 [ 200 40 10! 9865 | 91 41 10°
4A-2 10? 9590 | 118 4] 10°
4A-3 10° 9835 | 226 40 10°
4A-4 10* 11795 | 171 40 10*
4A-5 10° 10390 | 180 | 40 10°
4B-1 [300]300| 7500 | 10000 | 200 40 10! 10230 | 100 | 40 10
4B-2 10? 10435 | 101 41 10?
4B-3 10° 9035 | 141 41 10*
4B-4 10* 11590 { 180 40 10°
4B-5 10° 11330 | 151 41 10°
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Table 7.2 ( cont.), Theoretical and backcalculated parameters for structures 5, 6 and 7.

Theoretical Parameters Backcalculated Parameters
St.No. hz h3 E1 F/) E3 E4 Ksl Ez E3 E4 Ksl
mm|mm| MPa | MPa | MPa | MPa | MN/m® | MPa | MPa | MPa | MN/m®
5A-1 (100200 2500 | 4000 100 80 10! 3175 | 90 80 10°
5A-2 10? 3250 | 92 80 10°
5A-3 10° 4210 | 99 80 10°
5A-4 10* 3570 | 94 80 10°
5A-5 10° 4675 | 95 80 10°
5B-1 |300]300| 2500 | 4000 100 80 10* 3925 | 95 80 10
5B-2 10? 3840 | 110 80 10?
5B-3 10° 4150 | 145 78 10?
5B-4 10* 4250 | 125 79 10°
5B-5 10° 4600 | 107 79 10°
6A-1 |100]|200]| 5000 | 7000 150 80 10! 6420 | 93 81 10°
6A-2 107 6360 | 100 81 10°
6A-3 10° 5150 | 131 81 10*
6A-4 10* 6570 | 159 80 10*
6A-5 10° 6996 | 150 80 10°
6B-1 (300300 5000 [ 7000 150 80 10 6540 | 98 81 10°
6B-2 10* 6640 | 101 82 10°
6B-3 10° 6040 | 141 82 10*
6B-4 10* 8630 | 162 80 10?
6B-5 10° 6785 | 134 82 10°
7A-1 |100[200] 7500 | 10000 | 200 80 10* 8230 | 144 82 10°
7TA-2 107 9710 | 163 82 10?
7A-3 10° 9650 | 208 82 10°
7A-4 10* 9515 | 182 81 10*
7TA-5 10° 10885 | 157 82 10°
7B-1 |300]/300| 7500 | 10000 | 200 80 10 10345 | 127 81 10
7B-2 10 10895 | 111 83 10
7B-3 10° 11105 | 167 82 10°
7B-4 10* 8290 | 197 81 10°
7B-5 10° 11585 | 176 82 10°
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Table 7.2 (cont.), Theoretical and backcalculated parameters for structures 8,9 and 10.

Theoretical Parameters Backcalculated Parameters

St.No. hz h3 E1 E2 E3 E4 Ksl Ez E3 E4 Ksl

mm|mm| MPa | MPa | MPa | MPa | MN/m® | MPa | MPa | MPa | MN/m®

8A-1 |100[200| 5000 | 7000 150 120 10! 6610 | 102 | 121 10°
8A-2 10? 6625 | 110 | 121 10°
8A-3 10° 6590 | 140 | 119 10°
8A-4 10* 6875 | 165 | 121 10*
8A-5 10° 7540 | 157 | 120 10°
8B-1 |300(300| 5000 | 7000 150 120 10! 8400 | 65 122 10°
8B-2 10? 7446 | 89 122 10°
8B-3 10° 5995 | 174 | 119 10*
8B-4 10* 6940 | 171 118 10
8B-5 10° 8265 | 132 | 121 10°
9A-1 {100{200| 7500 | 10000 { 200 120 10! 10145 177 | 120 10?
9A-2 10* 8000 | 183 | 121 10°
9A-3 10° 9710 | 189 | 122 10°
9A-4 10* 8370 | 226 | 121 10*
9A-5 10° 12150 | 197 | 121 10*
9B-1 |300|300| 7500 | 10000 | 200 120 10 10210 | 118 123 10°
9B-2 10? 9845 | 145 121 10°
9B-3 10° 10400 190 | 120 10°
9B-4 10* 10055 | 195 | 122 10*
9B-5 10° 11205 176 | 120 10*
10A-1 | 100 {200 | 7500 | 10000 200 160 10! 7965 | 109 161 10*
10A-2 10? 8070 | 119 162 10*
10A-3 10° 9835 | 215 158 10*
10A-4 10 10475 | 200 | 160 10*
10A-5 10° 129601 188 | 162 10*
10B-1 [300{300| 7500 | 10000 | 200 160 10! 10175 | 122 | 160 10°
10B-2 10* 9810 | 152 | 161 10°
10B-3 10° 8265 [ 215 | 160 10*
10B-4 10* 10480 | 179 161 10*
10B-5 10° 11730 | 162 | 162 10°
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Table 7.3, Comparison between theoretical and backcalculated moduli using different
programs ( Improved, WESDEF and MODULUS ), for structures 2,3 and 4.
E, E; E4
(MPa) (MPa) (MPa)

St. |Theo. |{Imp.| WES. IMOD.|Theo. |Imp.| WES. |MOD.|Theo. [Imp.| WES. |MOD
No.
2A-1| 4000 | 3340 ] 1321 1686 100 65 76 69 40 40 40 41
2A-2| 4000 | 3970 | 1622 1662 100 68 77 77 40 40 40 4]
2A-3| 4000 | 4040 | 1641 1784 100 87 115 109 40 40 40 40
2A-4| 4000 | 4900 | 2782 | 2865 100 71 122 122 40 40 40 39
2A-5{ 4000 | 6235 | 3738 3865 100 73 109 122 40 40 40 39
2B-1| 4000 | 4010 | 3064 3316 100 96 74 44 40 41 40 43
2B-2| 4000 | 4010 ] 3022 3473 100 111 101 48 40 4] 40 43
2B-3| 4000 | 4350 | 3128 3219 100 130 180 146 40 39 38 39
2B-4| 4000 | 4125 ] 3550 3752 100 123 162 115 40 40 39 39
2B-5| 4000 | 3650 | 3803 4458 100 114 135 46 40 40 39 42
3A-1| 7000 | 6350} 2630 2923 150 66 100 83 40 4] 40 41
3A-2| 7000 | 6390 2677 2923 150 75 111 90 40 41 40 41
3A-3( 7000 | 4050 2475 2892 150 129 176 142 40 40 40 41
3A-4| 7000 | 6455 | 4031 4068 150 155 214 199 40 40 40 39
3A-5] 7000 | 8160} 6373 7005 150 145 174 139 40 40 40 40
3B-1| 7000 | 6790 | 5252 5783 150 114 124 45 40 40 40 43
3B-2| 7000 | 7930 | 5315 6181 150 106 152 38 40 41 40 44
3B-3| 7000 | 6160 | 5392 5945 150 147 253 139 40 40 40 41
3B-4| 7000 | 6740 | 6105 6581 150 151 265 152 40 40 39 40
3B-5| 7000 | 7630 | 6825 6448 150 147 181 205 40 40 40 39
4A-1] 10000 | 9865 | 3894 3940 200 91 105 106 40 41 40 41
4A-2] 10000 | 9590 | 3769 4023 200 118 118 109 40 41 41 4]
4A-3] 10000 | 9835 | 3420 3968 200 226 204 172 40 40 40 41
4A-4] 10000 |11795] 5419 5400 200 171 274 269 40 40 40 40
4A-5]1 10000 {10390} 8842 | 10214 | 200 180 234 178 40 40 40 40
4B-1( 10000 [10230| 7447 1577 200 100 145 104 40 40 40 41
4B-2| 10000 | 10435 7667 7324 200 101 154 109 40 41 41 41
4B-3( 10000 | 9035 | 7734 8613 200 141 260 119 40 4] 41 42
4B-41 10000 |11590] 8313 | 10808 | 200 180 353 43 40 40 40 44
4B-51 10000 |11330{ 9667 9151 200 151 244 266 40 41 40 39
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Comparison between theoretical and backcalculated moduli using
different programs ( Improved, WESDEF and MODULUS ), for
structures 5,6 and 7.

E, E; E4
(MPa) (MPa) (MPa)

St. |Theo.|Imp.| WES. IMOD.|Theo. |Imp.| WES. [MOD.|Theo. |Imp.| WES. | MOD.
No.

SA-1| 4000 | 3175 | 1621 1693 100 90 76 75 80 80 83 82
5A-2| 4000 | 3250 | 1642 1694 100 92 79 79 80 80 83 82
5A-3| 4000 | 4210 | 1781 1807 100 99 104 106 80 80 81 80
5A-4] 4000 | 3570 | 3017 2922 100 94 107 118 80 80 81 79
SA-5{ 4000 | 4675 | 3842 3855 100 95 102 108 80 80 80 79
5B-1| 4000 | 3925 | 3079 3108 100 95 80 74 80 80 83 84
5B-2| 4000 | 3840 | 3033 2986 100 110 101 104 80 80 81 82
5B-3| 4000 | 4150 | 3114 3212 100 145 143 132 80 78 79 80
5B-4| 4000 | 4250 | 3737 3900 100 125 114 99 80 79 80 82
SB-5| 4000 | 4600 | 4031 4172 100 107 94 72 80 79 81 85
6A-1| 7000 | 6420 | 2765 2953 150 93 105 92 80 81 80 82
6A-2| 7000 | 6360 | 2718 2880 150 100 112 100 80 81 80 82
6A-3| 7000 | 5150 | 2695 952 150 131 165 95 80 81 79 317
6A-4| 7000 | 6570 | 4162 | 4294 150 159 206 191 80 80 79 79
6A-5] 7000 | 6996 | 6398 6446 150 150 172 163 80 80 79 79
6B-1| 7000 | 6540 | 5405 5683 150 98 112 74 80 81 80 86
6B-2| 7000 | 6640 5153 5384 150 101 162 124 80 82 80 82
6B-3( 7000 | 6040 | 5444 | 5714 150 141 227 177 80 82 79 80
6B-4 | 7000 | 8630 | 5979 6341 150 162 258 188 80 80 78 79
6B-5| 7000 | 6785 | 6754 7610 150 134 200 81 80 82 78 85
7A-1| 10000 | 8230 | 3792 3986 200 144 125 122 80 82 81 81
7A-21 10000 | 9710 | 3868 4070 200 163 128 123 80 82 81 82
7A-31 10000 | 9650 | 3705 4083 200 208 189 71 80 82 81 81
7A-4( 10000 | 9515 | 5357 5357 200 182 259 267 80 81 80 79
7A-5| 10000 | 10885 8878 8813 200 157 238 226 80 82 80 79
7B-1| 10000 [10345] 7503 8037 200 127 183 98 80 81 79 83
7B-2{ 10000 {10895] 7869 8259 200 111 154 86 80 83 81 85
7B-3] 10000 | 11105] 7451 7896 200 167 337 243 80 82 79 79
7B-4 | 10000 | 8290 | 8161 9658 200 197 415 117 80 81 78 81
7B-51 10000 |11585] 9405 | 10928 | 200 176 297 92 80 82 78 84
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Comparison between theoretical and backcalculated moduli using
different programs ( Improved, WESDEF and MODULUS ), for
structures 8, 9 and 10.

E, E; E,
(MPa) (MPa) (MPa)

St. [Theo.|Imp. | WES. (MOD.|Theo.|Imp.| WES. {MOD.|Theo. |Imp.| WES. |MOD
No.

8A-1| 7000 | 6610 | 2814 | 2763 | 150 | 102 | 108 111 | 120 | 121 | 119 123
8A-2| 7000 | 6625 | 2801 { 2809 { 150 | 110 | 114 113 | 120 | 121 | 120 123
8A-3| 7000 | 6590 | 2873 | 2988 | 150 | 140 | 151 139 | 120 | 119 | 119 122
8A-4| 7000 | 6875 4525 | 4250 | 150 | 165 | 180 186 | 120 | 121 | 117 118
8A-5] 7000 | 7540 | 6925 | 6514 | 150 | 157 | 155 165 | 120 | 120 | 117 119
8B-1 | 7000 | 8400 | 5430 | 5696 | 150 | 65 117 79 120 | 122 | 119 134
8B-2 | 7000 | 7446 | 5296 | 5465 | 150 | 89 158 106 | 120 | 122 | 116 128
8B-3 | 7000 | 5995 | 5449 | 5874 | 150 | 174 | 205 120 | 120 | 119 | 117 125
8B-4 | 7000 [ 6940 | 5914 | 6021 [ 150 | 171 | 272 230 | 120 | 118 | 114 117
8B-5| 7000 | 8265 | 6792 | 7138 | 150 | 132 | 190 125 | 120 | 121 | 116 123
9A-1 | 10000 [10145| 3723 | 3999 | 200 | 177 | 140 127 | 120 | 120 | 121 123
94-2 | 10000 | 8000 | 3686 | 3970 | 200 | 183 | 149 135 | 120 | 121 | 121 123
9A-3 | 10000 [ 9710 | 3951 | 4114 | 200 | 189 | 184 174 | 120 | 122 | 120 117
9A-4 | 10000 | 8370 | 5795 | 5591 | 200 | 226 | 243 252 | 120 | 121 | 118 119
9A-5| 10000 [12150| 9303 | 8754 | 200 | 197 | 209 234 | 120 | 121 | 118 118
9B-1 | 10000 {10210| 7600 | 8069 | 200 | 118 | 160 92 120 | 123 | 119 132
9B-2 | 10000 | 9845 | 7542 | 7220 | 200 | 145 | 209 209 | 120 | 121 | 116 119
9B-3 | 10000 {10400 7851 | 7813 | 200 | 190 | 249 236 | 120 | 120 | 118 120
9B-4 | 10000 [10055| 8899 | 8484 | 200 | 195 | 326 | 297 | 120 | 122 | 114 118
9B-5 | 10000 [11205| 9605 | 9272 | 200 | 176 | 314 290 | 120 [ 120 | 114 116
10A-1| 10000 | 7965 | 3730 | 3986 | 200 | 109 | 148 139 | 160 | 161 | 163 166
10A-2{ 10000 | 8070 | 3725 | 3971 | 200 | 119 | 152 142 | 160 | 162 | 163 166
10A-3] 10000 | 9835 | 3748 | 4148 | 200 | 215 | 194 172 | 160 | 158 | 160 163
10A-4| 10000 [ 10475| 5668 | 5468 | 200 | 200 | 249 259 | 160 | 160 | 158 157
10A-5] 10000 [12960| 8699 | 8888 | 200 | 188 | 220 224 | 160 | 162 | 159 158
10B-1) 10000 {10175] 7576 | 7895 | 200 | 122 | 159 122 | 160 | 160 | 158 170
10B-2| 10000 | 9810 [ 7278 | 7557 | 200 | 152 | 216 163 | 160 | 161 | 156 163
10B-3| 10000 | 8265 | 7627 | 7949 | 200 | 215 | 257 193 | 160 | 160 | 157 164
10B-4| 10000 |10480| 8555 | 8718 | 200 | 179 | 332 290 | 160 | 161 | 152 155
10B-5| 10000 [11730| 9587 | 10158 | 200 | 162 | 260 174 | 160 | 162 | 154 162
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Figure 7.1, Comparison between the improved method backcalculated and theoretical
moduli for the 90 structures.
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Figure 7.5, Comparison between backcalculated and theoretical bonding condition

between wearing and base courses for the 90 structures on the ranges basis.
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Figure 7.6, Comparison between backcalculated and theoretical bonding condition
between wearing and base courses for the 90 structures for practical use.
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Chapter 8

FULL SCALE TESTING OF PAVEMENTS
- A34 HANDFORTH-WILMSLOW BYPASS

8.1 INTRODUCTION

Any empirical validation of the backcalculation procedure is very difficult because no
reference point is available for mechanistic pavement analysis. Mechanistic properties have
normally been determined by standard laboratory tests (30). However since neither
backcalculation nor laboratory test methods provide a reference modulus, backcalculation

results have been verified through an examination of the compatibility of the two methods.

Many researchers validate their backcalculation programs by comparing the moduli results

with physically measured properties either in the laboratory or insitu (6,30,47,91,92,93).

An Indirect Tensile Test (ITT) for resilient modulus of bituminous mixes on cores extracted
from the pavements using the Nottingham Asphalt Tester NAT (35) was used. The
unbound layers and subgrade soil properties were predicted from the Dynamic Cone
Penetrometer (DCP) tests (40). However, where the subbase and capping layers are very
thick, as was most often the case, the construction records of the Standard Penetration

Test (SPT) (39) for subgrade were used to validate the backcalculation results.

Testing new uncracked pavements will result in a better agreement between laboratory and
backcalculated moduli. Hossain et al (94), verified this statement by comparing
backcalculated asphalt concrete moduli from FWD test results on a new pavement section

with the resilient moduli determined in the laboratory.



Although a laboratory test defined the physical properties of individual material, the
difficulties of creating the same pavement stresses and environmental conditions in the
laboratory make the results not very representative. The surface detlections under the FWD
reflect the real insitu pavement condition and therefore the backcalculated parameters can
more realistically represent the insitu material properties (43,94). A reliable estimate of the
pavement material moduli from FWD and backcalculation procedure is essential for

comparison with measured properties.

Uzan and Lytton (95) stated that the measured deflection basins under FWD can be
separated into the following components:

1) the true deflection,

ii) the systematic error due to modelling,

ii1) the random error due to the measuring devices and

iv) the random error due to intrinsic variability of the materials.

In order to achieve reliable results, both the systematic error and the random errors due to
measuring devices must be eliminated. The former can be minimised by using better
modelling such as nonlinear material behaviour. The latter can also be minimised through

repeating the test several times at the same location (95).

The following measures have been employed in this empirical analysis to make the

comparison as realistic as possible.

i) New untrafficked pavement sections were selected for the FWD tests, in order to
avoid the effect of cracks, voids and other pavement defects on backcalculated
moduli.

i1) Four load levels were conducted using the FWD test at each location to study the
pavement material nonlinearity.

iii) At each load level four drops were performed and the average deflection basins
were considered for backcalculation, to eliminate the random errors due to
measuring devices.

iv) Core extractions for laboratory tests and DCP measurements were carried out at
the same FWD test locations to overcome the pavement and subgrade variation with

distance.
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v) Layer thicknesses were measured from the cores and construction drawings.

vi) The pavement's temperature was measured according to ASTM (96). Laboratory
testing for bituminous layers were performed at the same field temperature.
vii) A “radial modulus at different radial distance” method (61) was used to detect

any bedrock at shallow depth.

However, some variation should be expected between the measured and backcalculated

moduli due to the following reasons (43,47,90,91,94).

i) The combining of different layers with the same properties into one structural
layer in the backcalculation procedure.

ii) The stress state for the limited sized bituminous material cores in the laboratory
can differ significantly from that in the field.

iii) Different material volumes were tested in the field and the laboratory.

iv) FWD test has a different loading time compared with the laboratory experiments.
v) The insitu DCP test for unbound materials is empirical and its result usually
correlated with an analytical parameter such as modulus of elasticity. This

correlation may not hold for a wide range of materials.

8.2 TESTING METHODOLOGY

Four full scale untrafficked pavements were selected for testing from the A34 Handforth-
Wilmslow Bypass in the Greater Manchester area. Prestbury link (Pres), Handforth Bypass
(HBP), Hypermarket slip road (Hyp) and Manchester Airport Eastern link road (MAE) are
the four sites provided by Cheshire County Council and tested (October 1st 1995).

Radial modulus analysis indicates the absence of stiff bedrock at shallow depth for the tested

pavements.

The pavements were simplified as four layer systems with an apparent stiff layer at 6m depth
from the surface as shown in figure 8.1. All bituminous layers except the wearing course
were combined into one layer, whereas the granular subbase and the capping layers were

combined as layer 3 which is imposed on the subgrade soil.
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The average thickness of each layer, as measured from cores for bituminous materials or

from construction drawing for unbound layers, is illustrated in figure 8.1 for each pavement.

The investigation of the pavement structures involved the following procedure, the details

of which are explained later in this chapter.

1) FWD tests were performed.

ii) Cores were extracted from the full depth of bituminous layers.

iii) DCP tests were conducted.

iv) ITT’s for resilient modulus were carried out on the cores for different bituminous
layers.

v) The surface deflections under the FWD were analysed to backcalculate the
moduli of bituminous base, unbound layer and subgrade in addition to the shear
reaction modulus between the wearing and base courses using the improved method.
vi) The same deflections were used to backcalculate the moduli of the same layers
using WESDEF and MODULUS programs.

vii) A comparison between the backcalculated moduli using the improved method
and the measured values was carried out.

viii) Finally, the backcalculated moduli using the improved method and both
WESDEF and MODULUS programs were compared attempt to verify the

performance of the new procedure.

8.2.1 FWD Testing

FWD tests were performed at five locations at 25 m intervals for each pavement, except for
the Handforth Bypass (HBP) where only three locations were tested. At each location four

load levels were carried out, where 25, 40, 65 and 80 kN loads on a 300 mm diameter

circular plate were applied.

Four drops at each load level were performed and the average basins were determined to

eliminate the likelihood of random errors due to the measuring devices.
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The average pavements’ temperatures were measured according to the ASTM standard

(96) as follows;

A small hole was drilled to 100 mm depth in the bituminous layer, water was filled in the
hole and then the temperature was measured with a thermometer set in the water after the
reading was stabilised. The average pavements’ temperature was 12 °C which was used for

the laboratory test for bituminous materials.

Therefore all the backcalculated properties are for a field temperature of 12 °C.

8.2.2 Core Extraction

Seven 150 mm diameter cores were cut from the four pavements to the full depth of the
bituminous layers as shown in figure 8.2. The selection of the cores’ locations was mainly
made due to access restriction on the new pavements. Two cores were extracted from each
pavement except the MAE pavement where one core was cut. Second and third locations
were selected for coring from the Prestbury link road, whereas first and third locations were
chosen from the HBP pavement. The Hypermarket slip road was cored at the second and

fifth places and only one core was extracted at the forth location from MAE pavement.

Figures 8.3 and 8.4 show the core specimens.

The objectives of the coring are firstly to obtain the actual thickness of bituminous layers for
the backcalculation procedure and secondly to determine the bituminous moduli in the

laboratory using the Nottingham Asphalt Tester.

8.2.3 Dynamic Cone Penetrometer (DCP) Tests

Dynamic Cone Penetrometer, (figure 8.5) considered in this research was based on a design
used in South Africa and extensively studied by Klein et al (40) and others (97,98,99). It

consists of a 16 mm diameter steel bar with a 60° cone at one end. The impact is provided

by means of an 8 kg sliding hammer falling 575 mm.

The DCP test was performed in the core hole, where the coned end of the bar penetrated

the unbound materials under the action of the falling hammer. The penetration depth and the
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number of blows of the weight were recorded and plotted later in a graph. The slope of the
regression line in mm/blow was used to calculate the California Bearing Ratio (CBR) and

modulus value using the TRL equations (4,100);

Log;o (CBR) =2.48 - 1.057 Log,, (DCP slope in mm/blow)

E =17.6 (CBR)**

All the four investigated pavements have thick unbound layers above the subgrade which
make it difficult to reach the subgrade and measure its properties with the DCP. Therefore
the Standard Penetration Test (SPT) (39) results, as found in the geotechnical report for the

pavement location, were used to predict the CBR values of the subgrade. The following

equation was used in the calculation (101);
Log;, (CBR) =-5.13 + 6.55 (Log;o SPT) %

where, SPT is the penetration in mm/blow.

Table 8.1 presents the testing results for unbound materials with their computed moduli
from the above equations. The detail results of the DCP tests can be found in the following
sections for each pavement. These moduli are not very reliable, since the formulae are
empirical and do not necessary accommodate different unbound material types (61,102).

However they can still be used as a good indication for the compatibility comparison with

the backcalculated moduli.

8.2.4 Indirect Tensile Tests (ITT)

A repeated load indirect tensile test (35) was performed on the wearing course, base course
and road base for each core at 12 °C. These tests were carried out at the University of Uslter
in Northern Ireland. Two or three tests were conducted and the average moduli were
computed (see table 8.2). The combined modulus of base course (bc) and road base (rb) was

calculated for comparison purposes with the backcalculated value for the second layer using

the following equation (102);
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[ hpe hy 13
E,= | (————)E?+(———)E"?» |
I. hpe + hip hye + hip J

where,
hee, ho are the thickness of base course and road base respectively

E., Ew are the moduli of base course and road base respectively.

8.2.5 Backcalculation

Deflection basins under a 40 kN load were analysed for each location to predict the

pavement properties.

The laboratory indirect tensile test modulus for the thin wearing course was assigned as a
known value in the backcalculation procedure (see chapter 6). All other bituminous layers
are combined into one base layer, whereas the subbase and capping layers are combined and

assumed as layer 3 for backcalculation purposes.

Typical values for Poisson’s ratio of 0.35 for bituminous layers, 0.3 for unbound layers and
0.4 for the subgrade were adopted. The average layer's thickness for each pavement is

presented in figure 8.1.

Radial moduli were computed using Rada’s equation (61) (see chapter 2). The radial moduli
as a function of radial distances were plotted to detect any shallow bedrock at each location.
A stiff layer at 6 m depth was assumed in the backcalculation procedure for all the
pavements. This assumption was supported by calculating the rigid layer depth using both
WESDEF and MODULUS programs, where approximately 6 m depth was found.

Average deflections as a function of the FWD load level were plotted for each location. A

linear analysis was assumed appropriate for the studied pavements.

The deflection basins were used to backcalculate;
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i) the moduli of second, third and fourth layers in addition to the shear reaction
modulus between wearing and base courses using the improved procedure,

and
i1) the moduli of second, third and fourth layers using WESDEF and MODULUS

programs, assuming full adhesion between pavement layers.

Table 8.3 presents the backcalculation results for the analysed pavements using the three

programs. The discussion of these results is detailed in the following sections for each

pavement.

8.3 PRESTBURY LINK ROAD PAVEMENT ANALYSIS

Deflection basins under a 40 kN FWD load were drawn in figure 8.6 for the five locations.

Low deflection values were recorded which indicate very stiff subgrade and a strong

pavement.

Radial moduli were plotted for each location in figure 8.7. Some irregularities were noticed in
the graphs due to deflection measurement errors, however an apparent rigid layer at 6 m

depth can be considered appropriate for the pavement analysis.

Figure 8.8 shows the deflections at the load centre, 300, 600 and at 1800 mm radial distances
as a function of FWD load. The surface deflections have a linear relationship with the loads

due to the stiff pavement structure, therefore the linear analysis assumption can be considered

acceptable for backcalculation purposes.

Figures 8.9 and 8.10, illustrate the DCP test result for the two cores at 25 and 50 m locations.
The slopes of the regression line of 2.37 and 3.09 mm/blow for the second and third location

respectively were recorded. The variations of CBR values were also plotted along the depth

of the unbound layer.

The surface deflection and the backcalculated moduli using the improved method, were
drawn along the longitudinal distance of the road in figures 8.11 and 8.12 respectively. An
average modulus of the bituminous base of 15000 MPa and very strong unbound layer
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modulus of 1000 MPa was calculated, probably due to some cementing action. A stiff
subgrade with modulus of 200 and up to 400 MPa for the last location was predicted using
the improved procedure. Good bonding with shear reaction modulus between wearing and

base course of 10° MN/m® was computed, which is normal for the new untrafficked

pavement (see table 8.3).

Figure 8.13 demonstrates the comparison between the measured and backcalculated moduli
using the improved, WESDEF and MODULUS programs. The measured moduli are usually
lower than the predicted values due to the reasons explained earlier in this chapter.
However, generally good agreement was noticed between the measured and calculated
moduli using the improved method and the calculated results of different programs.
Quantifying the relationships will be carried out later in this chapter for all the pavements,

where the correlation coefficients will be calculated.

8.4 HANDFORTH BYPASS PAVEMENT ANALYSIS

Three locations only were considered for this pavement at 25 m intervals. Surface
deflections were plotted in figure 8.14, whereas the radial moduli were drawn in figure 8.15.
Figure 8.16 illustrates the deflections as a function of FWD loads. The above assumption of
linear pavement materials and the location of stiff layer at 6 m depth can be considered

appropriate for this pavement.

DCP results for the first and last locations were shown in figures 8.17 and 8.18 respectively.

The slope value of 3.64 mm/blow was found for the first location, whereas 2.88 mm/blow

was calculated for the last location.

Surface deflections along the pavement were plotted in figure 8.19 to describe the regularity
of the pavement materials with longitudinal distance. Figure 8.20 demonstrates the
improved method predicted moduli. Calculated moduli of around 11000 MPa for
bituminous base and 500 MPa unbound materials were found. A uniform subgrade modulus
of 140 MPa was predicted. The adhesion state between the wearing and base courses was

found acceptable with an average value of 10* MN/m? (see table 8.3).
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The comparison between the measured and backcalculated moduli using different methods is
shown in figure 8.21. Good agreement was observed between the moduli values. However a
low modulus value for the unbound layer of the second location was predicted using the

MODULUS program, which might be explained as a nonunique solution problem.

8.5 HYPERMARKET SLIP ROAD PAVEMENT ANALYSIS

Higher deflections were recorded for this pavement as shown in figure 8.22, which can be

explained as thinner pavement and weaker subgrade soil compared with previous structures.

Figure 8.23 presents the radial moduli for the five locations. Modulus stiffening was recorded
with radial distance for the second location which indicates nonlinear subgrade behaviour.
However an apparent rigid layer at 6 m depth can simulate the subgrade stiffening effect. The
pavement materials can be assumed as having linear properties as concluded from figure

8.24.

Figures 8.25 and 8.26 demonstrate the DCP test analysis results. A regression line’s slope of
2.59 and 4.33 mm/blow was found for the second and fifth pavement location respectively.

Figure 8.27 shows the longitudinal deflections. The last two locations exhibit lower
deflection values, which imply stronger pavement and subgrade for these places. The
backcalculated parameters are presented in figure 8.28 and table 8.3. Lower moduli values
were predicted compared with previous pavements, as expected. An average 6000 MPa for
bituminous base and 450 MPa for unbound layer were calculated, whereas the subgrade
moduli from 110 to 180 MPa for the last location was found. Again good adhesion was found

between wearing and base courses with average shear reaction modulus of 10 MN/m’.

Close agreements were found between the measured and backcalculated moduli as shown in
figure 8.29. specially for bituminous base where only about 5% relative difference was

recorded.
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8.6 MANCHESTER AIRPORT EASTERN LINK PAVEMENT ANALYSIS

Surface deflections under 40 kN load, radial moduli and deflection variation with FWD load
were plotted in figures 8.30, 8.31 and 8.32 respectively for the five locations. The pavement
materials and subgrade soil exhibit linear behaviour as shown in the graphs. The DCP test
was carried out only at the fourth location where the core was extracted. A slope value of
the regression line of 4.73 mm/blow was recorded in figure 8.33, which is equal to 58%

CBR value for the unbound materials.

Figure 8.34 shows the deflections' variation along the pavement distances and figure 8.35
illustrates the backcalculated moduli using the improved method. Table 8.3 demonstrates
average moduli of 15000 MPa for the base layer, 300 MPa for unbound layer and 2(X) MPa

for subgrade. Acceptable bonding between wearing and base courses of 10* MN/m* was

computed.

However the second location improved method backcalculated moduli were unacceptable,
with high bituminous modulus (more than 15000 MPa) and very low subbase modulus
(around 70 MPa). These results might be due to deflection measurement error, construction
defects or nonunique backcalculation solution. The predicted values using the WESDEF
and MODULUS programs revealed similar results to the improved method for the second
location as shown in table 8.3, which exclude the failure of the improved procedure

parameter prediction.

Close agreements were found between the backcalculated moduli using ditferent programs
as presented in figure 8.36. The measured moduli were lower than the computed values for

the only location tested.

8.7 DISCUSSION AND CONCLUSIONS

The aim of this chapter was to verity ecmpirically the improved method by testing tull scale

pavement structures.
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The improved method backcalculated moduli were compared firstly with measured values

and secondly with computed moduli using WESDEF and MODULUS programs.

Figure 8.37 shows the comparison between the improved method calculated and measured
moduli for the bituminous base, unbound layer and subgrade at the seven cored locations. A
correlation coefficient of 79% was found, indicating good compatibility considering the

expected variation between the moduli values explained in section 8.1.

Figures 8.38 and 8.39 illustrate the comparison between the improved procedure moduli
and WESDEF and MODULUS values respectively. The eighteen tested deflection locations
were considered as shown in table 8.3, the three moduli for each location were included in
the graphs. Coefficients of correlation of more than 90% were found for both cases, which
indicate satisfactory performance of the improved procedure. This good agreement between
the improved and the conventional methods, which assumed full adhesion between the

pavement layers, is due to the existence of good bonding in most cases.

The predicted adhesion properties between the wearing and base courses were satisfactory
with average shear reaction modulus (Kg) of 10* MN/m®. This interface condition was

expected for the new untrafficked pavements.

Finally the improved procedure demonstrates similar moduli results compared with other
backcalculation programs. However backcalculating the interface condition between

wearing and base courses can be considered as an improvement to the existing procedures.
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Table 8.1, Measured unbound materials properties.
Unbound materials (layer 3) Subgrade (layer 4)
DCP CBR E; STP CBR E,
(mm/blow) (%) (MPa) mm/blow) (%) (MPa)
Pres. 2 2.37 121 380 20 9.5 75
Pres. 3 3.09 92 317 20 9.5 75
HBP 1 3.64 77 284 18.75 10.5 80
HBP 3 2.88 99 332 18.75 10.5 80
Hyp. 2 2.59 110 357 18.75 10.5 80
Hyp. 5 4.33 64 252 18.75 10.5 80
MAE 4 4.73 58 238 20 9.5 75
Table 8.2, Indirect Tensile Test Modulus results for bituminous materials at 12°C.
ITT Ew. = E; ITT Ep ITT Ey E,
(MPa) (MPa) (MPa) (MPa)
E; Ebc Ew | Eoc&
. Ew
Test 1 Test2 Test3 Av. | Testl Test2 Test3 Av. | Testl Test2 Av.
Pres. 2 3101 3011 3056 | 5537 5581 5559 [ 6170 6146 6158 | 5554
Pres. 3 3111 2850 2981 | 4861 4736 4799 | 8836 9224 9030 | 7420
HBP 1 3081 2694 3375 3050 | 4346 3805 3921 4024 | 8411 7706 8059 | 7158
HBP 3 3224 3254 3239 | 3568 3356 3462 | 8241 7667 7954 | 6919
Hyp.2 3833 4442 4440 4238 | 5156 5124 5140 | 8220 8767 8494 | 7283
Hyp. 5 3002 2989 2996 | 4326 4523 4425 | 8614 8505 8560 [ 7019
MAE 4 3579 4155 3983 3906 | 7993 7264 7629 | 5696 5961 5829 | 6933
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Table 8.3, Backcalculated parameters from Falling Weight Deflectometer test result at
12°C using different programs (Improved, WESDEF and MODULUS).
E, Ej3 E4 K
(MPa) (MPa) (MPa) MN/m®

Imp. WES. | MOD. | Imp. WES. | MOD. | Imp. WES. | MOD. | Imp.
Presl 14365 | 15000 | 15000 | 1186 1034 474 189 195 340 10°
Pres2 | 18940 | 15000 | 15000 | 1313 1034 1034 197 236 216 10°
Pres3 10640 | 10551 | 13490 800 798 622 255 264 282 10°
Presd | 18750 | 15000 | 15000 | 1507 1034 1034 300 345 399 10°
PresS 16810 | 12740 | 11896 944 1034 868 409 345 429 10°
HBP1 | 11060 | 9343 10336 646 788 659 . 160 154 164 10°
HBP2 | 14445 | 14444 | 15000 281 260 81 136 132 216 10*
HBP3 | 10960 | 12241 | 12302 542 273 258 139 144 149 10°
Hypl | 6860 | 5964 | 6724 | 454 356 308 107 115 123 10°
Hyp2 6870 6222 7068 382 337 284 110 115 124 10*
Hyp3 4590 4383 4435 526 456 455 108 114 114 10*
Hyp4 7320 7368 7458 723 644 644 130 137 138 10°
Hyp5 7340 6727 6652 429 424 424 180 184 184 10°
MAE1 | 15055 | 13642 | 15000 336 242 112 210 231 321 10*
MAE2 | 27360 | 15000 | 14574 49 79 93 232 345 310 10°
MAE3 | 13545 | 11441 | 11624 431 428 398 206 211 220 10*
MAE4 | 13770 | 12026 | 11962 360 338 338 227 226 233 10*
MAES | 16385 | 15000 [ 15000 139 149 92 171 195 255 10*
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h, Bituminous Wearing Course
Layer 1 vi =0.35
K= variable
h, Bituminous Base
Layer 2 v, =0.35
K, = full adhesion
h; Granular Subbase + Capping layer
Layer 3 v3=0.3
Kz = full adhesion
hy Subgrade
Layer 4 va=0.4

Pavement h1 hz h3 h4
Location (mm) (mm) (mm) (mm)
Prestbury link 40 180 825 4955
road (Pres)
Handforth Bypass 45 320 600 5035
(HBP)
Hypermarket slip 45 185 600 5170
road (Hyp)
Manchester 50 410 600 4940
Airport Eastern
Road (MAE)

Figure 8.1,

Summary of A34 pavement structures.
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Figure 8.2, Core extraction from the pavement.
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Figure 8.3, Prestbury link road and Handforth Bypass cores.
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Figure 8.4, Hypermarket slip road and Manchester Airport Eastern link road cores.
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Figure 8.5, Dynamic Cone Penetrometer (DCP) (eSting-
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Figure 8.6,  Surface deflections for Prestbury link road.
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Figure 8.8, Surface deflections as a function of FWD load, Prestbury link road.
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Figure 8.9, DCP test results for Prestbury link road (Chainage 25).
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Figure 8.17, DCP test results for Handforth Bypass (Chainage 0).
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Figure 8.22, Surface deflections for Hypermarket link road.
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Figure 8.23, Radial moduli for Hypermarket link road.
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Figure 8.24, Surface deflections as a function of FWD load, Hypermarket link road.
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Figure 8.25, DCP test results for Hypermarket link road (Chainage 25).
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Figure 8.26, DCP test results for Hypermarket link road (Chainage 100).
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Comparison between measured and backcalculated moduli using different

programs (Improved, WESDEF and MODULUS) for Hypermarket link

road.
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Figure 8.31, Radial moduli for Manchester airport eastern link road.
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Figure 8.32, Surface deflections as a function of FWD load, Manchester airport eastern
link road.
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Figure 8.38, Comparison between backcalculated moduli using the improved procedures
and WESDEF program for A34 roads.
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Chapter 9

FULL SCALE TESTING OF PAVEMENT
- A41 ROAD PAVEMENT ANALYSIS

9.1 INTRODUCTION

The same methodology for the A34 road pavements was adopted in this chapter for the

empirical verification of the improved procedure.

The A41 road section (Aylesbury) test results were provided by SWK Pavement
Engineering Ltd. Falling Weight Deflectometer (FWD) tests, layers’ thickness, Indirect
Tensile Test (ITT) (35) for bituminous mixtures and Dynamic Cone Penetrometer (DCP)
tests (40) for unbound materials for the eight selected locations, were made available for the

validation procedure.

The investigation of the A41 road section in a separate chapter was mainly made for to the
following reasons:
i) the road had been subjected to traffic for more than 20 years, |
i1) the results were supplied for analysis only and no control was made on the type
and configuration of the tests,
iii) only one load magnitude was performed using the FWD, therefore the study of

the pavement materials non-linearity was not feasible.

The pavement was simplified for backcalculation purposes as a three layer system with
additional rigid layer at certain depth as shown in figure 9.1. The first layer represents the
bituminous wearing course whereas the remaining bituminous materials were combined to
form layer two. Due to the lack of information about the subbase thickness, the unbound

layers including the subgrade were assumed as layer three. Figure 9.1 shows large variations
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in the layer thickness from one location to another due to repair and overlay construction

during the pavement life.

To make more realistic comparison between the laboratory measured moduli and the
backcalculated values, only the deflection basins at the core locations were analysed.
Therefore the comparison results were considered for each location independently and no

reference was made to the average deflection and thickness to predict the overall road

pavement conditions.

The rigid layer was assumed at 6 m depth from the pavement surface except for cores 5 and
12, where the radial moduli details indicate possible bedrock at shallow depth. The detail of

the bedrock depth calculation is outlined later in this chapter.

9.2 PAVEMENT TESTING

Deflection basins under 50 kN FWD load for the eight cores’ locations are illustrated in
figure 9.2. Seven deflection sensors were used at the load centre, 300, 600, 900, 1200, 1500

and at 2100 mm radial distance.

Deflection magnitude varied between locations due to the variations in layer's thickness and
subgrade stiffness. The stronger the pavement, the lower the deflection values. Deflections
far from the load centre are influenced mainly by the lower layers' properties as explained in
Chapter Five. Figure 9.2 demonstrates very low deflections at the 2100 mm radial distance

for the core numbers 5 and 12, which indicate very stiff subgrade or bedrock presence at a

shallow depth.

A radial modulus shown 1n figure 9.3 was used for detecting the presence of the rigid layer
as explained in previous chapters. Both cores 5 and 12 locations revealed shallow bedrock
beneath the pavement, as indicated by the large increase in the radial modulus away from
the load centre. Therefore it was decided to backcalculate the depth of rigid layer for these
locations in addition to the normal parameters in the improved method. An apparent stiff

layer at 6 m depth was assumed in the remaining core locations as shown in figure 9.1.
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Table 9.1 presents the measured moduli for the eight locations. ITT was used to predict the
moduli of bituminous layers and DCP test results were used for unbound materials. The
TRL (4,100) empirical relationships for calculating the unbound materials moduli from DCP

test results were applied (see Chapter &). A large variation in subgrade modulus along the

pavement length was noticed.

9.3 BACKCALCULATION RESULTS

The deflection basin for each core location was analysed. Apparent stiff layer was assumed
at 6 m depth to represent the bedrock. However the bedrock depth for cores 5 and 12 was
backcalculated using the improved method due to the strong indication of its presence at
shallow depth (see figure 9.3). Subgrade thicknesses of 2475 and 3525 mm were computed
for the core locations S and 12 respectively. This has been done by considering the subgrade
thickness as an unknown parameter in the first stage backcalculation procedure. WESDEF
program predicts approximately subgrade thickness of 2.5 m for the two locations to

support these values. The layer thickness and the Poisson’s ratios are presented in figure 9.1.

The modulus of the wearing course was fixed in the backcalculation process as found from
the ITT results. The modulus of the bituminous base (E;) and the modulus of the subgrade
(E5) in addition to the shear reaction modulus between the wearing and base courses (Kq)

were predicted using the improved method.

The same deflection basins were used to backcalculate the moduli of the bituminous base
and subgrade soil using the following programs, WESDEF(50), SID (49) and MODULUS
(51). The above assumptions were made in the backcalculation process except that full
adhesion was assumed at the interface between the pavement’s layers. The depth of the

bedrock for location 5 and 12 were assumed in these backcalculation programs as predicted

by the improved method.

Table 9.2 presents the backcalculation results for the eight cores using the improved,
WESDEF, SID and MODULUS programs. Some variations were noticed between the
backcalculated moduli at difterent locations, specially for the subgrade moduli. However,

comparing the backcalculated results using different programs for each core location
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independently revealed good agreement. The adhesion properties between wearing and base
courses, as computed from the improved method were acceptable. Shear reaction modulus
was found to vary between 10* and 10° MN/m® , except a value of 10° MN/m® for core C3

to indicate intermediate bonding condition.

9.4 COMPARISON BETWEEN MEASURED AND CALCULATED MODULI

Figure 9.4 shows the comparison between the measured moduli and the calculated values

using the improved, WESDEF, SID and MODULUS programs, for the eight studied cores.

Lower values (up to 50% ) for measured bituminous base moduli compared with the
calculated values were found, due to the reasons explained in previous chapters. Very good

agreement for the subgrade foundation was noticed.

The comparison between the improved method computed moduli and the measured values
was carried out in figure 9.5. A high coefficient of correlation of 79.8% was found which

validate the improved procedure.

Figures 9.6, 9.7 and 9.8 demonstrate the comparison between the improved method
predicted moduli on one hand and WESDEEF, SID and MODULUS programs moduli

respectively on the other hand.

Very high coefficients of correlation of 96.4%, 84.1% and 96% for WESDEF, SID and
MODULUS were found respectively. These values support the previous conclusion of the

satisfactory performance of the improved procedure.

9.5 CONCLUSIONS

The new improved method for backcalculating the layer moduli and the shear reaction
modulus between the wearing and base courses, has been empirically validated using the

A41 road testing results.
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Good correlation (79.8%) was found between the predicted and measured moduli.
Furthermore the comparison with other well known backcalculation programs results

revealed good agreement (more than 84%) when the same simplifications were used.

Acceptable adhesion was predicted between the wearing and base courses for most of the

pavement locations.

Therefore, the use of the improved method in pavement assessment is recommended since it
predicts the state of adhesion between the wearing and base courses in addition to the layers

moduli.



Table 9.1,

Measured pavement layer moduli for A41 road.
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Core number ITT ITT DCP
E; (MPa) E, (MPa) E3 (MPa)
C1 NA NA 100
C3 NA 5500 162
C4 4500 5450 354
C5 3450 6650 267
C12 NA 2100 168
Ci14 NA 8750 NA
C15 7400 6650 138
C1é6 NA NA 75
Table 9.2, Backcalculated parameters from Falling Weight Deflectometer test result
using different programs (Improved, WESDEF, SID and MODULUS), for
A41 road.
Core Ka
number (MPa) (MPa) MN/m’
Imp. | WES. | SID | MOD. | Imp. | WES. | SID | MOD. | Imp.
C1 14780 15000 19039 15000 92 87 76 91 10
C3 19835 15000 10677 14741 151 171 171 169 10°
C4 14540 15000 16925 15000 282 273 265 280 10°
Cs 13440 11975 11216 13622 184 185 188 177 10*
C12 8880 5332 5146 6850 101 119 122 110 10°
C14 12150 12165 12120 12804 201 191 196 188 10°
C15 14605 13180 11924 11353 104 107 107 115 10°
Cle 13650 13460 12527 13665 95 98 97 95 10*
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hy Bituminous Wearing Course
Layer 1 v =0.35
K= variable
h, Bituminous Base
Layer 2 v, =0.35
K, = full adhesion
h; Subgrade
Layer 3 vs4=04

Core number h; h, h;
(mm) (mm) (mm)
C1 40 165 5795
C3 60 210 5730
C4 55 255 5690
C5 55 110 To be backcalculatd
C12 55 145 To be backcalculatd
Ci14 55 255 5690
C15 60 195 5745
C16 50 305 5645

Figure 9.1,  Summary of A4l pavement structure for the eight selected locations.
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Figure 9.2, Surface deflections for A41 road.
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Chapter 10

CONCLUSIONS AND RECOMMENDATIONS
FOR FURTHER STUDY

10.1 CONCLUSIONS

Most structural evaluation methods for flexible pavements have assumed that full adhesion
exists between the pavement layers. However, practical evidence of debonding failure has

been reported between the wearing and the base courses both in the UK and Europe.

The testing procedures reported in the literature for assessing the adhesion properties
between the bituminous layers are either destructive on samples extracted from the
pavement. hence do not represent the insitu condition within the pavement structure,
or their results can not be incorporated into the structural analysis model for multilayer

structure. and therefore predicting the pavement response to load is not feasible.

The BISAR program includes Goodman’s constitutive law to represent the interface
condition between layers (K;) in a fundamental form. Numerical analysis using the BISAR
program to identity the range of K;; for flexible pavements has been carried out. The results
show that K| varies from 10 MN/m3 (complete debdnding) to 105 MN/m3 (tull adhesion).

and beyond these two limits there is no significant change in pavement response such as

stresses, strains and displacements.

Many analytical procedures have been developed to predict the pavement layer properties
using the measured surface deflection under the FWD and employing the multilayered
elastic system method. Normally, the thickness and Poisson’s ratios of each layer in addition
to the intertace condition between the pavement lavers are assumed or known, and the layer

moduli are estimated.
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Backcalculated layer moduli of hypothetical pavements assuming full adhesion betw een the
wearing and base courses rather than the real value, resulted in some errors in the predicted

modul.

From the practical evidence and deflection sensitivity to pavement parameters, a two-stage
improved backcalculation procedure has been developed. This method can predict the shear
reaction modulus at the interface between the wearing and base courses (K;) in addition to
the layer moduli. However, the thin wearing course moduli is to be assigned a fixed value as
recommended in the literature. The first stage estimates the layer moduli using the best
models trom the multiple regression analysis. and the second stage predicts the intertace

condition (K;) with little adjustment to the base modulus.

Analysing ninety theoretical pavement structures using both the improved method and the
conventional method, which assumed full adhesion between the pavement layer, has shown

the following;

1) The new method provides up to 40 % improvement in bituminous base modulus
prediction in the extreme cases, when the interface condition between the wearing
and base courses is included in the analysis process.

ii) The moduli of the subbase and subgrade were not improved significantly using
the new method

iii) The improved method backcalculated moduli can be considered acceptable
compared with their hypothetical values.

iv) Considering the three ranges of the interface conditions as poor, partial and good
bonding, the backcalculated (Kg;) range compared well with their hypothetical

values.

Therefore, the improved backcalculation procedure has been validated using the theoretical

pavement structures.

The improved method has been also validated by comparing the backcalculated moduli with
other well known programs, such as WESDEF and MODULUS, when identical pavement

conditons are assumed.
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The new method has been further verified using the empirical approach, where the
backcalculated moduli for real pavement tested under the FWD load and physically
measured moduli correlated well. These tests were performed on four different flexible
pavements in this research, in addition to analysing other road pavement data obtained from

different sources.

Finally. the improved method can be used to predict the causes of pavement failure, such as
debonding or materials, and as a quality control to assess the state of adhesion between the

pavement layers after construction and overlaying.

10.2 RECOMMENDATIONS FOR FURTHER WORKS

This research provides an improvement in the existing backcalculation methods by
estimating the interface condition in addition to the layer moduli. The new two stage
database process overcomes some limitations of the conventional methods in predicting the
pavement parameters which have little influence on surface deflections. However, further

studies are needed to improve and validate the theoretical procedure such as:

i) Developing a structural analysis program to calculate the pavement response using the
numerical integration approximation or finite element analysis. This program can replace
BISAR in developing the deflection database and overcome its copyright limitation. Hence
a complete software package employing the knowledge base system for pavement structural

evaluation can be developed.

i) The existing methods employ static analysis for a multilayered elastic system, with the
subgrade non-linearity accounted for by placing an apparent rigid layer at certain depth.
Although these assumptions are considered acceptable in the literature due to their
simplicity and the calculation time and space required, the non-linear materials
representation using the constitutive relationships and dynamic analysis of the deflection

results could provide a more realistic representation.
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iii) Although full scale pavement validation has been carried out, no control and little

information were known about the existing interface condition. Hence constructing a full-
scale experimental pavement with variable interface adhesion properties can provide a

sound proof of the improved method in detecting the bonding conditions.

iv) Correlating the backcalculated interface condition from the experimental pavement with

other testing devices such as, the French impedance method, the Austrian splitting wedge
method or the shear box test.

v) Correlating the calculated strains using the predicted pavement parameters with the

measured values from strain guages installed within the experimental pavements.

vi) This research mainly focused on the predicting the interface condition between the
wearing and base courses in flexible pavements, due to the practical evidence of slippage
failure. However, in principle the bonding condition between any two layers can be

investigated. The research can be applied to analyse rigid and composite pavements.

Furthermore, the improved method can be implemented to investigate the initiation and
development of slippage between the layers and the effect of traffic and environment on the
interface behaviour. This work can be carried out by testing and backcalculating the

experimental pavement properties at different times during its life.

Finally, the mode of flexible pavement failure by fatigue cracking may be altered when
debonding exists between the bituminous layers. Consequently, the pavement’s critical and
failure condition due to fatigue may change. Hence, the investigation of the crack's

initiation locations and possible propagation should be carried out, using laboratory beams

and full scale pavements.
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THE INFLUENCE OF THE INTERFACE FRICTION COEFFICIENT ON COMPOSITE CONCRETE
PAVEMENT PERFORMANCE

INFLUENCE DU COEFFICIENT DE FROTTEMENT ENTRE COUCHES SUR LES PERFORMANCES DES
CHAUSSEES COMPOSITES EN BETON

DER EINFLUR DER REIBUNG IN DEN GRENZFLACHEN AUF DAS VERHALTEN VON DECKEN IN
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B. AL HAKIM, BSc MSc, Research Assistant, Liverpool John Moores University, U.K.
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SUMMARY

The paper discusses the role of non-destructive testing in pavement evaluation and the importance of bonding between its
layers on back-calculated properties. Rigid composite pavement structures were analysed using the BISAR programme
under different bonding coefficients (k,) between the asphait and the concrete layers. The results indicate that:

a) A small amount of debonding reduced the back-calculated moduli of the top and second layers in average by 20%
and 8% of full adhesion case respectively.

b) Deflections are very sensitive to the interface condition for the values of k, between 10* and 10? m?/MN.

Therefore the use of the interface friction coefficient in 3 fundamental back-analysis method allows for a more accurate
calculation of the remaining life of the pavement, analysis of the causes of its failure, and more importantly, can be used
as a quality control during construction and overlaying.

RESUME

Ce rapport décrit le rdle des essais non destructifs dans I'évaluation des chaussées et I'importance de I'adhérence entre les
différentes couches, pour les propriétés calculées en retour. Les structures de chaussées composites rigides ont été
analysées au moyen du programme BISAR pour différents coefficients d'adhérence (k,) entre les couches d'asphalte et de
béton. Les résultats montrent que:

a) une faible diminution de I'adhérence a réduit en moyenne les valeurs des modules calculés en retour de la couche
supéneurs et de la deuxidme couche de 20% a 8% respectivement par rapport a des valeurs d'adhérence totale;

b) les déflexions sont trés sensibles 3 I'état des couches & I'interface pour des valeurs de k, comprises entre 104
et 10? m>/MN.

Par conséquent, I'utilisation du coefficient de frottement a I'interface dans une méthode fondamentale d'analyse en retour
permet de calculer avec une précision trés grande la durée de vie résiduelle de la chaussée, d'analyser les causes de sa
défaillance et surtout peut servir de contréle de qualité lors des opérations de construction et de recouvrement.

ZUSAMMENFASSUNG

Dieser Beitrag berichtet (iber die Rolle zerstorungsfreier Priifverfahren bei der Beurteilungvon Fahrbahndecken und iber die
Beduetung des Verbunds zwischen den Schichten fir die riickermittelten Eigenschaften. Es wurden Strukturen von steifen
Verbunddecken in Mischbauweise mit Hilfe des BISAR Programmes, und mit verschiedenen Verbundkoeffizienten (k,)
zwischen den Asphalt- und den Betonschichten analysiert. Die Ergebnisse zeigen, daB:

a) ein geringer Verbundsverlust die riickerrechneten Moduli der obersten und der zweiten Schicht im Schnitt jeweils
um 20% und 8% des vollen Verbunds senkt ;

b) Deflektionen reagieren stark auf den Zustand der Grenzfliche fiir die Werte von &, zwischen 104 und 10? m*/MN,
Deshalb erlaubt die Anwendung eines Koeffizienten fur die Reibung in der Grenzflache eine genauere Berrechnung der

Lebensdauer der Fahrbahn, die Analyse der Ermidungsgriinde und, was noch wichtiger ist, dadurch kénnen wihrend des
Baus und Hocheinbaus Qualitatsanalysen durchgefihrt werden.
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1. INTRODUCTIO

In recent years a number of non destructive
testing techniques have been developed to
evaluate the mechanical properties of existing
pavement structures. The Falling Weight
Deflectometer (FWD) has been considered as
the most effective device due to its ability to
simulate insitu conditions of the pavement under
traffic load.

Layers' moduli of the pavement structure are the
most common property to be evaluated from the
FWD test results. These moduli are used in
assessing the pavement integrity and the its
residual life. The remaining life, in term of millions
of standard axles, is compared with the future
traffic requirement and the selection of remedial
work, such as overlay, partial or complete
reconstruction may be decided.

The analysis of the data from the FWD surveys
generally involves the use of backcalculation
technigues, to estimate the moduli of the various
layers of the pavement structure. The
conventional backcalculation methods seek to
define the layers' moduli on the basis that all the
other parameters influencing the surface
deflection are assumed to be accurately known.
The degree of bonding between the pavement
layers and poisson ratio of each layer are
amongst these parameters.

The report of the discussion group on practical
limitations of pavement nondestructive testing
using the FWD and back calculation techniques
(1), stated that the methodology is not sensitive
to the degree of bonding between pavement
layers.

The ways to overcome the above limitations fell
into two major categories: improvement of the
equipment and improvement of the analytical
models.

This paper describes the importance of including
the friction coefficient in the backcalculation
procedures to allow the determination of more
accurate values for the pavement properties.

2. THE INTERFACE CONDITIONS BETWEEN
PAVEMENT LAYERS

Pavement damage due to the effect of debonding
is hardly a new phenomenon in road structures.
Early work (2,3,4) suggested that a slip plane
may develop between pavement layers due to
lack of binder coat, pollution of the base before
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spreading of the binder, surfacing or overlaying in
cold weather, and construction in stages.
Furthermore in composite pavement the
difference in thermal expansion of the concrete
and asphalt materials may contribute to the
layers debonding.

The condition of the bonding between various
layers influences the pavement performance
through its impact on the stress distribution within
the structure. Thus it can undermine the
structural integrity and ability of the pavement to
carry traffic loads.

Some researchers demonstrated theoretically the
effect of the interface condition between layers
on overall pavement performance, (2,5,6,7,8).
Van Cauwelaert et al (9), indicated that partial
friction is the best representation of the in situ
interface conditions between pavement layers,
and no experimental data to quantify this
parameter has been reported.

Conventional interpretation of the FWD results
involves the backclaculation of layers moduli
using either the full rough (perfect adhesion) or
the full smooth case (adhesion free) between the

pavement layers, which are the extreme
conditions.
3. FALLING WEIGHT DEFLECTOMETER AN

BACKCALCULATION TECHNIQUES

The principle of the FWD is that a given load is
applied to a pavement surface by a falling weight
and the pavement deflections are measured at
different  distances from  the  weight.
Subsequently linear elastic layered or finite
element analysis is used to match theoretical
deflection basins to those measured in the FWD
survey. Finally the moduli for each layer are
evaluated from the back calculation analysis.

Back calculation technique follows two radically
different methods, the iterative approach and the
data base approach. The iterative approach
programs aim to determine a set of layer moduli,
in an iterative manner, that minimise the error
between the calculated and measured deflections
using a suitable convergence criterion. On the
other hand the data base approach is a forward
calculation to build a data base for different
pavement structures, from which the layer moduli
can be determined using an appropriate search
technique.

A deflection basin is an output of the falling
weight imposed on the pavement surface. The



shape of that basin is a function of several
variables including, thickness, modulus and
poisson ratio of each layer in addition to the
bonding condition between pavement layers.

By assuming perfect measuring equipment, the
deflection basin produced by the FWD
represents the actual response of the pavement
properties. These properties can be found from
the back calculation procedures, therefore a
small change in surface deflection will result in
variations in the prediction of pavement
properties.

4. INFLUENCE OF FRICTION BETWEEN
LAYERS ON SURFACE DEFLECTIONS

A rigid composite pavement structure, Figure 1,
was analysed using the BISAR program (10) to
demonstrate the effects of friction between
pavement layers on surface deflection. The
pavement properties were chosen to represent a
typical composite pavement structure.

M o

Asplalt surface
106 nm
o1 = 4500 MPa vi=04
! Ksl =0 _to 1 n/MN
(bncrete hase
200 nm E2 =25000 V™ 2=02
K2 =0 nfyMN
Subgrade
E3=50 MPa v3=04

Figure 1, Pavement propetties.

The ability of the BISAR program to model the
layer interface coefficient made the investigation
of the layers' friction possible. The program sets
the interface condttions as K factor, which can
be changed from 0 (full adhesion) to 1 m*MN
(adhesion free)

The first interface coefficient, Ks?, was changed
gradually between the asphalt and concrete
layers from the full adhesion to the full smooth
case. The deflection basins were drawn in figure
2, which illustrates the variations in the surface
deflections. A 3° and 1% increases in the
calculated deflection were recorded at d0 and
d0.3 respectively due to the inclusion of friction
K1 = 10* m*MN instead of kgy = O (full
adhesion) (d0 represents the deflection at the

location of the falling weight centre whereas d0.3
at a distance of 300 mm from it). Further
increase in d0 and d0.3 of 20% and 18% were
recorded respectively when the smooth condition
kst =1 m*/MN was used.

Rodldl distance (mm)
400 P00 1200 1500 1300

10 ¢ — —— —t —

. Deflections (um)
¥ 8
N

Figure 2. Effect of the interface conditions on
deflection basin (pavement figure 1).

Radid distance (mm)
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2w ¢ K3z Adhesion hee

Figure 3, Effect of interface conditions on
deflection basin (pavement with 40mm surface).

Figure 3. demonstrates the effect of the asphalt
layer thickness on the calculated deflection. In
this case the same pavement was analysed
using surface thickness of 40 mm instead of 100
mm. it can be seen that the influence of changing
the values of Kgy on surface deflection is still
significant for the thin surface layer.

To exhibit the sensitivity of the deflection at the
load centre using different bonding conditions
between the first and the second layer, contour
lines were plotted (figure 4 and 5). Figure 4
shows the results for dO as a function of E4
(modulus of the top layer) and Kg7 In this case
the pavement structure shown in figure 1, was
analysed by varying Eq values o cover a wide
range from a weak surface to new asphalt
material moduli.
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Figure 4, Deflection contours at the load centre as a function of E1 and KsH1.

The contour curves show that the higher the
slope of the curves (range 2) the higher the
influence of Kg7 and the lower the influence of
E{ on d0. Figure 4, also demonstrates that a
small change in Kgy from 10 to 10° m¥MN is
associated with a very large variation in E{ in
order to achieve the same deflection. This
information is very valuable to quality control and
construction engineers.

Figure 5, Shows the interrelation between the
deflections' d0.2 , the first interface conditions,
Ks1, and the modulus of the second layer Eo.

Again the same ranges of sensitivity were noted
in figure 5,

1. 0<Ks7<10®m’ MN, (range 1)
d is sensitive to both E and Ks1,

2. 10%< Kg7<10°m*MN, (range 2)

d is very sensitive to Kg7.
3. 10%2<Ksy<1m’MN, (range 3)
d is sensitive to E.

These finding support the conclusion that a
small change in the friction coefficient between
pavement layers can produce strains in the
pavement that approach those of the free
slippage case.

5. UENCE O CTION ON BAC
CALC opu

For the structure shown in figure 1, three
deflection basins were plotted assuming kg7 = 0
(full adhesion), ks; = 10* m¥MN (case in
between) and kg7 = 1 m MN (adhesion free).
Then the moduli of the first and second layer



were back-calculated from these basins using full
adhesion between pavement layers, as adopted
by other researchers. The results indicate that a
small slip between the asphalt and concrete
layers, (kg7 = 10* m*MN), has reduced in
average Eq by 20% and Ep by 8% as a ratio of
the full adhesion case.

These results have been found from the simple
assumption that each deflection location will
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affect only one layer modulus, which is not
always the case since the whole pavement will
contribute the deflection basin.

However the findings indicate that the interface
conditions between the asphalt and concrete
layers will influence significantly the deflection
basins (see figures 2 and 3), and therefore the
whole backcalculated pavement properties will be
affected.
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Figure 5, Deflection contours at 200 mm from the load centre as a function of E2 and Ks1

6. CONCLUSION

1. Pavement nondestructive deflection testing
using the FWD and the back calculation of its
properties has some limitations.

2. Many parameters affect the back calculated
pavement properties from the deflection basin.

One of the prominent factors which has not been
included in the existing models is the interface
condition between the various layers.

3. For the analysed pavements the deflections
are found to be sensitive to the change in layers'
moduli and to the interface conditions between
them. However the deflection values at d0 and
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d0.2 are very sensitive to Kgt values in the range
between 10 to 10 m*/MN.

4. Including a friction coefficient of 10* m*MN,
between the first top two layers instead of full
adhesion has resulted in reduction of 20% and
8% in the back calculated layer moduli of the first
and second layer respectively.

5. Cracks and damage in the pavement materials
in addition to the interface condition between its
layers will reduce the layers' moduli. Therefore
the existing back calculated moduli are effective
moduli that reflect the pavement's behaviour and
are not unique material properties.

6. Due to the above findings and all the practical
evidence of debonding failures, a more
fundamental back calculation method for
pavement properties is required, This method is
currently under development by the authors at
Liverpool John Moores University. The new
method would be useful not only in assessing the
pavement's remaining life according to both back
calculated moduli and interface conditions, but
also to analyse the causes of pavement failure.

7. The new method will be used also as a quality
control to assess the state of adhesion between
pavement layers after construction and
overlaying using the FWD.
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REFLECTION OF INTERFACE CONDITION MODELLING ERROR ON
BACKCALCULATED MODULI AND PAVEMENT REMAINING LIFE

BACHAR AL HAKIM, BSc MSc, Researcher, School of the Buiit Environment, Liverpool John Moores University,
UK.

HASSAN AL NAGEIM, BSc MSc PhD MIHT, Senior Lecturer, School of the Built Environment, Liverpool John
Moores University, UK.

DAVID C. POUNTNEY, BSc PhD, Principal Lecturer, School of Computing and Mathematics, Liverpool John
Moores University, UK.

Summary

Pavement evaluation using non destructive testing techniques, such as the Falling Weight
Deflectometer (FWD), and backcalculation of the layers’ moduli, has become widely used. This is
due to their ability to simulate the insitu pavement condition under traffic load.

Conventional backcalculation programs for flexible pavements assume full adhesion exists between
pavement layers in the analysis process. However, practical evidence of slippage failure has been
reported in the UK. This paper investigates the influence of the error in modelling the interface
condition between bituminous layers as full adhesion instead of using the real bonding condition on
backcalculated moduli and pavement remaining life.

A wide range of flexible pavement structures were analysed in this study, where the interface
conditions between bituminous layers varied from full bonding to complete slippage. The surface
deflections were calculated at seven locations, using the BISAR program. These deflections were
assumed as the measured deflections produced by FWD and were utilised to backcalculate the layer
moduii assuming full adhesion between pavement layers. Comparisons were carried out between
both the actual and backcalculated moduli, and the actual and predicted pavement remaining life for
each case.

The results indicate that modelling errors of the interface condition between bituminous layers, a)
reduces the backcalculated moduli of the bituminous base and the unbound subbase on average by
40% and 30% respectively, when complete debonding exists, b) does not affect the subgrade
modulus, and c) changes the pavement residual life by up to 40% in extreme conditions.
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L'EFFET DE LA MODELISATION DE L'ERREUR DE LA CONDITION DE L'INTERFACE
SUR LES MODULES CALCULES EN RETOUR ET LA DUREE DE VIE RESIDUELLE
DE LA CHAUSSEE

BACHAR AL HAKIM, BSc MSc, Researcher. School of the Built Environment, Liverpool John Moores University,
UK.

HASSAN AL NAGEIM, BSc MSc PhD MIHT, Senior Lecturer, School of the Built Environment, Liverpool Jobn
Moores University, UK.

DAVID C. POUNTNEY, BSc PhD, Principal Lecturer, School of Computing and Mathemaitics, Liverpool John
Moores University, UK.

Résumé

L’évaluation de la chaussée par les techniques d’essai non destructif, comme la FWD, et le calcul
en retour des modules de couches, est devenue trés courante. Ceci est du a leur capacités de
stimuler 1’in-situ condition de la chaussée sous fa charge du trafic.

Les programmes conventionnels de calcul en retour pour les chaussées flexibles supposent
I'existence d’une adhérence parfaite entre les couches de la chaussée dans le processus d’analyse.
Mais en pratique il a été reporté I’existence de glissement au Royaume Unie. Cette recherche étudie
I'influence de I’erreur dans la modélisation de la condition de I’interface des couche bitumineuse
comme parfaite adhérence au lieu d’utiliser la condition d’adhérence réelle sur les modules
calculées en retour et sur la durée de vie résiduelle de la chaussée.

Une grande variété de chaussées flexibles a ét€ analysée dans cette étude, ou la condition
d’interface entre les couche bitumineuse varie d’une adhérence totale au glissement complet. Les
déflexions sur la surface on été calculées, en utilisant le programme BISAR, dans sept endroits. Il
est suppose que ces déflexions sont mesurées grace au FWD, et on été utilise pour calculer les
modules des couche en supposant une totale adhésion entre les couches de la chaussée. Une étude
comparative entre les modules actuels et modules calculées en retour et aussi entre la durée de vie
résiduelle de la chaussée actuelle et prédit pour chaque cas.

Les résultats indiquent que le modélisation des erreurs de la condition d’interface entre les couches
bitumineuse, a) réduit les calculs en retour de modules de la base bitumineuse et la sous base d’au
moins 40% et 30% respectivement dans le cas du glissement libre, b) n’a pas d’effet sur le module
du sol, et c) change la durée de vie résiduelle de la chaussée de 40% dans les condition extrémes.
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REFLEXION DES FEHLERS IN DER MODELLIERUNG DES
GRENZFLACHENZUSTANDS AUF DIE RUCKERRECHNETEN MODUL! UND DIE
VERBLEIBENDE LEBENSDAUER VON FAHRBAHNDECKEN

BACHAR AL HAKIM, BSc MSc, Researcher, School of the Built Environment, Livzrpool John Moores University,
UK.

HASSAN AL NAGEIM, BSc MSc PhD MIHT, Senior Lecturer, School of the Built Environment, Liverpool John
Moores University, UK.

DAVID C. POUNTNEY, BSc PhD, Principal Lecturer, School of Computing and Mathematics, Liverpool John
Moores University, UK.

Zusammenfassung

Die Bewertung von Fahrbahndecken unter Benutzung zerstdrungsfreier Priifverfahren wie dem
Fallgewicht-Deflektometer (FWD) und der Riickberechnung der Moduli einer Schicht findet weite
Anwendung. Der Grund hierfiir liegt in ihrer Fahigkeit, den Zustand der Fahrbahndecke an Ort und
Stelle unter Verkehrslast zu simulierren.

Herkémmliche Riickberechnungsprogrmme fiir flexible Fahrbahndecken gehen davon aus, daf im
AnalyseprozeB eine vollstindige Adhdsion zwischen den Schichten der Fahrbahhndecke gegeben
ist. Wie auch immer, im Vereiningten Konigreich wurde iiber praktische Beweise von
Schlupfversagen berichter. Dieser Beitrag untersucht den Einflul des Fehlers, den Zustand der
Grenzflichen zwischen bitumingsen Schiten als volistindige Adhiision zu modellieren, anstatt den
tatsichlichen Verbundzustand auf riickberechnete Moduli und verbleibende Lebensdauer der
Fahrbahndecke anzuwenden.

in dieser Studie wurde ein weiter Bereich flexibler Fahrbahndeckenstrukturen analysiert, wobei die
Grenzflichenzustinde zwischen den bitumindsen Schichten von vollstindigem Verbund bis zu
volligem Schlupf variierten. Die Oberflachendeflektionen wurden - unter Anwendung des BISAR-
programmes- an sieben Stellen berechnet. Diese Deflektionen wurden als die gemessenen, und vom
FWD produzierten Deflextionen vorausgesetzt, und sie wurden dazu nutzbar gemacht, die
Schichtmoduli-unter Annahme vollstindiger Adhision zwischen den Fahrbanschichten-
rickzuberechnen. Fiir jeden Fall wurden Vergleiche angestellt zwiscen beidem, den tatsdchlichen
und den riickberechneten Moduli, und der tatsdchlichen und der vorausgesagten verbleibenden
Lebensdauer.

Die Ergebnisse zeigen, dal die Fehler in der Modellierung des Grenzflachenzustands zwischen
bitumindsen Schichten, a) die riickberechneten Moduli der bitumindsen Basis und der
ungebundenen Sauberkeitsschicht im Durchschnitt um 40% bzw. 30% reduzieren, wenn
vollstindiger Verbundsverlust gegeben ist, b) den Untergrund-Modulus nicht beeinflussen, und c¢)
das Restleben der Fahrbahndecke unter extremen Umstinden um bis zu 40% verindern.
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REFLECTION OF INTERFACE CONDITON MODELLING ERROR ON
BACKCALCULATED MODULI AND PAVEMENT REMAINING LIFE

BACHAR AL HAKIM, BSc MSc, Researcher, School of the Built Environment, Liverpool John Moores University,
UK.

HASSAN AL NAGEIM, BSc MSc PhD MIHT, Senior Lecturer, School of the Built Environment, Liverpool John
Moores University, UK.

DAVID C. POUNTNEY, BSc PhD, Principal Lecturer, School of Computing and Mathematics, Liverpool John
Moores University, UK.

INTRODUCTION

The Falling Weight Deflectometer (FWD) has been in use for many years for pavement evaluation,
due to its economical and environmental advantages and its reliability in representing the insitu
pavement structural conditions.

The pavement is modelled as a layered linear elastic system and therefore its response due to
external loads can be calculated numerically, using the values of material properties and pavement
geometry, by employing a structural analysis model such as BISAR (1). Pavement assessment
involves measuring the surface deflections under the FWD at predetermined locations. These
deflections can be used to estimate the layers’ moduli employing the inverse solution which has
been termed as backcalculation. The backcalculation technique is an iterative method that modifies
the pavement moduli and calculates the deflections until a good match between the measured and
the calculated deflections occur. The backcalculated moduli resulting from the best fit deflections
are used to evaluate the pavement remaining life. The residual life is then compared with future
traffic requirements to decide the pavement rehabilitation procedures.

However, some errors are involved in the layer moduli prediction due to the pavement modelling,
material modelling and measurements' accuracy. Quantifying these errors is tmpaortant foc the
accurate prediction of layer moduli and therefore the estimation of existing pavement life.

DEFLECTIONS CALCULATION AND OBJECTIVE OF THIS STUDY

The aim of the backcalculation procedure is to minimise the difterence between the measured and
calculated deflections in an iterative manner to predict the pavement insitu mechanical properties.
A square sum of the difference can be expressed as,

n
g€ = 2 (dic - dim )2 1]
i=1
where,

d;M, measured deflection at the specified location i under the FWD load,

d;S, calculated deflection at the specified location i,
n , number of deflections.

The calculated deflections are functions of pavement parameters. i.e.

dic = fi ( Ej’ 'l)j, hj’ ksj ) [2]
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where,

E;, vj, hj, modulus, Poisson ratio and thickness of layer j
ksj » interface condition between layers j and j +1

Most backcalculation techniques seek to define layer moduli E; on the basis that all other pavement
parameters are assumed or known. The surface deflections under the falling weight reflect the real
insitu pavement conditions in term of layer moduli, thicknesses, Poisson ratios and the interface
condition between the individual layers. Therefore any errors in assuming one parameter will affect
the backcalculated moduli, and this error depends on the sensitivity of surface deflections to this

parameter.

Layer thicknesses can be measured from cores extracted from the pavement. However some
computer programs can backcalculate the thicknesses in addition to the moduli (2,3). Poisson ratios
appear to have insignificant effect in predicting the pavement moduli (4).

The objective of this study is to investigate the theoretical influence of errors in assuming the
interface condition between bituminous layers, for a range of flexible pavements, on backcalculated
moduli and the remaining life of the pavement.

THE INTERFACE CONDITION BETWEEN PAVEMENT LAYERS

Numerical solution of a multilayered system requires the knowledge of the boundary conditions
between layers in order to predict the structural responses to surface loading. These conditions can
be either full bonding, with the same shear stresses on both sides of the interface, or complete
debonding where no shear stress will transfer between layers. A general fundamental model for the
interface, assuming that the shear stress of the layer above the interface is a function of the
difference in horizontal displacements of the layers above and below the interface, is to be used, i.e.

T.kg = (up-uyp) (31
where,

T, shear stress
uj, Uy, horizontal displacement on both sides of the interface

kg , horizontal shear reaction modulus at the interface.

This equation represents Goodman's constitutive law to describe the interface behaviour (5).

Numerical analysis using the BISAR program to identify the range of kg for flexible pavements has
been carried out. The results show that kg varies from 10-! m3/MN (complete debonding) to 10-3
m3/MN (full adhesion), and beyond these two limits there is no significant change in pavement
response such as stresses, strains and displacements.

The study of Van Cauwelaert et al (6) indicated that, partial friction is the best representation of the
insitu interface condition between pavement layers, and no experimental data to quantify this
parameter has been reported.
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METHODOLOGY

Most of the procedures followed in this paper is based on the methodology proposed by Biggs and
Nazarian (7), in studying the effects of unknown rigid layer on backcalculated moduli.

Four theoretical structures were investigated in this study to represent a wide range of flexible
pavements in term of strength. The moduli and Poisson ratios were fixed in all pavements whereas
the thickness of base and subbase were varied as shown in figure 1. The pavements consist of four

layer systems with an additional rigid layer at 6m depth, to represent either bedrock or the depth
where the vertical deflection is negligible.

Figure |. Pavement Structures

For each pavement structure the interface condition between the bituminous layers was changed
gradually from full adhesion to complete debonding, with k; varying as, 10-5, 104, 10-3, 10-2,
10-! m3/MN. All other interface conditions were kept constant and assumed as full adhesion. The
investigation of the impact of the first interface for this study is due to the practical evidence of
slippage failure which has been reported between bituminous layers (8,9). However, in principle
the interface condition between any two layers of the pavement can be studied.

The horizontal strain at the bottom of the bituminous base and the vertical strain at the top of the
subgrade were calculated under 40KN load using the BISAR program. These values were used for
the assessment of the actual life of the pavement structures. Also the surface deflections were
calculated and named as the measured deflection basins.

The twenty deflection basins were used to backcalculate the layer moduli. The pavement
parameters assumed in the backcalculation process were identical to those in the theoretical

structures except the first interface condition was fixed as full adhesion as is commonly found in
most backcalculation programs.

The moduli of the second, third and fourth layers were backcalculated using manual fitting
deflections, and the modulus of the 40mm wearing course was fixed as recommended by May and
Van Quintus (10), in describing the proposed ASTM standard for backcalculation. These
backcalculated moduli should carry some errors to compensate for modelling the interface
conditions as full adhesion rather than the actual values.

The resulting backcalculated moduli were input into BISAR to calculate the strains at the same
locations as in the theoretical pavements. These strains were used to predict the new remaining life
of the pavements.

Finally, the actual remaining life of the pavements, as calculated for the theoretical structures, were
compared with the new remaining life as predicted from the backcalculated moduli, to demonstrate
the influence of the interface condition modelling errors.

REMAINING LIFE PREDICTION

The final aim of pavement assessment is the estimation of the remaining life to decide the
rehabilitation requirement, therefore the impact of assuming full bonding interface on prediction of
remaining life was performed.

0 Eurasphalt & Eurobitume Congress 1996 6
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Most of the analytical design procedures for flexible pavement adopt the concept of limiting the
horizontal tensile strain at the bottom of bituminous layer to control fatigue cracking and the
vertical compressive strain at the top of subgrade to control permanent deformation. In this study
the semi-empirical relationship developed by TRL (11), between the above strains and the
pavement life in terms of number of standard axle load of 80 KN was used, namely

Log Ny =-9.38 - 4.16 Log & (4]
Log N, =-721-3.95Log¢, [5]
where,

N, , is the number of standard axle load to cause fatigue cracking
N, , is the number of standard axle load to cause permanent deformation

€, , is the horizontal tensile strain at the bottom of bituminous layer

€, , is the vertical compressive strain at the top of subgrade

The final pavement remaining life is the smallest of the fatigue and deformation lives. These
equations were used to predict the remaining life for each of the twenty structures using the actual
and the backcalculated moduli.

RESULTS AND DISCUSSIONS

Influence of Modelling kg; on Backcalculated E,

Figure 2, illustrates the ratio of backcalculated to actual modulus of the layer 2 versus the ratio of
actual to assumed interface condition between bituminous layers, (note that log k) was used in the
graphs). The above moduli ratio of layer 2 has decreased on average by 40% for full adhesion
assumption instead of complete debonding in the backcalculation procedures. However, the weaker
the structure the higher the reduction in the moduli ratio.

Figure 2. Intluence of the mnterface condition mudzlling error on backcalculated modulus of Jayer 2.
Figure 3. Influence of the interface condition mudelling error on backealculated modulus of layer 3.

Influence of Modelling kg; on Backcalculated E5

Figure 3, shows the ratio of backcalculated to actual modulus of the layer 3 versus the ratio of
actual to assumed interface condition between bituminous layers. The ratio of backcalculated to
actual subbase modulus varied between 70% and 140%. These results may be interpreted not only
as error in modelling kg, but also as error in deflections fitting in the backcalculation procedures.

0 Eurasphalt & Eurobitume Congress 1996 7
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Influence of Modelling ky; on Backcalculated E4

Figure 4, demonstrates the ratio of backcalculated to actual modulus of the layer 4 versus the ratio
of actual to assumed interface condition between bituminous layers. It is apparent that by modelling

the interface condition as full adhesion instead of the real cases, there is no significant effect on
backcalculated Eg4.

Figure 4, Influence of the interface condition modelling error on backcalculated modulus of layer 4.

Influence of modelling kg; on Pavement Remaining Life

Figures 5, 6 and 7, demonstrate the influence of error in modelling the interface condition kg1, on
estimation of pavement remaining life. Figure 5, shows that the ratio varied in a range of 50% for
fatigue life, when using full adhesion instead of full slippage between bituminous layers. The
deformation life varied between 60% and 140%, when using full adhesion rather than the actual kg
as shown in figure 6. Figure 7, illustrates the error of modelling kgjon predicting the final pavement
remaining life, again the ratio varied between 60% and 140%.

However, one of the main problem in the backcalculation technique, is that two combinations of
pavement moduli may result in the same deflections. Therefore, by fitting the measured and
calculated deflections a convergence may occur to a different set of moduli. This problem can cause

some errors in pavement residual life prediction to contribute or compensate for pavement
modelling errors.

Figure 5. Influence of the interface condition modelling error on fatigue life.
Figure 6, Intluence of the interface condition modelling error on deformation life.

Figure 7, Influence of the interface condition medelling error on pavement remaining life.

CONCLUSIONS

1. Flexible pavement evaluation using the FWD and backcalculation of moduli, assuming full
adhesion between bituminous layers may cause some errors in moduli and life prediction.

2. For the analysed structures, the backcalculated moduli of second and third layers are most
affected by first interface condition modelling errors. Average reductions of 40 and 30% in the
backcalculated moduli for layer 2 and 3 respectively, were recorded (when complete debonding
exists). In contrast the backcalculated modulus of subgrade was not influenced by the above error.

3. The prediction of pavement remaining life was affected by the interface condition between
bituminous layers modelling errors by up to 40%. However the problem of non unique
backcalculated moduli in the deflection fitting may contribute to the above errors.

0 Eurasphalt & Eurobitume Congress 1996 8
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4. Due to the practical evidence of slippage failure and the finding of this study, an advanced
backcalculation procedure has been developed by the authors. The new method can backcalculate
the first interface condition in addition to the layer moduli to obtain more accurate data for
pavement assessment. For further details see reference 12.
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hl 1 40 mm Bituminous Wearing Course

E1 =2500 MPa vi=04

ks1= variable
h2 Bituminous Base
E2 = 4000 MPa v2=04
v ks2 = full adhesion
h3 Granular Subbase
E3 = 100 MPa v3i=03

ks3 = full adhesion
Subgrade

E4 = 40 MPa v4=0.4

Rigid Layer

Structure 10 Structure 11 Structure 12 Structure 13
h2, mm 250 200 150 100
h3, mm 400 300 200 200

Figure 1, Pavement Structures
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" Figure 2, Influence of the interface condition modelling error on backcalculated modulus of layer 2.
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Figure 3, Influence of the interface condition modelling error on backcalculated modulus of layer 3.
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Figure 4, Influence of the interface condition modelling error on backcalculated modulus of layer 4
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Figure 5, Influence of the interface condition modelling error on fatigue life.
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Figure 6, Influence of the interface condition modelling error on deformation life.

Figure 7, Influence of the interface condition modelling error on pavement remaining life.
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THE DEVELOPMENT OF AN IMPROVED PAVEMENT BACKCALCULATION

B. Al Hakim', H. Al Nageim®, D. Pountney’ and L. Lesley*

ABSTRACT

This paper describes the development of an improved flexible pavement evaluation method
using the Falling Weight Deflectometer (FWD) test results.

Practical evidence of debonding tailure between the wearing course and base course has
been reported in flexible pavements. Therefore an improvement in the current assessment
methods, which assume full adhesion between the pavement layers in the analysis process, is
needed.

The new procedure can predict the interface condition between the wearing and base
courses in addition to the pavement layers’ moduli from the measured surface deflections.

Comparisons between the conventional method and this improved method are carried out
for ninety pavement structures. The results reveal a significant improvement in the
bituminous base modulus prediction, where up to 40% reduction in relative error was
recorded for the extreme cases including the bonding condition.

KEYWORDS: Flexible Pavement, Evaluation, FWD, Backcalculation, Interface Condition,

INTRODUCTION

Cost-effective pavement rehabilitation process requires the accurate knowledge of s
existing structural and functional properties. Therefore non-destructive testing such as the
Falling Weight Deflectometer (FWD) has become widely used for pavement evaluation [1].
The principal of the FWD is that an impact load is applied to a pavement surface and the
deflections are measured at seven locations tu represent the pavement strength. However,
due to the lack of an analytical method for direct estimation of the pavement properties,
many backcalculation programs have been d2veloped to predict these parameters from the
measured deflection basin under FWD.

The pavement is modelled as a layered linear elastic system, therefore its deflections due to
surface load can be calculated numerically using a structural analysis program such as
BISAR [2]. The backcalculation technique is an iterative method that modifies the
pavement parameters and calculates the deflections until a good match between the
measured and the calculated deflections occur. The parameters resulting from the best fit
deflections are used to evaluate the pavement remaining life.
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Maust backcalculation techniques seek to define the moduli of pavement layers on the basis
that all other pavement parameters, such as layers’ thickness, Poisson ratios and the
interface conditions, are assumed or known.

Layer thicknesses can be measured from cores extracted from the pavement or from ground
penetrating-radar tests |3]. Poisson ratios appear to have insignificant effect in predicting
the pavement moduli [4]. Full adhesion between pavement layers is assumed in the
conventional analysis for flexible pavements. However, practical evidence of debonding
failure has been reported between wearing course and base course in the UK and Europe
15.6,7].

Previous work [8], demonstrated the influence of the interface condition between wearing
and base courses modelling error on backcalculated layers’ moduli and remaining life
prediction for flexible pavements.

This paper describes the development of a new backcalculation procedure for the prediction -
of the interface shear reaction modulus between wearing and base courses in addition to the
layer moduli from FWD test results.

DEVELOPMENT OF AN IMPROVED BACKCALCULATION PROCEDURE

Assumptions

A simple static analysis for the pavement as a linear elastic system is adopted for the
backcalculation method with the following assumptions (see figure 1):

1) Deflections and load measurements are accurate.

i1) The modulus of the thin wearing course (E,) is assigned as a known value in the
backcalculation process, as recommended by May and Van Quintus in describing the
proposed ASTM standard for backcalculation [9].

iii) Only the interface shear reaction modulus between the wearing and base courses (K) is
to be backcalculated, and all other interface conditions are assumed as full adhesion.

iv) Typical values of Poisson ratios for UK pavement materials are used, these values
assumed to be exact.

v) The thickness of each layer is assumed to be known and exact.

vi) An apparent rigid layer is assumed at a depth of 6m from the surface to represent either
bedrock or the depth where the vertical deflection is negligible. However, if the shoulder
boring data or other similar information indicates the depth of bedrock, then it should be
included in the backcalculation procedures. This layer is used in many backcalculation
programs to simulate the stress-dependent subgrade modulus.



Method of Least Squares

Firstly, the method of least squares [10] is used to predict assumed hypothetical pavement
parameters from surface deflections. The backcalculated layer moduli (E,) and the interface
shear reaction modulus between wearing and base courses (K1) were not satisfactory

predicted due to many factors, such as:

i) Non-unique solution, where two or more combination of pavement parameters produce
the same deflections.

ii) Each parameter has a different influence on deflections, e.g. (K) has very little influence
on deflections compared with thick layers and subgrade moduli.

iti) The results are very sensitive to the initial estimate of parameters.

iv) The nature of the influence of (K;;) on deflections. (Ky;) values below 10 MN/m?
(complete debonding) and above 10° MN/m? (full adhesion) have no effect on deflections
and therefore, in the backcalculation process, the program will not deliver any deflections'
amendment after iterations beyond these limits.

Therefore a two-stage backcalculation process has been developed to overcome some of the
above limitations.

The Improved Two Stage Backcalculation Procedure

The surface deflections under FWD, materials' types, layers' thickness and Poisson ratios
have to be known for the analysed pavement.

Sensitivity study has shown that (Kj;) has little influence on deflections compared with the
subgrade and thick bituminous moduli [11]. Therefore, the backcalculation procedure
involves predicting first the parameters which have large influence on deflections, such as
subgrade, subbase and bituminous base moduli, then computing the interface shear reaction
modulus between wearing and base courses with little adjustment to the bituminous layer
modulus. Variation in the interface condition has the largest effect on adjacent layers [12],
therefore the subbase and subgrade were kept fixed in the second stage. Figure 2 shows the
tlow diagram for the two stage backcalculation procedure.

The first stage involves developing a deflections’ database for the analysed pavement with
different combination of moduli, using the BISAR program [2]. The deflection locations
should be selected to correspond the sensors of the FWD.

The search technique for the best model using multiple regression analysis is performed for
each modulus as dependent variable with the deflections as independent variables. The
models with the highest coefficient of correlation (R?) are employed to predict the layers
moduli from the measured deflections.

The moduli of the lower layers need to be fixed in the next stage and therefore a good
match in the deflections far from the loaded area, which control these moduli, is essential

for an accurate calculation.



The second stage involves developing other deflection database with a bituminous base
modulus varied by 25% from the value found from the first stage. and the first interface
condition varied from complete debonding to full adhesion. The deflection at the loaded
area and the three next deflections are to be used for the database. since they control the
moduli and parameters of the upper layers. The calculated deflection basin which has the
lowest error compared with measured values is considered for parameters' prediction.

Finally the moduli of the lower layers as found from the first stage. together with the
modulus of base layer and the first interface condition as found from the second stage are
taken as the backcalculated parameters.

THEORETICAL PAVEMENT BACKCALCULATION RESULTS

Ninety theoretical pavement structures were chosen to cover a wide range of moduli (E;),
thickness (h;) and interface condition between wearing and base courses (Ks). The
thickness of wearing course, Poisson ratios (v;), depth of bedrock and the remaining
interface conditions were kept constant in all pavements as shown in figure 1.

The surface deflections were calculated for each structure, under a 40 kN load using the
BISAR program and named as the measured deflections. Each deflection basin was used to
backcalculate; )

i) the moduli of the second, third anbd fourth layers using the WESDEF [13] program
and assuming full adhesion between pavement layers, as is commonly found in most
evaluation techniques, '

and

1i) the moduli of the second, third and fourth layers in addition to the interface
condition between the wearing and base courses using the improved procedure
reported here.

Figures 3, 4, and 5, demonstrate the relative error in predicting the moduli of bituminous
base, subbase and subgrade respectively, using the improved and WESDEF programs for
the ninety structures.

Figure 3, shows that the backcalculated modulus of bituminous base is most affected by first
interface condition modelling errors. The weaker the pavement the larger the reduction in
the modulus values, and the closer the real interface condition to the assumed values (full
adhesion with K, = 10° MN/m3) , the lower the effect on backcalculated base modulus. Up
to 60% reduction in base modulus was recorded in the extreme cases using the WESDEF
program to compensate the modelling error. The estimated moduli of subbase and subgrade
have not been affected by the above modelling error (see figures 4 and 5), however the
results show some scattered values for subbase moduli in the two backcalculation
procedures. This conclusion validates the assumption made in the improved backcalculation
procedure, of fixing the moduli of lower layers in the second stage and tuning only the base
modulus and the interface condition.



CONCLUSIONS AND SUGGESTED FURTHER WORKS

Flexible pavement's evaluation using the FWD and backcalculation of moduli, assuming full
adhesion between layers, may cause some errors in the predicted moduli.

The backcalculated modulus of the bituminous base was most affected by the first interface

condition modelling errors. The modulus of subbase was not significantly influenced and the
subgrade was not affected by these errors.

For the analysed pavements, the new method provides up to 40% improvement in base
modulus prediction in some cases, when the interface conditions between the wearing and
base courses were included in the analysis process.

Even allowing for this promising improvement, the improved backcalculation procedure can
be further verified using three different approaches:

i) Theoretical validation by comparing the backcalculated results of the ninety
structures with their hypothesised values.

i) Empirical validation by comparing the backcalculated moduli for real pavements
tested under FWD load and physically measured moduli.

iii) Validation by comparing the backcalculated moduli with other well known

programs, such as WESDEF [13] and MODULUS [ 14}, when identical pavement
conditions are assumed.

Such validation is in process and will be reported elsewhere [11].
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hy=40mm Bituminous Wearing Course
E; = variable vi=04
Ksi1= vanable
h3 = variable Bituminous Base
Ea = variable v,=04

K> = full adhesion

hy = variable

Granular Subbase

Ey= varniable vi=0.3

K,3 = full adhesion
Subgrade

k4 = variable ve=0.4
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Figure 1, The theoretical properties of the ninety pavement structures.




FWD test results: Estimate the thin
I. Number of geophones. wearing course " Number of Layers (n).
2. Measured deflection at each modulus E;. Layer thickness (h).
geophone (di™). l Poisson’s ratio (v).
3. Load magnitude and radius
of the loaded area. Assume K., = 10* MN/m®

l K., K. = full adhesion. l
' <+

Compute the deflection basin database to cover the range of material’s moduli Ej using BISAR.
j=2,n

4

Perform search technique to
predict the best model for
each layer modulus (Ej)
using multiple regression
analysis.

N

Select the statistical model with the highest R?.
Compute Ej from the measured deflections.

Second Stage

h,_4
For j =3, n, fix the values of Ej

Compute second deflection database (d°) for E; = 75% E,, E;, 125% E,
and Ky, = 10", 10%, 10%, 10*, 10° MN/m’ using the BISAR program.

i

For each deflection basin compute Er= 14" - d°1, for (i =1, 4).

+

Select the basin with the lowest error.

1l

Output the layer moduli Ej and Kj;.

Figure 2, Flow chart for the improved method backcalculation procedure.
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Figure 3, Relative error in predicting the modulus of bituminous base using the

improved and the WESDEF programs for the 90 pavement structures.
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