
A Dynamic Middleware-based Instrumentation
Framework to Assist the Understanding of

Distributed Applications

Denis Reilly

A thesis submitted in partial fulfillment of the requirements of

Liverpool John Moores University for the degree of

Doctor of Philosophy

July 06

Any maps, pages, tables, figures
graphs, or photographs, missing
from this digital copy, have been
excluded at the request of the
university.

Abstract

Distributed object and component-based middleware technologies dramatically simplify
the development of distributed applications, but they offer little support to assist their

runtime control and management. The control and management problem is exacerbated
by the fact that distributed applications are notoriously complex at runtime, due to their
inherent dynamics and the possibility of heterogeneous component technologies. A

prerequisite to the management of any dynamic system is an understanding of the system
itself, which calls for techniques capable of gathering information relating to structure

and behaviour. In conventional engineering disciplines, such techniques are provided
through instrumentation, which provides instruments, such as data loggers, gauges,

probes, monitors, that further our understanding of a target system.

This thesis sets out on a journey, which aims to utilize the concepts of conventional

engineering instrumentation to assist the understanding of distributed applications. The

starting point for such a journey is that of traditional software instrumentation, which has

been around for some time (circa 1970s), but has not reached the maturity of its

conventional engineering counterpart. Initially, software instrumentation was used to

assist the understanding and debugging of procedural language programs and later to

assist the tuning and visualization of parallel programs. The basic technique of software
instrumentation is the insertion of instrumentation code at points of interest throughout a
program. However, where distributed applications are concerned this is impractical for

several reasons, which include the distribution itself and the problem of runtime insertion,

without having to take resources offline. If we are to use software instrumentation in

distributed applications, these issues and others must be addressed.

The main aim of the thesis is to investigate the fundamental requirements of on-demand
distributed software instrumentation, and the promotion of instrumentation as a new
middleware service. The main contribution of the thesis is the conception of a dynamic

software instrumentation framework. The framework consists of a series of related

models including: a requirements model, a classification model, formal and semi-formal

analysis models and a programming model. An instrumentation architecture makes up the

heart of the framework. The architecture regards instrumentation as services, which are

intended to complement core middleware services. A proof of concept implementation of

the architecture has been prototyped using Jini (a Java-based middleware technology) to

provide an API for use in distributed Java applications. A series of case-studies are used

to evaluate the architecture and assess the effectiveness and performance overhead of
instrumentation services.

Overall, the thesis provides a reference framework, which can be used by system

architects, application developers and middleware technology providers as a basis for the

development of subsequent instrumentation efforts.

ii

Dedicated to the Memory of Mum & Dad

iii

Acknowledgements
I would like to thank my supervisory team, Prof. A. Taleb-Bendiab and Dr. Carl Bamford

for their help and guidance throughout this research project. In particular, I would like to

express a special thankyou to Prof. Taleb-Bendiab for his support, friendship and ability
to motivate me and ask difficult questions at precisely the right time and for his help in

writing the thesis.

I would like to express a special thankyou to Prof. M. Merabti for his support, friendship

and guidance throughout my academic career, and in particular for support relating to the

funding of this project and help in writing the thesis. I would also like to thank Dr. M

Hanneghan for the useful advice.

My thanks also goes out to colleagues at Liverpool John Moores university for their

support and friendship and over the past years. In particular, my thanks go out to the

following (in no particular order): David Llewellyn-Jones, Mike Baskett, Rubem Periera,

Mengji Yu, David Lamb, John Haggerty, Tom Berry, Andy Symons, Andy Laws, Ella

Grishikashvili, Mark Allen, Bob Askwith, Chris Wren, Geof Staniford, Chris Bewick,

Philip Miseldine, Martin Randles, Dhiya Al-Jumeily, Fausto Sainz Salces, Stu Wade,

Nagwa Badr, Omar Abuelma'atti, Sud Sudirman, Paul Fergus, Hala Mokhtar and
Gurleen Arora. I would also like to thank the CMS technicians for their friendship and

outstanding technical support over the years. A special thankyou goes out to David

Llewellyn-Jones for his time spent reading the thesis and technical help with EndNote.

I would like to thank my childhood friends spread throughout Liverpool who have stood
by me through the good times and the not so good times: Dave Parry, Neil Larsen, Ian

Parry, Michael Brereton (deceased), Chris Quinn, John May, Chris Ord (deceased),

Michael McGinn, Margie Rice, Jeanie Woodbridge, John Taylor and Craig Johnston.

Finally, and by far most importantly I would like to thank the following: the love of my
life for putting up with me during the writing of this thesis - the grumpiness, the erratic
behaviour which she took in her stride; my late parents, without whom this project would

not have happened (obviously); my brother and his wife, for the opportunity to watch
Everton FC on Sky TV, which provided a welcome break from thesis writing.

iv

INTRODUCTION
...

1

1.1 AN ENGINEERING SOLUTION
..

1

1.2 DYNAMIC SOFTWARE INSTRUMENTATION
..

2
1.3 STATEMENT OF THE PROBLEM

..
3

1.4 AIMS AND OBJECTIVES
...

3
1.5 RESEARCH CONTRIBUTIONS

...
5

1.6 SCOPE OF THE THESIS
...

7
1.7 THESIS STRUCTURE

..
8

DISTRIBUTED SYSTEM FUNDAMENTALS
...

9

2.1 SYSTEM MODELS
..

9

2.2 ARCHITECTURAL MODELS
..

10

2.2.1 Component Configurations
..

11
2.2.2 Software layers

..
12

2.3 FUNDAMENTAL MODELS
..

12
2.4 CHAPTER SUMMARY

...
15

DISTRIBUTED SYSTEM DEVELOPMENT
..

16

3.1 DISTRIBUTED PROGRAMMING MODELS
..

16
3.2 OBJECT-ORIENTED MIDDLEWARE - DISTRIBUTED OBJECTS

...............................
17

3.2.1 Basic principles of distributed objects ...
18

3.2.2 Distributed object communication ...
20

3.2.3 Java RMI ..
22

3.3 DISTRIBUTED EVENTS AND NOTIFICATION ...
23

3.3.1 Overview of Distributed Events ..
24

3.3.2 Jini Distributed Events ...
25

3.4 DISTRIBUTED COMPONENT TECHNOLOGIES
...

26

3.4.1 Component Concepts ...
27

3.4.2 Service-oriented abstraction ..
28

3.5 CHAPTER SUMMARY ...
29

REVIEW OF SOFTWARE INSTRUMENTATION RESEARCH
31

4.1 HISTORICAL CONSIDERATIONS
...

31
4.2 STATE OF THE ART DEVELOPMENTS

...
33

4.2.1 Monitoring Distributed Object and Component Communication
(MODOCC) ... 33
4.2.2 Java Management extensions (JMX) ...

40
4.2.3 Dynamic Assembly for System Adaptability, Dependability and
Assurance (DASADA) .. 45
4.2.4 Instrumenting Jini Applications ...

51
4.2.5 Reflective Middleware .. 58
4.2.6 Aspect-Oriented Programming

..
61

4.3 CONTRIBUTION OF THE THESIS
...

64
4.4 CHAPTER SUMMARY

...
65

REQUIREMENTS OF INSTRUMENTATION SERVICES 66

5.1 FUNCTIONAL AND OPERATIONAL REQUIREMENTS
...

66

V

5.2 PARAMETERS AND MEASUREMENT TYPES
..

68
5.2.1 Elements to measure ..

68
5.2.2 Parameter types ..

70
5.3 FUNCTIONAL REQUIREMENTS

...
73

5.4 OPERATIONAL REQUIREMENTS
...

78
5.5 CLASSIFICATION OF INSTRUMENTATION SERVICES

...
82

5.6 CHAPTER SUMMARY
...

88

FORMAL MODEL OF INSTRUMENTATION SERVICES
89

6.1 FORMAL MODELLING
...

89
6.1.1 Formal Specification of Systems

...
90

6.1.2 Main Aim of the Formal Instrumentation Model
......................................

91
6.2 THE FORMAL INSTRUMENTATION MODEL

..
93

6.2.1 Typing System ...
93

6.2.2 Lookup Service and Application-level Component Models
.....................

96
6.2.3 Instrumentation Model ..

100
6.2.4 Application Model ... 108

6.4 CHAPTER SUMMARY
...

117

AN INSTRUMENTATION ARCHITECTURE FOR MEASURING AND
MONITORING APPLICATIONS .. 118

7.1 ACCESSING APPLICATION INFORMATION
..

118
7.1.1 Accessing System-wide Resources

...
119

7.1.2 Accessing Component Structural and Behavioural Properties
................

120
7.1.3 Administrable and Dependent Interfaces ..

122
7.2 ARCHITECTURAL MODELS ..

123
7.2.1 Use Case Models ...

125
7.2.2 Class and Sequence Diagrams ...

134
7.2.3 Baselnstrument Class ..

136
7.2.4 Static Instrumentation Services: Logger, Gauge and Analyzer 138
7.2.5 Dynamic Infrastructure Classes

...
146

7.2.6 Asynchronous Instrumentation Services: Probe and Event Monitor....... 149
7.2.7 Synchronous Instrumentation Services: Method Invocation Monitor..... 151

7.3 CHAPTER SUMMARY
...

157

IMPLEMENTING THE INSTRUMENTATION ARCHITECTURE 158

8.1 JINI MIDDLEWARE TECHNOLOGY
...

158
8.1.1 Jini Service-oriented Architecture ...

159
8.1.2 Jini Services ...

160
8.1.3 Discovery Protocol .. 162
8.1.4 Lookup Protocol .. 163

8.2 IMPLEMENTING DYNAMIC INSTRUMENTATION SERVICES 165
8.2.1 Discovery and Registration

...
165

8.2.2 Dynamic Instrumentation Proxies ...
168

8.2.3 Instrumentation Service Communications ...
179

8.2.4 Using Reflection to Access Runtime Information 187

vi

8.2.5 Using Administrable and Dependent Interfaces to Represent Dependencies
193

8.2.6 Instantiable Instrumentation Services
..

199
8.3 THIRD-PARTY SOFTWARE SUPPORT ..

211
8.3.1 SNMP Support

...
212

8.3.2 log4j Support
...

217
8.4 CHAPTER SUMMARY

...
222

INSTRUMENTING DISTRIBUTED APPLICATIONS ...
223

9.1 INSTRUMENTATION TEST HARNESSES
..

223
9.2 INSTRUMENTATION CASE STUDIES

...
225

9.2.1 Simple Logging and Monitoring ... 226
9.2.2 Determining Dynamic Dependencies .. 235
9.2.3 Client-Server Access Patterns ...

238
9.2.4 Use of Regular or Activatable Jini Services? .. 241
9.2.5 Summary of Case Studies .. 253

9.3 DISCUSSION AND QUALITATIVE PERFORMANCE ASSESSMENT
255

9.3.1 Centralized vs. Decentralized Instrumentation Control
..........................

256
9.3.2 Using Instrumentation Services to Detect Failures

257
9.3.3 Extending the Architecture - Customized Instrumentation Services...... 260
9.3.4 Instrumentation Performance Overhead ..

261
9.4 CHAPTER SUMMARY

...
264

CONCLUSIONS AND FUTURE WORK ...
265

10.1 SUMMARY
..

265
10.2 RESEARCH CONTRIBUTIONS

...
267

10.2.1 Requirements Analysis ..
267

10.2.2 Formal Modelling ..
268

10.2.3 Instrumentation Architecture ...
269

10.2.4 Dependency Analysis ..
271

10.2.5 Comparison with Related Research ...
272

10.3 FUTURE WORK ...
274

10.3.1 Security ..
274

10.3.2 Policy-based instrumentation .. 275
10.3.3 Autonomic computing ...

275

vii

List of Figures and Tables
Figure 2.1: software layers ..

12
Figure 2.2: service dependencies

...
14

Figure 3.1: archetypal RMI software layers [22] ...
20

Figure 3.2: Java RMI layers 22 ...
22

Figure 3.3: distributed event objects ..
26

Figure 4.1: MODOCC - decomposition of the monitoring system [6]
34

Figure 4.2: MODOCC - monitoring activities [6] ..
35

Figure 4.3: OLT architecture [6] ...
36

Figure 4.4: MODOCC - decomposition of design process [6] ... 38
Figure 4.5: JMX architecture [24] ...

41
Figure 4.6: Java bytecode instrumentor (JBCI) [12] ...

46
Figure 4.7: Watchable framework [52] ...

53
Table 5.1: Host Parameters ..

74
Table 5.2: Virtual Machine Parameters ...

74
Table 5.3: Network Operating System Parameters ... 74
Table 5.4: Application Service Parameters ...

75
Table 5.5: Core Middleware Parameters ...

77
Figure 5.1: instrumentation hierarchy ...

84
Figure 6.1: basic typing system ...

96
Figure 6.2: lookup service class ..

97
Figure 6.3: component class ..

98
Figure 6.4: dynamic proxy and instrument types ..

100
Figure 6.5: instrument class ...

103
Figure 6.6: application class ..

110
Figure 6.7: application class - instrument manager schema operation 111
Figure 7.1: dependent interface and service admin object ..

123
Figure 7.2: instrumentation layer ...

124
Figure 7.3: system package diagram ...

126
Figure 7.4: management agent use cases ...

126
Figure 7.5: logging activity diagram ...

127
Figure 7.6: gauge activity diagram ..

127
Figure 7.7: analyzer activity diagram ..

128
Figure 7.8: probe activity diagram ..

128
Figure 7.9: monitor activity diagram ...

128
Figure 7.10: application components use cases ...

129
Figure 7.11: middleware services hierarchy ..

130
Figure 7.12: logger use cases ...

131
Figure 7.13: gauge use cases ...

131
Figure 7.14: analyzer use cases ...

132
Figure 7.15: probe use cases .. 132
Figure 7.16: monitor use cases .. 133
Figure 7.17: instrumentation hierarchy ...

135
Figure 7.18: Baselnstrument class ...

136
Figure 7.19: Staticlnstrument class hierarchy - Logger, Gauge and Analyzer 138

viii

Figure 7.20: Logger sequence diagram ...
140

Figure 7.21: Gauge sequence diagram ..
141

Figure 7.22: Analyzer sequence diagram .. 142
Figure 7.23: indirect Logger sequence diagram .. 143
Figure 7.24: Middleware Logger sequence diagram ... 145
Figure 7.25: Dynamiclnstrument class hierarchy ..

146
Figure 7.26: DynamicObject class hierarchy .. 147
Figure 7.27: Asynchronouslnstrument class hierarchy ... 149
Figure 7.28: Eventlnstrument class hierarchy - Probe and EMonitor 150
Figure 7.29: Synchronous class hierarchy - MMonitor ... 151
Figure 7.30: Probe sequence diagram ..

153
Figure 7.31: EMonitor sequence diagram ... 155
Figure 7.32: MMonitor sequence diagram .. 156
Figure 8.1: Jini architecture ...

159
Figure 8.2 (a): Jini client-server communication - initial state 164
Figure 8.2 (b): Jini client-server communication - RMI calls .. 164
Figure 8.3 (a): instrumenting application service - initial state 177
Figure 8.3 (b): instrumenting application service - attach operation 177
Figure 8.3 (c): instrumenting application service - intervening RMI calls 178
Figure 8.4: overview of SNMP

..
213

Figure 9.1 (a): basic instrumentation services test harness ... 224
Figure 9.1 (b): probe instrumentation services test harness .. 225
Figure 9.2 (a): VM usage for no instrumentation (placebo) ..

231
Figure 9.2 (b): VM usage for instrumentation service with simultaneous

registration/attachment .. 233
Figure 9.2 (c): VM usage for instrumentation service with delayed attachment 234
Figure 9.3 (a): dependency case study - initial dependencies ... 237
Figure 9.3 (b): dependency case study - final dependencies .. 237
Figure 9.4: VM usage for UnicastRemoteObject service run in a shared JVM 245
Figure 9.5: VM usage for ActivationsServerl for activatable services AService, BService

and CService ..
249

Figure 9.6: VM usage for UnicastRemoteObject service run in its own JVM 252
Figure 9.7: lookup service chaining ..

257
Figure 9.8: failure types and scopes ..

258
Figure 9.9: failure detection through instrumentation ... 259
Table 9.1: reflection benchmark results ..

263

ix

Chapter 1

Introduction

The increasing complexity of distributed systems and their inherent dynamic behaviour

suggests a need for management to ensure that they run smoothly and continue to provide

secure reliable services. Such management is likely to be hindered by heterogeneity of
hardware, networking and software technologies that may exist in a distributed system.
Standards exist that hide the problems of heterogeneity of hardware, networking and

programming languages. However, the problems associated with dynamic behaviour are

not so easy to deal with. The components in a distributed system may undergo changes in

state, such that their characteristics differ from one instant to the next - they may fail or
behave unpredictably. Such problems have been the concern of a large body of research

concerned with distributed systems management using conventional approaches [1-5].
Through this work the author looks into other traditional disciplines for further

inspiration in developing an understanding of distributed systems.

1.1 An Engineering Solution
To assist the management of distributed applications the adopted approach is based on

principles and techniques used in conventional engineering - more specifically real-time

process control systems design. The conventional engineering disciplines of

electrical/electronic and mechanical engineering are founded on scientific laws and

principles that may be used to describe the behaviour of natural real-world systems. The

conventional engineering disciplines have developed models of real-world systems that

prove valid when subject to analysis and mathematical proof. Two particular engineering
disciplines are those of instrumentation and control, which are often combined to

measure, monitor and generally assess and manage the performance and behaviour of a
target system.

Along with others active in the field of distributed systems understanding and analysis [6-
9], the author argues the need for instrumentation and proposes a series of models and an

architecture that provides instrumentation to support distributed system management.

Others, including [10.14] use the notion of instrumentation, based on gauges, monitors

and probes to provide performance and behavioural information according to the

architectural style of a distributed system.

Whilst the work described in this thesis shares similar objectives and roots with the above
described efforts, it focuses on a novel proposition to promote instrumentation as a core

middleware service. To strengthen this proposition, the thesis provides an examination of

middleware programming and communication models and uses these models as the basis

for the development of a series of instrumentation reference models. To this end, the

work provides a rigorous consideration of instrumentation from basic requirements and

conceptual representations through to the development of a dynamic instrumentation

architecture.

1.2 Dynamic Software Instrumentation
Software instrumentation' has been used for some time in software engineering and

parallel computing to debug and test software applications and also for monitoring

performance and producing runtime metrics. Traditional, static instrumentation

approaches involved the insertion of additional software constructs at design-time (via

compiler directives), or when the system was off-line during maintenance, to observe

specific events and/or monitor certain parameters. Where distributed systems are

concerned, the limitations of static instrumentation have led to interests in dynamic

instrumentation that can be applied (and removed) as required at runtime [6,9,11,15].

Dynamic instrumentation can make use of instrumentation services such as gauge,

monitor and probe services that can be dynamically attached to application components
to measure specific runtime parameters and monitor their behaviour.

The service-oriented abstraction has fairly recently been adopted within middleware

technologies and more generally distributed applications. This abstraction allows

software components to join a dynamic federation and use its services and resources and

offer services and resources of their own. This suggests that dynamic instrumentation

may be developed using the same service-oriented abstraction. However, dynamic

I The term "instrumentation" is used henceforth to refer to software instrumentation.

2

instrumentation must provide additional functionality if it is to prove useful and flexible.

In particular, the instrumentation must be unobtrusive in that it does not hinder the

operation of application-level components and requires minimal extra programming

effort to facilitate its integration. Dynamic instrumentation must also provide capabilities
that allow it to be added and/or removed at runtime without having to disrupt the

operation of a distributed system.

1.3 Statement of the Problem
The main research problem considered in thesis is:

"How can we develop an unobtrusive dynamic instrumentation architecture

that can be used in conjunction with middleware technologies to further our

understanding about the performance and behaviour of a distributed

system? "

To study this problem, the thesis sets out to address the following specific research

questions:

" What are the types of parameters that need to be measured and monitored in a
distributed application to assess performance and behaviour?

" What are the different types of instrumentation needed to measure and

monitor these parameters?

" What are the programming and communication models required to facilitate

the development and seamless integration of unobtrusive instrumentation with

middleware and application-level components?

" How may we apply these models to develop a dynamic instrumentation

architecture?

" How may we assess the performance of the instrumentation and quantify the

overhead that it may introduce?

1.4 Aims and Objectives
The aims and objectives of the thesis fall into the two general categories of Analysis and
Design/Implementation.

3

Analysis - which aims to provide a thorough analysis of instrumentation that delivers

generic requirements, classification models and specifications relating to the use of
instrumentation as a middleware service. In more detail, this will involve the following

activities:

"A study of the fundamental and architectural models that are the foundations

of distributed systems.

"A study of the programming and communication models provided by

middleware technologies and used for the development of distributed systems.

" Analysis of the requirements of instrumentation services. These requirements

will cover both functional requirements, concerned with the parameters that
instrumentation services must measure and monitor and operational

requirements, concerned with how instrumentation services coexist and
interact with the distributed system under examination.

"A formal specification of the basic operations that facilitate the integration of
instrumentation services within a distributed application.

Design/Implementation - which aims to develop an instrumentation architecture that

implements the concepts and models emerging from the Analysis and demonstrates the

use of dynamic instrumentation services. In more detail, this will involve the following

activities:

" Design of an instrumentation architecture that provides a hierarchy of
infrastructure and instrumentation services, which represent the different types

of instrumentation service emerging from the analysis stage.

" Development of programming and communication models that represents the
basic instrumentation service operations emerging from the analysis stage.

" Implementation of the programming and communication model to provide an

architecture that supports dynamic instrumentation services, which can

measure performance and monitor behaviour and provide seamless integration

to external management agents.

4

" Testinglevaluation of the architecture through a series of realistic case studies

that demonstrate its suitability for the runtime measurement and monitoring of
distributed systems.

" Appraisal of the relative success of the work and suggestions for extension

and/or future directions for others to consider.

1.5 Research Contributions
The main novel contributions to knowledge, emerging from the research stem from the

various models and the instrumentation architecture developed throughout the thesis.

" Requirements model: The requirements model provides a unique analysis of
instrumentation requirements from first principles, which is not addressed

elsewhere in the literature. The requirements model examines the basic

parameters to be measured/monitored and the different types of
instrumentation and their functional and operational requirements. The

requirements model is the culmination of previous research published by the

author [15). Primarily, the requirements model is intended to serve the

remainder of the thesis, although it may prove useful to other practitioners in

the field of distributed systems understanding.

" Classification model: The classification model provides an original

classification of instrumentation services in terms of their roles and usage

context. The classification model was developed from a previous
instrumentation classification proposed by the author [15]. The classification

model is general and may be used by other researchers to develop their own
instrumentation system. The classification model also identifies a set of basic,

or primitive, instrumentation services. In the absence of any instrumentation

standard, the author chose a novel naming scheme for the instrumentation in

line with their counterparts in conventional engineering or the physical

sciences. It is anticipated that this may serve as a useful reference naming

scheme for future researchers in the field of distributed software
instrumentation.

5

" Formal analysis model: The formal model represents one of the few

contributions that applies formal specification for the development of
distributed instrumentation. Together with [16], (one of the few other

contributions) it aims to emphasize the potential for formal modelling in the
field of distributed instrumentation. The formal model considers the concept

of an abstract instrument as the basis for functional instruments that provide
instrumentation services. The formal model specifies the states and axioms

governing an abstract instrument. The formal model was developed using
Object-Z, which is an extension to the Z formal modelling language to

accommodate object-orientation. Object-Z was chosen because of its support
for object-orientation and ability to write specification which contain precise

state models, strong typing and precise axioms.

" Programming and communication model: The programming model provides a

novel contribution in that it allows instrumentation to be applied

unobtrusively. In other words, applications can be instrumented with

minimum disruption or additional coding to the application itself. The

programming model facilitates the dynamic attachment and removal of
instrumentation services at runtime with minimum disruption to application-
level services. The application of the programming model is considered
briefly in the author's previous research publications [15,17,18] and the

thesis provides a more detailed coverage. The communication model describes

the division of labour amongst instrumentation services and provides

protocols to facilitate their interactions. The communication model allows
basic, or primitive, instrumentation services to be grouped together to perform

more complicated instrumentation tasks.

" Instrumentation architecture: The architecture combines the aspects of the

requirements, classification, formal and programming models to provide a

novel instrumentation API. The architecture consists of the infrastructure

components and a small number of instrumentation services that can be used
to measure/monitor distributed application components. The architecture is

6

described in the author's published work [15,17,18]. The architecture was

developed using UML to provide an extendable instrumentation layer that sits
in between core middleware services and application specific services. The

architecture combines measurement and monitoring functionality together

with the abstract operational specifications from the formal model. The focal

point of the architecture is a small number of instrumentation services that can
be instantiated to measure and monitor specific runtime parameters and
behavioural information. These instrumentation services were chosen

specifically to measure parameters of interest to the author, based on fifteen

years previous experience working with distributed systems.

1.6 Scope of the Thesis
In general terms the thesis sets out to determine the instrumentation needs for distributed

systems management and the manner in which this instrumentation may be applied. The

thesis is not intended to serve as the definitive design of an instrumentation architecture,
but to present a feasibility study in the development of an instrumentation architecture.
The thesis investigates the notion of on-demand distributed software instrumentation, and

the promotion of instrumentation as a new middleware service. This investigation is

driven by the need to further our understanding of today's distributed systems, which are

typically large and complex.

The culmination of the thesis is the development of a dynamic software instrumentation

framework and the design of an instrumentation architecture. The architecture can be

used to measure performance and monitor the behaviour of the software components that

execute within a distributed system. The framework is intended to provide a reference
framework that can be used by system architects, application developers and middleware

technology providers as a basis for the development of subsequent instrumentation

efforts.

The thesis is applicable to the class of distributed systems developed using a distributed

object-based middleware. The work described is directly applicable to distributed

systems developed using Jini middleware. The overall approach may be used in

conjunction with other middleware technologies such as Java RMI, CORBA and even

7

Web Services although there are limitations to this applicability, which are discussed in

the Conclusions (chapter 10). The architecture has been demonstrated for LAN-based

distributed systems and as such issues of scale to cover wide-area systems have not been

considered, although these are also mentioned in the Conclusions.

1.7 Thesis Structure
The thesis is structured as follows:

Chapter 2 describes the basic terminology, fundamental concepts and models relating to

distributed systems.

Chapter 3 describes the programming models and technologies used for the development

of distributed systems' application software. In particular, object-oriented middleware

and distributed events are considered as the main programming technologies.

Chapter 4 presents a literature review of software instrumentation from its early
foundations up to the "state of the art" practices of today.

Chapter 5 presents an informal requirements analysis to establish what instrumentation

needs to measure/monitor and classification of different categories of instrumentation.

Chapter 6 presents a formal model of instrumentation services underpinned by the formal

specification of the basic operations of an abstract instrument.

Chapter 7 presents an instrumentation architecture for measuring and monitoring

applications. The architecture consists of the infrastructure components and a small

number of instrumentation services that can be used to measure/monitor distributed

application components.

Chapter 8 describes the implementation of the architecture using a combination of the

Java programming language (J2SE vl. 4) and Jini middleware technology

Chapter 9 describes how the architecture may be used through several instrumentation

case-studies. Qualitative and quantitative analyses are also presented to assess the

performance overhead of the instrumentation.

Chapter 10 draws overall conclusions on the novelty of the research and mentions
directions for future related research.

8

Chapter 2

Distributed System Fundamentals

This chapter is intended to outline background information necessary to interpret the

ideas presented in subsequent chapters. On occasion, the chapter draws on material

presented in [19] to introduce the system models that help us understand and reason about

the structure and behaviour of distributed systems. A brief overview of these models is

necessary before moving on to consider the main topic of instrumentation in relation to

distributed systems.

2.1 System Models
According to [20], a distributed system may be defined as:

"a collection of autonomous hosts that are connected through a computer

network with each host executing service providing components and

operating a distributed middleware to enable components to coordinate their

activities giving the impression of a single, integrated computing facility ".

This definition essentially defines the elements that constitute a distributed system, but it

does not explain the connectivity and placement of the constituent parts nor the

relationships and interactions between them. In order to further our understanding of
distributed systems and to reason about their performance and characteristics we must

call on the system models that conceptualize and characterize distributed systems. In

general, a model should contain only the essential elements that are required to

understand and reason on some aspects of a given system's behaviour. With this in mind,

a system model should address the following questions:

9 What are the main elements in the system?

" How do these elements interact?

9

s What are the characteristics that affect their individual and collective
behaviour?

The two categories of system models that we use to further our understanding are referred
to as architectural models and fundamental models [19]. The architectural models are

concerned with the placement of the constituent elements and the relationships that exist
between them. Typical examples include the client-server model and the peer-to-peer

model. The fundamental models are concerned with a more formal description of the

properties that are common to all of the architectural models.

Four significant concerns that the fundamental models must address are: dependencies,

timing, failure and security and these problems are addressed by the three fundamental

models:

The interaction model, which deals with dependency relationships, message

passing interactions and the difficulties caused by timing.

" The failure model, which attempts to give a precise specification of the faults

that may occur between components and/or communication channel. The

failure model essentially defines correct components and reliable

communications.

" The security model, which considers the possible threats to components and

communication channels.

The remainder of this chapter briefly considers the architectural and fundamental models

with a view to highlighting how instrumentation may be incorporated into the models to
further our understanding and reasoning capabilities.

2.2 Architectural Models
The architecture of a system is essentially its structure in terms of the separate constituent

elements - just like the architecture of a building. The overall goal of the architectural
design is to ensure that this structure will meet both the present and the likely future
demands placed on it. The major concerns at the architectural design stage are to make
the system reliable, manageable, adaptable and cost-effective and, unsurprisingly,
instrumentation can make valid contributions to each of these concerns. The architectural

10

design of a building shares similar aspects - it determines not only the appearance of the

building, but also its general structure and architectural style (e. g. gothic, neo-classical,

modem).

However, there is a significant difference between the architectural design of a
distributed system and that of a building in that once a building is "cast in stone" the
degree to which it can be altered or adapted is limited. In contrast, distributed systems

may undergo significant alteration and adaptation achieved through architectural

reconfigurations. As we shall see, the ability to achieve reconfiguration varies across
different architectural models and some models are regarded as "fluid", whereas others

are more "brittle". To determine the degree of reconfiguration, we need to know the

current architectural model's state and dynamic instrumentation has the potential to

provide this information.

2.2.1 Component Configurations

The main architectural models are also referred to as the architectural styles of
distributed systems. The models or styles are based on the concept of services provided
by communicating components engaged in message passing. An architectural model of a
distributed system first simplifies and abstracts the functions of the individual

components of a distributed system and then considers:

" The placement of these components across a network of computers - aiming
to define useful patterns for the distribution of data and workload.

" The inter-relationships between the components - their functional roles and

the patterns of communication between them.

An initial simplification of an architectural model is achieved by classifying components

as server components, client components and peer components. The latter are

components that provide services and communicate in a symmetrical manner to perform

a task. This classification of components identifies the responsibilities of each and helps

in assessing their workloads and determining the impact of failures in each type of

component. The classification can also be used to specify the placement of components in

a fashion that meets the performance and reliability goals of a system. The two most

11

widely used architectural models are client-server and peer-to-peer. These two models

and variations on the basic client-server model are considered further in [19].

2.2.2 Software layers

The term software architecture referred originally to the structuring of software as layers

or modules in a single computer and more recently in terms of the services offered and

requested between components located in the same or different computers. The

component/service-oriented view of a distributed system is often expressed in terms of

software layers as shown in Figure 2.1

Application services

Middlcwarc

Network operating systems

Computer and network hardware

Figure 2.1: software layers

Platform

Figure 2.1, introduces the terms platform and middleware, which are defined as follows:

" Platform: the combination of hardware and network operating system layers

are often referred to as the platform that supports the distributed system and
its associated applications.

" Middleware: the layer of software that essentially bridges the gap between

application components/services and the network operating system.
Middleware, which is considered further in chapter 3, also masks
heterogeneity and provides a convenient programming model for application
developers.

2.3 Fundamental Models
The architectural models share the major design requirements, which are concerned

primarily with the performance and reliability characteristics of components, services,

networking and the distribution of resources in a system. In this section, we present

12

models based on the fundamental properties that allow us to be more specific about a

system's characteristics and the failures and security risks they might exhibit.

There is much to be gained by knowing what our designs do, and do not, depend upon.
Such dependencies will then allow us to decide whether a design will work if we try to

implement it in a particular system, as we need only ask ourselves whether our

assumptions hold in that system. Also, by making our assumptions clear and explicit, we

can hope to prove system properties using mathematical techniques and these properties

will then hold for any system that meets our assumptions. Finally, by abstracting only the

essential system elements and characteristics away from the details such as hardware, we

can clarify our understanding of our systems.

The aspects of distributed systems that we wish to capture in our fundamental models are
intended to help us to discuss and reason about:

" Interaction: Computations occur within components that interact by passing

messages, resulting in communication (i. e. information flow) and co-

ordination (synchronization and ordering of activities) between components.
In the analysis and design of distributed systems we are concerned especially

with these interactions. The interaction model must reflect the facts that

components depend on each other and that communication delays may take

place, thereby hindering co-ordination. The interaction model must also

account for the difficulties of maintaining the same notion of time across all

components in a distributed system.

" Failure: The correct operation of a distributed system is threatened whenever a

fault occurs in any computer, component or the network that connects them.

The failure model classifies such faults and provides a basis for the analysis of

their potential effects and for the design of systems that are able to tolerate

faults of each type while continuing to run correctly.

" Security: The modular nature of distributed system and their openness exposes

them to attack by both external and internal agents. The security model
defines and classifies the forms that such attacks may take, thereby providing

13

a basis for the analysis of threats to a system and for the design of systems that

are able to resist them.

Detailed consideration of the fundamental models exceeds the scope of the thesis. We

must emphasize at this stage that security aspects (relating to the security model) exceed
the scope of the instrumentation architecture presented in the thesis. Security is only

mentioned as one of the possible areas for future follow on research in the Conclusions.

However, before concluding this background chapter it is important to describe the

concept of dependencies in distributed systems. This is necessary as dependencies are

one of several significant aspects that the instrumentation intends to uncover. A

dependency relationship is established when one component depends upon another

component. To be more specific we may say that a dependency occurs when one

component depends on the services provided by another component.

We consider service dependencies as opposed to component dependencies because a

service can be used to represent a single logical concept such as a chat-room or printer

service. Service dependencies may be modelled as a directed graph (digraph) in which a
directed arc or edge implies that a certain node, or component, uses the service provided
by another component(s). The directed edges are used to represent the service
dependencies and nodes are used to identify the components that feature in the

dependency relationships. Figure 2.2, shows a simple example that represents the

dependencies between components A, B, C, D and E.

Dependent
Comporrat

r'

1 1.. N Independent
Component

(a) Conceptual representation of services dependencies

(b) Service dependencies between components A. B. C. D. E

Figure 2.2: service dependencies

14

However, things are somewhat more complicated because service dependencies are
dynamic since a component's state may change, giving rise to changes in its

dependencies. In addition, a client component may only use, and depend upon, a service
for a specific time period and after the expiry of this time period the dependency ceases
to exist. This dynamic behaviour suggests that service dependencies, and hence the
directed edges used to represent them, have a lifetime that must be must represented by

dynamically maintaining the digraph to provide a faithful representation of the distributed

application's behaviour.

The dynamics of service dependencies suggest a need for facilities that assist dependency

management. As we shall see later in the thesis, instrumentation can be used to assist
dependency management. This issue is explored further in chapters 7 and 8, which are

concerned with the development of the instrumentation architecture and its

implementation respectively.

Z4 Chapter Summary
This chapter has considered the architectural and fundamental models that further our

understanding and reasoning capabilities in relation to the structure and behaviour of
distributed systems. These models help in understanding and appreciating the

requirements that must be met in the development of distributed systems. This

appreciation will also help in the development of an instrumentation architecture that
furthers an understanding of the structure and runtime behaviour of distributed systems.
The next chapter considers the development of distributed systems and particularly the

programming models and technologies that are used to develop the service providing
components that constitute distributed systems.

IS

Chapter 3

Distributed System Development

In this chapter we consider the network transport and software technologies that facilitate

communication in distributed systems and provide programming models to assist the
development of distributed application software. The chapter begins by introducing

middleware as software technology used to bridge the gap between network operating

system and application level software. The bulk of the chapter concentrates on utilities
that middleware provides and in particular, outlines the principles of distributed object-
based middleware and distributed events and notification. This is necessary because

object-based middleware will feature in chapters 7 and 8, which are concerned with the
design and implementation of the instrumentation architecture respectively. It is assumed
that the reader has some familiarity with distributed systems development technologies,

particularly object-based middleware.

3.1 Distributed Programming Models
The communication paradigm of distributed systems is that of message passing. Over the

years different programming models have been developed to support the underlying

message passing paradigm. These programming models range from the low-level socket

abstraction, through to Remote Procedure Calls (RPC) right up to higher-level object-
based Remote Method Invocation (RMI) and service-oriented abstractions. The socket

model provides an API for the Internet protocols. RPC, RMI and service-oriented

abstractions constitute middleware, which abstract sockets and, amongst other things,

mask heterogeneity. The consideration of these models is important because not only will
these models be used in the development of the instrumentation architecture, but they

also reveal the protocols, constructs and mechanisms that allow communication between
distributed resources.

16

Middleware was introduced in chapter 2 as a software layer that sits between the network

operating system and application level components and their services. The term Network

Operating System (NOS) is used to refer to an operating system that has in-built

networking facilities that may be used to access remote resources. However, a NOS still

retains the autonomy of its host such that, while remote resources can be accessed, a NOS

cannot control or schedule remote processes in some other host. In the present climate,

middleware plays a crucial role in the development and functioning of distributed

systems.

The concept of middleware for distributed systems arose in response to increasing

heterogeneity in computer systems. The growth of the Internet and the number of services

relying on it forced developers to create standard APIs, which hide the underlying

technologies. The term middleware was given to such APIs because they resided "in the

middle" of the lower level platform layer and higher-level applications.

Generally middleware masks heterogeneity in network technology and hardware (host

CPU). Heterogeneity in operating system is also usually masked. Depending on the type

of middleware, heterogeneity in programming language and vendor implementation may

sometimes be masked.

In addition to masking heterogeneity middleware also provides transparency, which is

highly desirable in distributed systems. Transparency is the ability to conceal all the

details of distribution so as to make things appear as a local setup. The ANSA Reference

Manual 01.00 [21] identifies eight forms of transparency: access, location, concurrency,

replication, failure, mobility, performance and scaling transparencies, which are

described further in [19]. Location transparency and concurrency transparency are always

provided by middleware. Depending on the type of middleware, some levels of

replication, failure and mobility transparency may also be provided.

3.2 Object-Oriented Middleware - Distributed Objects
The term Distributed Object Technology is synonymous with object-oriented

middleware. However, the term provides a greater sense of identity, suggesting that

distributed object technology is a new paradigm rather than just middleware in an object-

oriented flavour. Distributed object technology combines a distributed object model with

17

protocols and infrastructure services that allow objects to be spread over a network so

that they may communicate with each other. The main operations required of the majority

of distributed object technologies are:

" Creation of remote objects -a remote object is created in an address space and

given some initial state value.

" Location of remote objects - the location of remote objects involves placing

an object and its associated files somewhere on a network from where it may
be accessed and used by clients.

" Method invocations on remote objects - in RPC systems the unit of

communication is a procedure call. Remote objects encapsulate data and

provide methods for accessing the data. Therefore in distributed object-based

systems communication is achieved through method invocations made on

remote objects, which return the results back to the caller.

" Deletion of remote objects -a remote object will consume resources during its

lifetime. To reclaim these resources, remote objects need to be deleted when

they are no longer needed.

As we shall see in subsequent chapters, the instrumentation services, amongst other

things, are capable of providing either direct or indirect information relating to these

operations.

An understanding of the principles underlying the majority of distributed object

technologies is important to the remainder of this thesis. These principles are described

below in relation to Java RMI which is a relatively simple Java-based middleware

technology. Jini middleware technology is mentioned throughout the thesis and it is

described further in chapter 8.

3.2.1 Basic principles of distributed objects
Distributed objects are objects that exist in an address space and offer methods that can
be subjected to remote method invocations (RMI calls) from objects in separate address

spaces. Typically, a separate address space may be a different virtual machine on the

same computer or a virtual machine running in a different computer connected by a

18

network. By convention, the code issuing the call is referred to as the client and the target

object (on which the method is invoked) is referred to as the server object (or remote

object). A crucial aspect of distributed object technology is to make the remote nature of
the call transparent so that, from the programmer's perspective, there is no (or extremely
little) difference between remote and local calls.

A remote call is simplified by separating it into a request (asking for a service) and a

response (sending results back to the client), which are considered further in subsequent

sections. From the point of view of the client, the request and response can be completed

as one atomic action, which is referred to as a synchronous call. Alternatively, they can
be separated, such that the client issues a request and then issues a wait for a response,

which is referred to as a deferred-synchronous call. In some cases the response part may
be empty (i. e. no values are returned to the client), which is referred to as a call on a one-

way method. Calls on one-way methods can be asynchronous since the client does not

need to wait until the call is finished.

The main entities and concepts that make up remote method calls are:

" Remote objects - on which the client wants to call a remote method.

" Remote references - to identify the network location of the target remote

object.

" Remote interfaces - to specify the methods of a remote object that are

available for invocation.

" Interface Definition Language (IDL) -a language that can be used to specify a

remote interface and deal with heterogeneity between different programming
languages.

Proxies - lightweight objects, used at both the client and the server, which
"trick or fool" the real client/remote object into thinking that they are the real

remote object/client respectively.

" Marshalling - serialization into byte stream and transmission across the

network. Conversely, unmarshalling is the receipt of a serialized byte stream

and the reconstitution into the original data structures and objects.

19

It is assumed that the reader has some prior knowledge of these entities as they will be

used in subsequent sections to describe the basic principles and operation of Java RMI.

The following sections describe communication in distributed object systems using

material drawn from [22].

3.2.2 Distributed object communication
Remote method invocation is the main means of communication between distributed

objects. Remote method invocation has its origin in the remote procedure call mechanism
(RPC) and is regarded as the object-oriented version of RPC. Essentially, the remote

method invocation process provides a protocol that specifies how distributed objects
interact. Remote method invocation occurs in Java RMI, CORBA and Jini, although

people tend to associate remote method invocation with Sun Microsystem's Java RMI

implementation. There are slight differences between remote method invocation in Java

RMI, CORBA and Jini however, we may consider an archetypal remote method
invocation as shown below in Figure 3.1.

Figure 3.1: archetypal RMI software layers 1221

Figure 3.1 shows the archetypal software layers that sit below the client and server

objects and facilitate remote method invocation. Figure 3.1 also shows an object registry,

which the client object searches in order to obtain a remote reference to the remote server

object. Of course for the client to find such a reference the remote server object must

register a remote reference in the first place. The object registry is regarded as a core

20

service and its implementation varies for Java RMI, CORBA and Jini. The two main
implementations are: a Naming Service, where the client looks up a reference "by name"
(like a White Pages telephone directory), or a Directory Service, where the client looks

up a reference "by type" (like a Yellow Pages telephone directory).

Figure 3.1 shows the logical path of the RMI call, which is the path that the client
"thinks" is being followed. However, the call actually follows the physical path through

the software layers that make up the RMI infrastructure software. On the client side, the

call is passed to the client proxy, which represents the remote server object at the client.
The runtime support layer is responsible for the interprocess communication required to

transmit the call to the remote server's host, including the marshalling of the call

parameters. The network support layer is responsible for establishing socket connections

with the remote server's host and the implementation of the network transport layer. The

software layers on the server side provide the same functionality only in the reverse

sense, such that the RMI call is accepted, processed and any result is returned to the

client.

We may pause at this stage to note two of the challenges that this process presents to the
instrumentation architecture:

" For the instrumentation services to acknowledge and monitor RMI calls, we

need a mechanism that intervenes in the call somewhere along the physical

path

" When a client obtains a remote reference to a remote server object it becomes

dependent on the remote server, until the remote reference becomes null. A

different type of instrumentation service is needed to record such
dependencies and therefore provide a picture of "what depends on what"

within a particular application.

We shall see how these two challenges are addressed later in chapters 7 and 8. However,

we may now proceed to describe Java RMI's implementation of the archetypal model.

21

3.2.3 Java RMI
Java RMI provides a Java-based implementation of the RMI protocol. Java RMI is the

simplest of the distributed object technologies and provides a good starting point for

those keen to learn how to develop distributed object applications. Figure 3.2 shows the

Java RMI implementation of the archetypal model.

Figure 3.2: Java RMI layers [221

The client and server proxies are represented as stub and skeleton files respectively,

which, are generated using Java's rmic compiler. The remote reference layer understands
how to interpret and manage references made from clients to the remote server objects.
The transport layer establishes and maintains the socket connections between the client

and server hosts. Java Remote Method Protocol (JRMP) is main transport protocol used

to transfer data across the network and RMI-over-IIOP.

Java RMI provides a simple Naming registry, rmi registry, which allows clients to

lookup a remote reference by name. The rmiregistry maintains a table, which maps

textual URL names to remote references hosted on a particular host. The rmiregisty is

accessed using Java's Naming class, whose methods take a URL string as:

rmi: //host: port/RemoteObject

22

where rmi is the protocol, host and port refer to the location of the rmiregistry

process and RemoteObj ect is the name "bound" to the remote server object. The protocol

may be omitted since RMI is implied. If the host : port are omitted then the local

computer (localhost) is assumed on the default port (1099). The server registers the object

using the Naming. rebind method as:
Naming. rebind("RemoteObject", remoteObject);

Where remoteObj ect is an instance of the remote server object that will process RMI

calls. The client obtains a remote reference using the Naming. lookup method as:

remoteObject =
(remoteObject)Naming. lookup("rmi: //crosdreil/Remoteobject");

When the client has a valid remote reference it is in a position to make RMI calls on the

remote object.

If we assume that the client and remote server objects are located on separate hosts then
the stub file needs to be transferred to the client's host. This could be done manually, but

this is often inconvenient and defeats the objective of "self-serving" distributed systems.
The preferred approach is to have the stub file downloaded automatically to the client
from the remote server. This is actually one of Java RMI's most significant capabilities,

namely the ability to dynamically download Java class files from any URL to a JVM

running in a separate host [23].

3.3 Distributed Events and Notification
RMI calls provide a synchronous means of communication based on a request/reply pair.
Essentially, the client (or caller) is required to wait to receive until a reply, or an
exception is received from the server. The one exception to this rule is CORBA's one-

way calls, which do provide an asynchronous mode of communication in that the client is

not held up waiting for a reply. In the main we may regard RMI calls as providing a
synchronous means of communication based on a request/reply pair.

While RMI calls provide an effective means of communication, their reliance on a
request/reply makes them unsuitable for dealing with asynchronous communication.
Event-based systems do support asynchronous communication through a process of
notification. Objects subscribe to receive notifications of certain types of events. An

23

object may generate or publish an event, which is then sent as a notification to the

subscriber.

3.3.1 Overview of Distributed Events
The idea behind the use of events is that one object can react to a change occurring in the

state of another object. Notifications of events are asynchronous and determined by their

receivers. Events provide a natural model for dealing with certain phenomena, which

occur in conventional single-address space computer applications. For example, in

interactive GUI applications, the actions that the user performs on objects, such as

manipulating a button with a mouse, are seen as events that cause changes in the objects
that maintain the state of the application. The objects that are responsible for displaying a

view of the current state are notified whenever the state changes. Later in chapters 7 and
8 we shall see how events can be used to notify when an instrumentation service changes
its state.

In general, a distributed event system has a different set of characteristics and

requirements than that of a single-address-space event system. Notifications of events
from remote objects may arrive in different orders on different clients, or may not arrive

at all. The time it takes for a notification to arrive may be long (in comparison to the time
for computation at either the object that generated the notification or the object interested

in the notification). There may be occasions in which the object wishing the event

notification does not wish to have that notification as soon as possible, but only on some

schedule determined by the recipient. There may even be times when the object that

registered interest in the event is not the object to which a notification of the event should
be sent (third-party objects).

A significant feature of distributed notification is the ability to place a third-party object
between the object that generates the notification and the party that ultimately wishes to

receive the notification. Such third parties, which can be strung together in arbitrary

ways, allow ways of off-loading notifications from objects, implementing various
delivery guarantees, storing of notifications until needed or desired by a recipient, and the
filtering and rerouting of notifications.

24

The remainder of this section briefly introduces distributed events in Jini. As with RMI

calls, the significance of distributed events is twofold: first they are used to allow
instrumentation services to communicate with one another and second, instrumentation

services must be capable of recording application-level events. The description to follow

makes use of material provided in the Jini Distributed Event Specification [24].

3.3.2 Jini Distributed Events
Jini middleware has already been mentioned previously as a Java based middleware that

supports standard Java RMI proxies. Jini also supports non-Java RMI proxies (i. e. stubs)
and smart proxies. It should be pointed out that Jini is not just "a more substantial RMI".

Jini goes much further than Java RMI in providing a programming model based on

services and federations, which are dynamic collections of services that other services
may join and leave dynamically. The most recent version of Jini (Jini 2.0) provides Jini

Extensible Remote Invocation (JERI) [25], which is essentially a new RMI programming

model.

Jini is the middleware technology used to implement the instrumentation architecture and

a thorough consideration of Jini is provided in the implementation chapter - chapter 8.

This section is only concerned with Jini's support for asynchronous distributed events.
Jini distributed events will also be considered in chapter 8 for notification of changes in

state in instrumentation services.

The basic, concrete objects involved in a distributed event system are listed below and
their relationships are illustrated in the basic event model of Figure 3.3.

" The object that registers interest in an event,

" The object in which an event occurs (referred to as the event generator),

" The recipient of event notifications (referred to as a remote event listener),

" The remote event itself (an object passed from generator to listener to indicate

an event occurred).

25

1. The remote event listener registers interest in a
particular kind of event with the event generator

r----, v
Remote event

listener
Event

generator

The event generator fires a remote event to
indicate that an event of that kind has occurred

Figure 3.3: distributed event objects

An event generator is an object that may undergo some form of state change that might
be of interest to other objects and allows other objects to register interest in those events.
This is the object that will generate notifications when events of this kind occur, sending
those notifications to the event listeners that were indicated as targets in the calls that

registered interest in that kind of event.

A remote event listener is an object that is interested in the occurrence of some kinds of

events in some other object. The major function of a remote event listener is to receive

notifications of the occurrence of an event in some other object (or set of objects).

A remote event is an object that is passed from an event generator to a remote event
listener to indicate that an event of a particular kind has occurred. At a minimum, a

remote event contains information about the kind of event that has occurred, a reference
to the object in which the event occurred, and a sequence number allowing identification

of the particular instance of the event. A notification will also include an object that was

supplied by the object that registered interest in the kind of event as part of the

registration call.

Jini events will also feature later in chapter 8, which considers their use within the
instrumentation architecture.

3.4 Distributed Component Technologies
Distributed objects provide the main building blocks for building distributed-object based

applications. However, as these systems grew in terms of scale and complexity it was

realized that more sophisticated software engineering practices were needed to ease both

26

the development process and the overall maintainability of distributed applications. This

realization led to the concept of distributed component technologies that utilized the

principles of software component engineering to allow applications to be assembled from

off-the-shelf components.

3.4.1 Component Concepts
Components can be regarded as a collection of objects, which communicate to provide a

set of services. Components are typically deployed as standalone entities in suitable
formats such as Dynamic Link Library files (DLL) or Java Archive files (JAR).

Components provide well defined interfaces through other components can use their

services. This gives the impression that components are connected via interfaces and

provides an attractive component-connector model for developers.

In many ways, software components are analogous to integrated circuits (ICs), which are

used in electronics. ICs are "black boxes" that encapsulate functionality and provide

services based on a specification. Developing applications with software components is

analogous to wiring together ICs to build a complex circuit instead of using discrete

components (resistors, capacitors, inductors etc.).

Local component technologies emerged from object-oriented programming to assist

application development through a coarse-grained assemblage of components.
Microsoft's Component Object Model (COM) was one of the earliest local component

technologies. ActiveX controls are among the many types of components that use COM

technologies to provide interoperability with other types of COM components and

services. Sun Microsystems introduced its JavaBeans technology to bring components to

the Java world.

In a similar fashion, distributed component technologies emerged as a natural progression
from object-oriented middleware. Local components exist in the same host and

communicate by sending events to each other in a publish/subscribe fashion. Distributed

components combine the concepts of local component technologies with the

communication principles of object-oriented middleware to allow components to

communicate across hosts. In general, communication is achieved using the techniques

and protocols of object-oriented middleware (i. e. RMI or RPC).

27

Distributed component technologies include Microsoft's DCOM (an extension to COM),

CORBA's Component Object Model (CCM) and Sun Microsystem's Enterprise

JavaBeans (EJB) an extension to JavaBeans. A thorough description of DCOM. CCM

and EJB exceeds the scope of the thesis. However, for completeness, to conclude this

section we describe how components can be regarded as entities that provide and use

services provided by other components. This allows us to regard a distributed

component-based application from a service-oriented view point.

3.4.2 Service-oriented abstraction
Sun Microsystem's Jini technology is not strictly marketed as a component technology.

Jini was initially developed as a connection technology intended for connecting small-
footprint computing devices to a network. However, Jini has matured into a Java-based

distributed middleware technology that allows applications to be developed as a

collection or federation of services. Jini as such does not provide comparable component
facilities to EJB (i. e. beans, builder tools, containers etc.), but it can still be used to

develop component-based applications.

In such applications, server components consist of several objects, which communicate to

provide a set of services. Jini tends to pay more attention to the distribution of services

that distributed components provide rather than the components themselves. Jini's

service-oriented view regards an application as a federation of services that can be used
dynamically by clients and other servers. During the federation's lifecycle existing

service providing components may leave the federation or adapt the services they

provide. Similarly, new service providing components may join the federation to increase

the range of services provided.

More concerted efforts towards distributed service-oriented development comes from

technologies such as Openwings [26]. Openwings is a service-oriented framework that

provides a variety of core services including: component services, connector services,

platform services and data services. Currently, Openwings builds on top of Java and Jini

technologies to provide a more complete solution to distributed service-oriented
development. However, Openwings is not specifically tied to Jini.

28

More recently, service-oriented development has followed along the lines of Web

Services and Microsoft's NET, which provides software technology for developing

applications based on Web Services. However, Web Services are not based on any
distributed object technology (unlike Java RMI, CORBA, DCOM and Jini). A common

misconception is to compare Web Services alongside Java RMI, CORBA, DCOM, and
Jini. Web Services do support distributed systems computing technologies, but that is

where the common ground ends [27]. The only possible relation is that Web Services are

now sometimes deployed in areas where distributed object and component applications
have failed in the past. For this reason, the approach to instrumentation described in the

thesis is not directly applicable to Web Services.

The thesis concentrates on monitoring the behaviour of service providing components

and in turn the services they provide. The components that are monitored are based on

some distributed object model and communication is based on remote method calls and

event notifications. In order to monitor such components, the instrumentation services
first need to acquire certain structural information about the components. Such

information includes the collection of objects that make up the component and the other

components that a component depends upon for service provision (i. e. service
dependencies).

The instrumentation services must also be capable of acquiring dynamic or behavioural

information exhibited by components. The "window" into this behavioural information is

the passive monitoring of remote method calls and events generated and received by the

component. In terms of the previous IC analogy, this is similar to attaching high

impedance probe to the IC's pins and observing the signals on an oscilloscope.
Essentially, the acquisition of a component's structural and behavioural information sets
the challenge for the remainder of the thesis.

3.5 Chapter Summary
This chapter has considered the programming models that are used to develop distributed

applications. The chapter has concentrated mainly on object-oriented middleware and
inter-object communication using remote method invocation and distributed events.
Attention has focused on Java RMI as it is a relatively simple middleware to consider.

29

The consideration of object-oriented middleware has been necessary in order to reveal the

low-level dynamic interactions that the instrumentation services must be aware of. In

particular, it is crucial that the instrumentation services are capable of intercepting RMI

calls and events. The next chapter moves on to consider previous and current research

concerned with monitoring and generally understanding distributed systems.

30

Chapter 4

Review of Software Instrumentation Research

This chapter reviews the current developments in software instrumentation. The chapter
begins with a brief introduction to the historical background to software instrumentation.
The chapter then goes on to describe of the recent "state of the art" developments, aimed
at using software instrumentation in distributed applications. The chapter concludes by

outlining the contribution of this thesis, which extends on previous instrumentation

developments and refines several ideas considered in the more recent state of the art
developments. The aim of the chapter is not only to review current instrumentation
developments, but to highlight the problems facing software instrumentation
development and the techniques used to address these problems.

4.1 Historical Considerations
The basic technique of software instrumentation is the insertion of instrumentation code
at points of interest throughout a program so that we may further our understanding of the

program when it executes. Originally, this technique was used to examine and monitor
programs that nm on single processor machines and for analyzing the performance of

real-time systems. The parallel computing community later adopted instrumentation to
debug, tune and visualize parallel applications [28-32]. More recently distributed system
developers have recognized the potentials of instrumentation, used in a dynamic regime,
to monitor and manage today's distributed applications.

Probably the earliest documented use of software instrumentation was that of
Satterthwaite [33] who developed an integrated debugging system for use with ALGOL

W" rograms. Although [33] does not described the system as such, [34] regards this

system as an example of a dynamic analyzer and goes on to describe the two fundamental

parts:

Z ALGOL W is an approximate extension to ALGOL 60 with additional list processing facilities and data
types.

6

31

" An instrumentation part - which adds instrumentation statements to a program

either while it is being compiled or before compilation. When the program is

executed these statements gather and collate information on how many times

each program statement is executed.

"A display part - which collects the information provided by the

instrumentation statements and prints it out in a form which can be understood
by the reader. Typically this produces a program listing where each line is

annotated with the number of times the line has been executed.

[34] mentions how dynamic analyzers were used as part of a more comprehensive test

environment for early programming languages (e. g. ALGOL and FORTRAN). They

were also closely associated (even integrated) with the compiler, through which they

could be switched on or off by a compiler directive. Two of the main problems of
dynamic analyzers, as noted in [34], were:

" They relied on source code instrumentation, which was not always possible

when the program relied on additional pre-compiled libraries.

" The instrumentation code often affected program performance, which

presented problems in real-time applications.

The term `dynamic' is used in the sense that code insertions revealed dynamic (runtime)

information relating to a program. This is not to be confused with the dynamic concepts
described in this thesis. The thesis uses the term dynamic in relation to components,

which can provide instrumentation services on-demand and can be moved around a

network so that they can monitor messages and events that pass between remotely located

components.

Although this early approach may seem trivial in comparison to current software
instrumentation approaches, it was regarded as advanced at the time. The approach also
laid the foundation for modern profiling tools, such as gprof [35]. Satterthwaite's work
helped programmers in understanding the behaviour of their programs and even went

some way to helping them to write better programs. It also defined an important

32

landmark, which was the realization that program testing and traditional unobtrusive

approaches to debugging were insufficient to understanding a program.

In some ways this may be thought of as the first documented point from which program
instrumentation and monitoring systems were looked at with interest. However, as in

many scientific disciplines, change fuels further advancement and this was certainly the

case were software instrumentation was concerned. The change in question was the move
from uni-processor computing towards parallel and distributed computing.

4.2 State of the Art Developments
The more recent state of the art developments take advantage of distributed object and

component-based middleware technologies to provide instrumentation capabilities.
Through these technologies instrumentation may be developed as components (e. g.
Enterprise Java Beans) or as services, similar to the core services provided by

middleware technologies themselves. Several researchers have also used Reflective
Middleware, which uses instrumentation concepts as part of a more comprehensive
system capable of reflecting on a system's structure and behaviour at runtime. Aspect-

Oriented Programming (AOP) is another approach which is emerging as a popular means
for the management and monitoring of enterprise-level applications, through its

separation of concerns.

The following sections describe several significant recent state of the art developments in

terms of their design, their capabilities and their scope. It must be highlighted that several

of the developments below go further than simply providing instrumentation capabilities
in that they provide more comprehensive distributed application management
frameworks. In contrast, the thesis only considers instrumentation and by doing so,
describes a framework on a different slant to these other recent developments. The

different slant is that of a thorough academic treatment of dynamic instrumentation, from

requirements and formal analysis through to design, implementation and evaluation.

4.2.1 Monitoring Distributed Object and Component Communication
(MODOCC)
Monitoring Distributed Object and Component Communication (MODOCC) is a system
designed to monitor behaviour in middleware-based applications. A complete description

33

of MODOCC, ranging from initial motivation and inception through to implementation

and evaluation is provided in [6]. MODOCC regards the process of software monitoring

as that of observing various aspects of the execution of some monitored application. An

application is prepared for monitoring by instrumenting the application and this involves

adding or changing something in the application or its execution environment. The party
interested in monitoring is a monitoring application. A monitoring system supports the

monitoring by performing measurements (monitoring data) and packaging the results for

presentation to the monitoring application.

The notation bears some similarity to that used in this thesis. An application is monitored
by the addition/removal of instrumentation. However, as will become apparent in

subsequent chapters, this thesis also regards a monitor as one of several specific
instrumentation units. This thesis uses the term management agent to refer to the party
that uses the monitoring data to make sense of what is happening in the application and

also to impart changes to the applications behaviour or its execution environment.

[6] uses a separation of concerns to decompose the monitoring system into three vertical
layers or tiers, shown below.

Figure 4.1: MODOCC - decomposition of the monitoring system [61

The monitor tier contains monitors, which are used to concentrate the knowledge that a

monitoring system has about a monitored application. Monitors request and receive data

34

from a monitored application on behalf of the monitoring system. The instrumentation

tier represents the monitored application within the monitoring system. This tier contains
instrumentation units which include all the software components added to or modified in

a monitored application and/or its execution environment. The Monitoring Support

System tier (MSS) performs monitoring activities independent from the specific

monitoring application domain and monitored application domain. An example is the
dissemination of monitoring data by way of collecting monitoring data from

instrumentation units and delivery to a monitor(s) in the monitor tier.

Four basic groups of monitoring activities are identified, each of which are carried out or

shared by the three tiers, as shown in Figure 4.2.

Figure 4.2: MODOCC - monitoring activities 161

" Generation: involves instrumentation units measuring and packaging

monitoring data which is made available to the MSS.

" Dissemination: involves the MSS collecting monitoring data from an
instrumentation unit and delivering it to interested monitors.

" Processing: involves the MSS analyzing the monitoring data from

instrumentation and converts it into a format and level of detail suitable for

monitors.

Presentation: involves a monitor offering a view on monitoring data form

MSS appropriate for the monitoring application

35

MODOCC describes and evaluates several earlier monitoring systems. The evaluation

criteria are: architecture, middleware instrumentation for monitoring communication
behaviour, support for analysis of concurrent activities and the overhead incurred by the

monitoring system. The systems evaluated are: OLT [36], HiFi [37], MOTEL [16,38,39]

and MIMO [40]. Of these systems, OLT is a commercial tool available from IBM and the

others are academic research projects with some industrial participation. OLT and
MOTEL are briefly mentioned below due to their sharing of some common ground with
this thesis.

Object Level Trace (OLT) is part of IBM's Distributed Debugger, which is a client/server

application for detecting and diagnosing errors in programs running across networked
hosts. OLT models distributed applications at three levels: hosts, processes/threads and

objects. A host is regarded as an execution environment, such as a Java Virtual Machine

(JVM) running an instance of the WebSphere Application Server (WAS). A

process/thread represents a unit of sequential execution and an object represents a

programming language level object. Figure 4.3, taken from [6], illustrates the architecture

of OLT.

Figure 4.3: OLT architecture [61

The sequence of operations is relatively self-explanatory due to the annotated arrows

shown in the figure and a detailed description of the mechanics of the architecture is

provided in [6]. It should be highlighted that the OLT Runtime and Debugger Engine

need to be installed on each host running WAS.

36

The main interest in OLT from the point of view of this thesis is its ability to monitor

Java RMI remote objects. The main emphasis is on debugging Java RMI applications and

little support is provided for dealing with CORBA applications. However, it is still

possible to deal with CORBA indirectly through the support provided for CORBA in

J2SE from vi. 3 upwards. OLT automatically performs the necessary instrumentation so

that developers can concentrate on debugging.

Of even greater interest is OLT's ability to record Java method calls made by clients on
distributed objects, serviets, JSPs or EJBs residing on WAS. Unfortunately, little detail

could be found regarding the internal workings of this feature of OLT (probably due to

the commerciality). It is however known that OLT uses the debugging mode of the JVM

to intercept the application execution to perform measurement. As will become apparent
later the recording of remote method calls is also a feature of the instrumentation

architecture described in this thesis. The approach used herein is to intervene on method

calls and make them available as "first-class" objects in order to gain an insight into the

dynamic behaviour of Java-based distributed applications.

The MOTEL system demonstrates how formal techniques can be applied to the analysis

of middleware-based applications. This thesis also describes a formal model to formally

represent instrumentation services, to be considered in chapter 6. However, the MOTEL

approach is somewhat different. MOTEL uses formal methods to represent

constraints/properties against which the behaviour of communication services may be

monitored at runtime. The formal languages also differ in that this thesis uses Timed

Communicating Object Z (TCOZ) [41] and MOTEL uses Linear-time Temporal Logic

(LTL) [42].

[6] goes on to describe a design approach for Generic Monitoring Systems (GMS). The

design approach commences from the three tier model described above and considers a

series of design questions which lead to a design process consisting of four stages:

" GMS design,

" GMS specialization,

" Instrumentation design,

37

" Monitor design.

These four stages are illustrated in Figure 4.4.

Figure 4.4: MODOCC - decomposition of design process [6)

The first stage is the design of a Generic Monitoring System (GMS). Here designers

generalize the monitoring requirements to develop a GMS that works with monitoring
data in an independent manner. The GMS represents a generalization of an MSS and
provides an independent architecture that carries the benefits of future reuse and

scalability.

In the second stage the GMS is specialized to provide an MSS suitable for monitoring a

particular monitored application. At this stage designers also define a monitoring data

structure from which concrete data structures can be created to represent instances of
features to be monitored. The other main consideration at this stage is how the MSS will

process the monitoring data coming from the instrumentation. The third stage deals with
the design of the instrumentation, which is considered further below. The fourth stage
deals with the design of monitors that can analyze monitoring data according to some

monitoring model.

It is important to review the Instrumentation Design step of [6] because instrumentation

is the main concern of this thesis. This thesis does not cover the design of a complete

monitoring system in quite the same depth as [6]. This thesis does however provide a
thorough coverage of instrumentation ranging from conceptual ideas, through to formal

38

modelling, design and implementation. With this in mind it is important to appreciate

approaches to instrumentation design adopted by other researchers such as [6].

MODOCC considers Instrumentation Design explicitly in a separate step because the

quality of the design determines the performance of the whole monitoring system. The

instrumentation is modelled as a collection of one or more sensors. In the general case a

sensor represents a device that responds to a physical stimulus (heat, light, sound etc.)

and transmits a resulting impulse (as a measurement or the operation of a control). In

MODOCC a software sensor is a small computer program that generates some data

output when the environment in which it operates meets some condition defined in the

sensor program. The sensor is said to `trigger' the instrumentation to generate a

monitoring report from its output.

Sensors feature in the overall design instrumentation design which consists of four main

steps: sensor design, sensor placement, design of instrumentation tools and definition of
the instrumentation architecture. During the sensor design stage designers will identify

the need for individual sensors and exactly what these sensors are required to measure.
For example, designers may want a sensor to detect specific events or measure a status.
Designers will also choose data structures relating to the outputs and information content

of sensors.

Sensor placement involves determining where and how to position sensors in relation to

the monitored application. Several structured sensor placement techniques may be used:

" Using available APIs - some applications or execution environments may

provide APIs suitable for monitoring. Examples include operating system-
level notification mechanisms and middleware mechanisms such as CORBAs

interceptors [43].

" Source code modification - direct modification of the application's source

code to install sensors.

" Binary code modification - direct modification of the application's binaries,

used typically when the source code is unavailable.

39

" Wrapping -a new component replaces an existing part of an application and

when the new component is invoked it may trigger sensors that have already
been embedded within.

" Hardware - the introduction of a hardware sensor to measure information

about an application's execution in a non-obtrusive way. For example,
"network sniffing" using an Ethernet card to read all traffic on a network.

Instrumentation tools are developed to automate the placement of sensors either at API

source or binary level. After sensor placement the tools may also compile, build, package

and deploy the modified application. The two main types of instrumentation tool are:
design-time tools and runtime tools. In the final step of the Instrumentation Design

process designers define the internal architecture of the instrumentation. The architecture
defines the functional blocks that manage all the sensors and collect sensor data and

present this data to the MSS - similar to "wiring-up" all the sensors and providing control

and data capture functionality.

MODOCC represents a significant advance in the promotion of instrumentation to assist
the understanding of distributed applications. It provides a thorough systematic study of
instrumentation for use in distributed systems from the design stages of a generic
Monitoring System through to the MODOCC system itself. As mentioned already there

are similarities with the work described in the thesis. Furthermore, the timing of
MODOCC and the thesis (circa. mid-2000) suggests that both are working towards the

same aim - the promotion of instrumentation to assist distributed system developers.

4.2.2 Java Management extensions (JMX)
Java Management extensions (JMX) is a specification developed by Sun Microsystems

that provides a complete application and network management specification. Although

these management capabilities exceed the scope of the thesis, it is worthwhile

considering JMX to see how instrumentation features in the specification. The JMX

specification defines an architecture, design patterns, APIs and the services for

application and network management in the Java programming language. The full JMX

specification is provided in [24] and the following section draws on material in [24] to

provide a brief overview of JMX.

40

Figure 4.5: JMX architecture 1241

The JMX architecture is divided into three levels:

1. Instrumentation level
The instrumentation level provides the specification for implementing JMX manageable

resources. A JMX manageable resource may be an application, an implementation of a

service, a device, a user and so on. Such a resource is developed in Java or at least offers

a Java wrapper and has been instrumented so that it can be managed by JMX-compliant

applications. The instrumentation of a given resource is provided by one or more
Managed Beans (MBeans), which are either standard or dynamic. Standard MBeans are
Java objects that conform to certain design patterns derived from the JavaBeans

component model. Dynamic MBeans conform to a specific interface, which offers more
flexibility at runtime. MBeans are considered further below. The instrumentation of a

resource allows it to be manageable through the agent level, but MBeans do not require

any knowledge of the JMX agent with which they cooperate. The instrumentation level

also specifies a notification mechanism, which allows MBeans to generate and propagate

notification events to components at the other levels.

2. Agent level

41

The agent level provides a specification for implementing agents. Management agents
directly control the resources and make them available to remote management

applications. Agents are usually located on the same machine as the resources that they

control, although this is not a requirement. A JMX agent consists of an MBean server and

a set of services for handling MBeans. Managers access an agent's MBeans and use the

provided services through a protocol adaptor or connector, but agents do not require any
knowledge of the remote management applications that use them.

3. Distributed services Level
The distributed service level provides the interfaces for implementing JMX managers.
The level defines management interfaces and components that can operate on agents or
hierarchies of agents. The components are able to:

" Provide an interface for management applications to interact transparently

with an agent and its JMX manageable resources through a connector.

" Expose a management view of a JMX agent and its MBeans by mapping their

semantic meaning into the constructs of a data rich protocol (for example
HTTP or SNMP).

" Distribute management information from high-level management platforms to

numerous JMX agents.

" Consolidate management information coming from numerous JMX agents
into logical views that are relevant to the end user's business operations.

" Provide security. The combination of manager level with other agent and
instrumentation levels provides a complete architecture for designing and
developing complete management solutions. However, in this chapter we are

concerned with the components that make up the instrumentation level. The

key components of the instrumentation level are the MBean design patterns,

the notification model and the MBean metadata classes, which are considered
further below.

4. Instrumentation level components

42

An MBean is a Java object that implements a specific interface and conforms to certain
design patterns. These requirements formalize the representation of the resource's

management interface in the MBean. The management interface of an MBean is

represented as:

" Valued attributes that may be accessed.

" Operations that may be invoked.

" Notifications that may be emitted.

" The constructors for the MBean's class.

The JMX architecture does not impose any restrictions on where compiled MBean

classes are stored. They can be stored at any location specified in the classpath of an

agent's JVM, or at a remote site if class loading is used.

JMX defines four types of MBeans: standard, dynamic, open and model MBeans, which

each correspond to a different information need:

" Standard MBeans are the simplest to design and implement and their

management interface is defined by their method names.

" Dynamic MBeans must implement a specific interface and they expose their

management interface at runtime for greatest flexibility.

" Open MBeans are dynamic MBeans, which rely on basic data types for

universal manageability.

" Model MBeans are also dynamic MBeans that are fully configurable and self-
described at runtime. They provide a generic MBean class with default

behaviour for dynamic instrumentation resources.

The standard MBean is the most common type of MBean. As an example, assume an

application contains a Logger class that configures application debug messages by

specifying a log filename and a verbosity level. The Logger class may be converted into

a standard MBean by creating a management interface called LoggerMBean. Public `set'

and `get' methods may be specified in the interface to expose the filename and verbosity

attributes. Examples of these methods could be setFileName () and getFileName ().

43

The naming convention for `set' and `get' methods is based on the setxxx and getxxx
method names used in JavaBeans.

The Logger class would then need to implement the LoggerMBean interface so that a

JMX agent can use introspection to create metadata about the Logger MBean. The

MBean is managed from the JMX agent by invoking attributes and other operational

methods defined in the interface.

The JMX specification defines a generic notification model based on the Java event
model. Notifications can be emitted by MBean instances as well as by the MBean server.
The JMX specification describes the notification objects and the broadcaster and listener
interfaces that notification senders and receivers must implement. A JMX

implementation may provide services that allow distribution of the notification model
thus allowing a management application to listen to MBean and MBean server events
remotely.

The instrumentation specification defines the classes that are used to describe the

management interface of an MBean. These classes are used to build a standard
information structure for publishing the management interface of an MBean. One of the
functions of the MBean server at the agent level is to provide the metadata of its MBeans.

The metadata classes contain the structures to describe all of the components of an
MBean's management interface: its attributes, operations (methods), notifications and

constructors. For each of these, the metadata includes a name, a description and its

particular characteristics. For example, one characteristic of an attribute is whether it is

readable, writeable or both. A characteristic of an operation is the signature of its

parameter and return types.

The different types of MBeans extend the metadata classes in order to provide additional
information. Through this inheritance, the standard information will always be available

and management applications which know how to access the subclasses can obtain the

extra information.

The JMX reference architecture has been implemented by several organizations and

community groups. For example, [44] provides an implementation of the reference

architecture.

44

4.2.3 Dynamic Assembly for System Adaptability, Dependability and
Assurance (DASADA)
Dynamic Assembly for System Adaptability, Dependability and Assurance (DASADA)

is a group of DARPA funded related projects, concerned with the assembly and

management of distributed component-based systems. Several DASADA projects are

actively investigating the use of software gauges and probes to dynamically deduce

component configurations and examine distributed systems as an assemblage of

components, [10,12,13,45]. These four projects are described below.

1. Software Surveyor - Dynamically Deducing Component-ware Configurations
Software Surveyor [12] is a profiling toolkit to dynamically deduce and render the

runtime configuration and behaviour of evolving component-based software. Information
is synthesized from multiple sources and combined and rendered in a variety of formats

and made easily accessible via the Web.

Software Surveyor addresses three distinct issues:

" What is the application doing?

" What is it supposed to be doing?

" Is it doing what it is supposed to?

Software Surveyor provides probes to collect a variety of information and an
infrastructure to disseminate the information. Synthesis tools are provided for merging
information streams and make sense of the information as a whole. Results of this

analysis are aggregated to identify "behavioural norms" to augment incomplete

performance specifications. The probe infrastructure and behavioural norms can then be

used to signal users when the system is operating anomalously. Software Surveyor

requires limited prior knowledge of application connectivity and has the ability to
dynamically deploy probes. This allows Software Surveyor to be used with dynamically

reorganizing applications and those lacking complete specifications.

AppliProbes provide information about events at the application interface and/or internal

to the application. EnviroProbes uses operating system utilities to gather and emit
information on system status and resource use.

45

A Java ByteCode Instrumentor (JBCI), shown in Figure 4.6, automates the insertion of

probes and probe stubs into Java ByteCode. JBCI modifies Java class files by inserting

calls to selected probes using selected customizable instrumentation techniques. JBCI can
be extended with new probes and instrumentation techniques. Probes implemented in
languages other than Java can be called via Java's Native Interface (JNI). The next
version of JBCI will support on-the-fly probe insertion into running programs.

Figure 4.6: Java bytecode instrumentor (JBCI) [121

Events are distributed by the Siena Event Distribution Infrastructure, which was
developed at the University of Colorado [46]. XML2Java is used to translate XML to
first class Java objects with application-specific behaviours. This allows XML-encoded

events to be converted into a form that can be manipulated.

The main analysis tools provided in Software Surveyor are:

" Coalescer, which is used to merge streams of separately collected event
information to create an event timeline. Coalescer can also perform limited

aggregation of events by time interval.

46

" StackTracer, which converts streams of application events into a trace of

program execution and emits an XML representation.

" EventMonitor, which categorizes events by type and produces summaries with

expandable detail.

" Historian, which archives execution traces and computes statistics of
behaviour.

The main visualization tools provided in Software Surveyor are:

" Mapper provides a timeline-oriented visualization of application behaviour.

" XML-capable Browser, which is used to view StackTracer and EventMonitor

results.

2. Framework for Interoperable Reconfiguration Measures (FIRM) - Definition,
Deployment, and Use of Gauges to Manage Reconfigurable Component-Based
Systems

FIRM [10] is based on the definition of a set of novel gauges to assess a wide range of
critical system properties, and a scalable infrastructure to manage both the deployment

and use of gauges throughout an enterprise. FIRM primarily addresses the Continual
Coordination thrust of the DASADA program by ensuring that reconfiguration-related
interoperability problems are detected and mitigated at multiple points in the life cycle of
a system. Amongst other aims, FIRM aims to address the often-heard cry of "DLL
Hell! ", which is raised when an installation of a new system modifies the existing
installed base without sufficient verification of consistency of the new installation with
the old.

The FIRM developers point out that configuration and reconfiguration can provide
solutions to interoperability problems. Correct, enforced configuration can often avoid
many interoperability failures. Further, the ability to reconfigure a system, even after
deployment and during operation, allows the replacement of inappropriate or faulty

components. Reconfiguration also provides the opportunity to insert gauges, wrappers,

47

mediators, and other interoperability repair and monitoring components into systems to

alleviate interoperability mismatches or to detect incipient interoperability problems.

FIRM provides a set of novel gauges capable of evaluating system configurations with
respect to important interoperability properties. These gauges include those to:

" Measure the consistency and inconsistency of configurations,

" Measure the actual configurations adopted by systems,

" Measure properties across all possible configurations of a system,

" Measure redundancy and reuse properties of systems, and,

" Predict the costs of moving from one configuration to another.

Gauge-based evaluations can be performed statically on the configuration specifications
and on the deployed configurations. The evaluations can also be performed dynamically
(or, in FIRM's terminology activated) on executing systems.

FIRM provides an infrastructure to effectively deploy and use gauges, whether of its own
design or of those of others. In particular, FIRM provides the means to:

" Deploy, activate, and replace components.

" Apply gauges for coordination.

" Insert gauges into activated systems, and,

" Capture, fuse, and disseminate the outputs of gauges.

The existing research projects of Software Dock [47], Menage [48] and Siena [46] form
the technical underpinnings for FIRM. Software Dock is an agent-based, distributed
infrastructure for describing, deploying, and activating components. Menage is a
representation of configurable architectures, extending traditional architecture description
languages to address versioning, variability, and optionality in systems. Siena is a
scalable event notification service used to capture, fuse, and disseminate information in a
wide-area network. Experience gained from these projects has been used to leverage the

more comprehensive FIRM project.

3. En-gauging Architectures

48

En-gauging is an architecture developed by Teknowledge [13], which assists the design

and deployment of gauges on real distributed systems running on commercial platforms
to monitor their architecture and measure their performance. Through En-gauging,

dynamic system information may be collected in a repository, made available to a wide

variety of subscribers both automated and human. The information may then be used to

validate performance, resource requirements, and other selected service qualities and to

augment the systems' robustness and responsiveness.

According to Teknowledge: "Modern systems benefit from two adaptive technologies:

(1) the ability to compose systems from reusable modules developed and compiled

separately, and (2) the ability to distribute computing processes onto autonomous

computing nodes. Although these technologies enable the potential to adapt performance
to widely varying contexts, much of the information important for such performance

adaptation is still "compiled out" of modern systems.

Fortunately, determining when and how to adapt a running system to varying

configurations and performance demands (QoS demands) can be separated from system
functionality. The approach used in En-gauging to obtain such information involves

modelling a system's nominal behaviour and comparing it to its actual behaviour for the

system's current configuration. Whenever the system deviates from the model, either the

system must be reconfigured to achieve its QoS demands or the resources reapportioned

to balance those demands. Modelling the system's nominal behaviour enables these

validations and adaptations to be separated from the system's functionality and to be

supported by an external infrastructure.

The En-gauging architecture builds on Teknowledge's experience with the Acme

architecture description language [49] and its Instrumented Connector technology (both

developed under DARPA's EDCS Program). Acme and the Instrumented Connector

technology are combined to monitor the actual run-time architecture of a system, to reify
it into an architecture model repository, and to publish event notifications to

"subscribers" interested in such changes to the architecture. Such subscribers comprise:

" Analyzers to determine whether dynamic system constraints are satisfied.

9 Simulators to establish the system's nominal behaviour benchmark.

49

9 Trackers to respond to differences between nominal and actual, and

9 GUI animators, potentially evoking a human response to redirect system

resources.

En-gauging integrates DARPA's Quorum QoS Condition Service (QCS) [50] with the

Instrumented Connector technology. This provides the infrastructure that enables

application designers to design and deploy the gauges needed to measure and validate the

running system's performance. En-gauging also provides Composability Framework

Services, which allow application engineers to decide how and when to use performance

and configuration information for adaptation to meet the QoS demands.

4. Architecture-Based Languages and Environments (ABLE) - Using Gauges for
Architecture-based Monitoring and Adaptation

The ABLE project [45] is concerned with the development of an "engineering" basis for

software architecture. Part of this research has led to the developments of techniques for

describing and exploiting architectural styles. The ABLE project has developed several

architectural description languages: Acme, Wright and Armani [51]. From the point of

view of instrumentation and the DASADA initiative, ABLE has also considered the use

of gauges for architecture-based monitoring and adaptation.

Gauges and also probes are used as one of the main components of an externalized

runtime adaptability mechanism. The gauges and probes are used to collect low-level

performance information, which is then interpreted and used as the basis for automated

adaptation. The main foundation for monitoring and subsequent adaptation is the

architectural model. Such models are defined in terms of components and their

communication paths or connectors. ABLE makes use of gauges and probes to provide a

monitoring infrastructure, which in turn provides and abstraction from system level to

observations in an architectural context.

The monitoring infrastructure consists of three levels: at the lowest level is a set of

probes, which are deployed within a target system or physical environment. The probes

may then report observations of the actual system via a probe bus. At the second level a

set of gauges consume and interpret lower-level probe measurements in terms of higher-

level model properties. Similar to probes, gauges also disseminate information via a

50

gauge reporting bus. The top-level entities are gauge consumers, which consume the

information provided by gauges.

The information gathered by the monitoring infrastructure may be used to update and

abstraction/model to make system repair decisions, to display warnings and alerts to

system users, or to show the current status of the running system.

The designers of ABLE describe the key features of this infrastructure:

" Gauges are decoupled from the implemented system by virtue of the probe
layer. This decoupling allows gauges to be run in a distributed fashion so that

they do not affect the performance of the system being gauged.

" Gauges can be mixed and matched, supporting interoperability between

gauges that evaluate quite different properties, where the gauges may be

developed by different organizations.

" Gauges are insulated from lower-level transport mechanisms, enabling gauges

to be deployed over both RPC-based channels and publish-subscribe

mechanisms.

" Gauges can be incorporated into architectural descriptions, enabling automatic

generation and execution of gauges.

4.2.4 Instrumenting Jini Applications
The instrumentation framework described in this thesis is implemented using Sun

Microsystem's Jini middleware technology. With this in mind, this section reviews

several projects, which has focused specifically on furthering an understanding of Jini-

based applications.

1. Rio Project

Rio is a Jini community project [52], which has made a significant contribution through

an architecture that simplifies the development of Jini federations. Rio does so by

providing concepts and capabilities that extend Jini into the areas of QoS, dynamic

deployment and fault detection and recovery. Rio makes use of Jini Service Beans

(JSBs), Monitor Services and Operational Strings. Rio also provides a Watchable

51

framework, which provides a mechanism to collect and analyze programmer-defined

metrics in distributed systems.

The abstraction adopted in Rio is that, fundamentally, there are two different types of

service on a network:

" Infrastructure services, which provide the basic building blocks, which
domain components can use to perform application specific duties. Some

examples are the Jini Lookup Service, JavaSpaces and Jini's Transaction

Manager.

+ Application or domain-level components are the actual components that will

provide the federation of services that the application has to offer.

JSBs are targeted at the application or domain-level components. A JSB provides

simplicity in the development of Jini services. JSBs are Java objects that provide an easy
to use programming model while maintaining access to low-level APIs and classes.

An Operational String is a construct that represents an aggregated collection of

application and/or infrastructure software assets that when put together provide a specific

service on the network. An Operational String provides the capability to view, monitor

and determine the availability of an aggregated collection. In configuration an
Operational String is articulated as an XML document. In execution the Operational

String is viewed as a collection of service and infrastructure components.

Rio extends Jini's distributed event model to provide an easier to use model with
increased semantics. The Rio model also allows events to be monitored and interpreted

with greater ease. The extension is based on:

" Event descriptors, which provide a simple semantic for specifying and
discovering event producers of a specific kind of event. An Event Descriptor

is an attribute, which is part of the description of an event producer.

" Event Producers can be any Jini service. Formally, an Event Producer is a

service that has a zero-to-many dependency between objects such that when
its state changes all its dependents are notified. This semantic is also known as
the observer-observable and/or publish subscribe pattern [53].

52

As we shall see later in the thesis (chapters 7 and 8) the instrumentation framework

provides a higher-level abstraction of events. This abstraction is based on a new specific

event object, DynamicEventObject, which repackages Jini's RemoteEvent class to

provide supplementary information.

Rio provides a Watchable framework, which provides a mechanism to collect and

analyze programmer-defined metrics, defined in local and distributed applications. The

Rio Architecture Overview illustrates the Watchable framework with a class diagram,

which is repeated below.

Figure 4.7: Watchable framework 1521

At the core of the Watchable framework is the WatchDataStore interface. A

WatchDataSource stores a history of measured results and provides access to add, clear

or fetch items from the historical record. The Watchable interface provides a means for

locating remote WatchDataSources. Each historical record must implement the

Calculable interface by providing methods to retrieve an identifier string and a double

value. Nonetheless, this does not preclude forming more sophisticated Calculable

records.

Again, as we shall see later in the thesis (chapters 7 and 8) the instrumentation framework

provides an analyzer service, which bears some similarity to Rio's Watchable framework.

The analyzer instrumentation service allows a particular attribute to be repeatedly

53

accessed within a Java thread. An analyzer is provided with a "compute" object, which is

used to compute some application metric, based on the history of the attribute's value.

Rio also provides several further components and services:

" The Cybernode, which is an infrastructure component that provides
fundamental life-cycle support for JSBs and makes it easy for JSB developers

to deploy JSBs. The Cybernode utilizes polymorphism and aggregation
techniques, securely loading JSBs over the network, instantiating them and

providing core services needed to support JSBs and ensure their availability

on the network. The Cybemode provides container-like functionality i. e.

Cybernodes are where JSBs live. A Cybernode may contain more than one
JSB. In execution, a Cybernode runs as a Java Virtual Machine. A compute-

resource (hardware) may run on more than one or more Cybernodes. A

Cybernode also provides a QoS attribute representing the capabilities of the

compute resource on which it is executing.

" Monitor Service, which provides the capability to deploy and monitor
Operational Strings. Monitoring an operational String allows the Monitor to

detect and recover from service failure on the network. Monitors provide an

essential capability to detect the existence of running and/or available

software assets and to enable recovery in the event of failure. Central to the

monitor service is the concept of Quality of Service (QoS). The QoS concept
is based on the notion that compute resources (hardware) have capabilities
(CPU, disk, connectivity, bandwidth etc.) and software components have

requirements (response time, throughput, hardware requirements etc. Monitor

services are designed to check and monitor software requirements against the

available compute resources.

" Watchsmith Service, which provides an implementation of a distributed

Watch. The Watchsmith service allows multiple services to record Calculable

records for a distributed logical unit of work such as an applications response

time. Since applications developed using Jini are inherently distributed,

54

bounded units of work will typically span multiple Java Virtual Machines.

The Watchsmith service provides a mechanism fro distributed recording.

" Logger Service, which provides distributed logging facilities through a

generic interface based on the Java Logging API (JSR-047) [54]. The Logger

is used by infrastructure services and JSBs. Log archives reflect the activities

of the various reporting services. The content of a log message is up to the

service developer. Services report log messages across multiple logging levels

as defined in thej ava. ut il . logging. Level class.

2. Carp@
Carp@, pronounced CarpAt, [55] was developed to watch and visualize a network

consisting of several Jini services with a view to managing the services at runtime.
According to the developers of Carp@: "In a dynamic ad-hoc networking environment,
the concrete architecture evolves during runtime. Decisions like choosing an
implementation for a component, deciding a communication structure are not done at
design time but at runtime ". Therefore, in the opinion of the Carp@ developers, there is a

need to extract an architecture's description at runtime. This description can then be used

as the basis to decide about the effect of changes.

Carp@ goes beyond showing simple Jini services like other browsers do and shows

additional important information that is not available otherwise but is needed to

understand the interaction in a Jini application, which include:

" Clients and Services - Carp@ shows both the services and clients that use

services and how these components communicate through communication

channels. This is necessary, because clients may misbehave, consuming

excessive service resources.

" Messages - Carp@ enables developers to trace method calls, together with
their arguments, as messages, that are sent between services and clients for

each communication channel in an application.

" Provided and Required Interfaces - services can provide multiple interfaces

and clients may require multiple services. Carp@ shows not only these

55

provided interfaces, but also the required interfaces as ports for each

component.

" Locations - service/client location information is not made available in a

general Jini application. If services/clients should misbehave, it is necessary to
determine their locations so that performance bottlenecks can be detected and
isolated.

All this information is gathered by Carp@ at runtime mainly through the use of

reflection, which is described further in section 4.2.5 and chapter 8. The logical

architecture of the Carp@ system is based on three layers:

" Mobility layer, which is the bottom-most layer contains services that can be

used to start application services from remote locations or to move a running

service from one location to another.

" Management layer, which sits in the middle of the Carp@ system is used to

gather and store an application's runtime information. This layer provides

several services including: a Report Service and a Meta-model Service. The

Report Service gathers basic information by querying special meta-level

objects referred to as Carp@ Beans. Carp@ Beans may be queried to obtain a

variety of information ranging from the simple, such service names and

attributes up to the more complex, such as exchanged messages,

communication channels or interface ports. All this information is stored in

the Meta-model Service that contains the Carp@ internal model of the

application being observed. This model may be simply observed to provide a

view of the application or used to actually manage the application through

Carp@'s control console.

" Application level, which is the top-most level and consists of service

providing components and clients that use services. The application level also

contains the Carp@ console, which are used to view and even manage the

applications structure and behaviour.

56

The basic technique of Carp@ is to find out as much as possible about an application by

reflection and other application describing resources. It is the belief of Carp@'s

developers that: an application must be fully understood before it can be changed at

runtime. An administrator may then manipulate the application through an internal model

retrieved by introspection. These changes, applied at the meta-level may then be reflected
in the applications runtime behaviour.

Carp@'s abstraction or internal model is based on: locations, services, channels and

ports. These properties are maintained within the meta-level to provide an applications
internal model. The properties are acquired by Carp@ Beans, which communicate with

each other and notify each other of changes in the applications structure/behaviour.

Carp@ Beans are capable of obtaining structural information (component-connector

configurations), behavioural information (message communications) and resource
information (memory usage). Such information is represented at the meta-level, where it

may be viewed through a Carp@ console and use to effect changes, which are reflected
back on the application itself.

3. Dependency Management in Jini Federations

An important pre-requisite to furthering an understanding of a system is knowledge of

how components rely on one another, or more particularly, how components depend on

the services provided by other components. Such dependencies have already been

introduced in chapter 2, which described a dependency as a directed relationship between

a dependent component and one or more independent components. chapter 2 also

described how dependencies may be represented as a digraph, which provides an

instantaneous snapshot of how components depend on one another.

Dependencies feature in a number of different computing fields including databases,

network management and software development and compilation. Dependencies have

also been considered in the context of distributed systems by several authors, including

Hasseemeyer and Voß [9] and Keller [56,57]. [9] describes a generic approach to

instrumentation that effectively instruments a Jini lookup service using Java's dynamic

proxy class to trace component interactions in a Jini federation. Later in [7] Hasselmeyer

57

extends on this earlier work by considering the management of service dependencies in

service-centric applications.

Hasselmeyer provides a thorough treatment of dependencies and their management and

several of the ideas presented are extended in this thesis to provide dependency probe
instrumentation services. The design, implementation and application of deoendency

probes are considered later in chapters 7,8 and 9. Hasselmeyer describes dependency

management as a special form of relationship management as dependencies are a specific
type of relationship.

4.2.5 Reflective Middleware
Chapter 3 described what is meant by the terms middleware and went on to describe Java

RMI as a relatively simple middleware technology. Reflective middleware is effectively

middleware with reflective capabilities. [58] clarifies exactly what is meant by reflective

middleware by defining both the terms `middleware' and `reflection'. The definition

given for reflection is that of "a system that provides a representation of its own
behaviour, which is amendable to inspection and adaptation, and is causally connected
to the behaviour it describes ". The term causally connected means that "changes made to

the self-representation are immediately mirrored in the underlying system's actual state

and behaviour and vice-versa ".

A reflective middleware system could be developed from scratch although a popular

approach is to take an existing middleware and provide it with the reflective capabilities.
CORBA is often used as the base middleware from where to start, probably due to the

mature suite of standards that CORBA now has to offer, with respect to high performance

and real-time system requirements. Another benefit of CORBA is its provision of an

interceptor facility, which offers a limited form of behavioural reflection [43].

Interceptors enable a third-party to extend a CORBA implementation with additional
functionality in an ORB independent manner. Interceptors have been investigated as a

means to providing QoS management in CORBA systems [43] and more generally as a

means to providing transparent instrumentation for CORBA systems [8,59,60]. CORBA

also provides a Portable Object Adaptor (POA) facility that allows CORBA server

applications to be portable across heterogeneous ORBs.

58

The case for reflective middleware stems from the inability of existing `standard'

middleware (Java RMI, CORBA) to adapt to changes in the operational environment.
While standard middleware can meet the need of traditional client-server applications it

does not fair so well in applications with highly dynamic operational environments such

as distributed multimedia, real-time systems and mobile and ubiquitous computing. An

exhaustive review of reflective middleware exceeds the scope of the thesis, particularly in

terms of causal connectivity and adaptation capabilities. However, it is relevant to

provide an insight into reflective middleware approaches and more particularly to
describe how instrumentation tasks such as monitoring and inspection feature in

reflective middleware. The following paragraphs do just that by briefly reviewing the

approaches to reflective middleware of several key researchers with a view to examining

their approach to monitoring/inspection.

[8] considers the use reflective technology for monitoring distributed component
interactions based on three specific technologies:

" CORBA interceptors,

" Reflection on the thread model through Java,

" CORBA POA.

CORBA interceptors are used to provide low-level access to CORBA request/reply at

both the message level and process level.

[61] describes ̀ The Lancaster Experience', which surveys three generations of reflective

middleware research carried out at Lancaster University. The first generation used the

Python language to prototype reflective middleware platforms and for the definition of
four orthogonal reference meta-models: interface, architecture, interception and

resources. The second generation involved the design and implementation of an

experimental reflective CORBA platform (OpenORB). The reflective CORBA platform

provided all the characteristics of commercial ORB implementations, but supported

openness and adaptation in terms of its internal structure. In particular, the platform

allowed individual interaction types (streaming, messaging, transactions etc.) to be

specialized for different classes of application. The third generation moves away from the

59

dependence on a commercial middleware (e. g. CORBA). In this approach reflection is

used to discover the style of middleware required in a given context and then

automatically configure the middleware framework.

[61] then goes on to describe the third generation Lancaster approach in more detail. This

approach is based on the key concepts of components, component frameworks and

reflection (OpenCOM). This component-based approach is attractive because (as

mentioned in chapter 3) it allows components to be plugged-in to a component
framework, which then in turn becomes a more comprehensive component itself. It also

provides a means to overcome the monolithic characteristics associated with commercial

middleware. The component-based approach is described further in [62] for use with grid

computing and in [63] for use with mobile clients. From an instrumentation point of view
OpenCOM defines several meta-models and one of these is an interception meta-model,

which allows interceptors to interpose between components and their interfaces [64]. The

interceptor code may then be used for the dynamic interception of method calls made on
interfaces in order to monitor dynamic runtime behaviour.

[65] describes an adaptive and reflective middleware system (ARMS) for use with
distributed real-time and embedded applications. Typically ARMS can be used to

configure QoS in CORBA Component Model (CCM) applications. The ARMS research
is based on TAO [66], which is an open-source, CORBA-compliant ORB designed to

support distributed real-time and embedded applications with stringent QoS

requirements. The sections below provide an overview of the ARMS research drawn

from the extensive material provided in [65].

[65] distinguish between adaptive middleware and reflective middleware as follows:

"Adaptive middleware is software whose functional and/or QoS-related properties can
be modified either:

" Statically -for example to reduce footprint, leverage capabilities that exist in

specific platforms, enable functional subsetting, and minimize
hardware/software infrastructure dependencies; or

" Dynamically - for example in response to changes in environmental

conditions or requirements, such as changing component interconnection

60

topologies; component failure or degradation; changing power-levels;

changing CPU demands; changing network bandwidth and latencies; and

changing priority, security, and dependability needs.

Reflective middleware goes a step further to permit automated examination of the

capabilities it offers, and then permits automated adjustment to optimize those

capabilities" [67,68].

[65] describes the key research challenges that CCM developers must address to support
QoS-enabled distributed real-time and embedded applications. One challenge is that of
dealing with an ORB's location transparency features so that they respect an application's
broader QoS requirements and not apply group optimizations blindly. A second challenge
is that of changing component behaviour and resource usage adaptively without having to

modify or shut down an application obtrusively (i. e. a "live upgrade" capability).

ARMS combines adaptation and reflective concepts to tackle these problems. ARMS

defines a series of Meta-Object Protocols (MOP) [69] at various middleware levels,

ranging from the ORB core up to CCM services. Amongst other things MOPs are used to

identify the behaviours that are to be isolated and examined, such as the transport

mechanisms an ORB supports. Consideration of these MOPS exceeds the scope of this

thesis. Furthermore, ARMS main concern is QoS management for distributed real-time

and embedded applications and the thesis does not go so far as to consider real-time and

embedded systems.

4.2.6 Aspect-Oriented Programming
Aspect-Oriented Programming (AOP) [70] provides a design paradigm that achieves a
high degree of the separation of concerns in software development. AOP extends the

traditional object-oriented programming model to improve code reuse across different

object hierarchies. AOP is based on the concept of an aspect, which represents common
behaviour that is typically scattered throughout an object oriented application. Typically

aspects may occur across methods, classes, object hierarchies, or even an entire object

model.

61

As an example, consider the need to generate log messages for an application (i. e.
logging), which involves sprinkling informative messages throughout the application's

code. However, logging is irrelevant to the actual application in that it has nothing to do

with the business logic. Logging is regarded as an orthogonal behaviour that requires
duplicated code in traditional object-oriented systems. In AOP terms such behaviour

represents a crosscutting concern, as it represents behaviour that "cuts" across multiple

points in the object model, yet the behaviour is likely to be distinctly different. As a
development methodology, AOP recommends that crosscutting concerns are abstracted

and encapsulated into aspects.

In AOP terminology the advice is the additional code that is applied to an existing

application. In the logging example, this is the logging code that is to be applied

whenever the thread of execution enters or exits a method. Pointcut is the term given to

the point of execution in the application at which a crosscutting concern needs to be

applied. In the logging example a pointcut is reached when the thread enters a method,

and another pointcut is reached when the thread exits the method. An aspect may also be

regarded as the combination of the pointcut and the advice. In the logging example, a

logging aspect is added to the application by defining a pointcut and giving the correct

advice.

Weaving is the process of taking the aspects and the regular object-oriented application

and "weaving" them into one single application. The alternative approaches to weaving

are source-code weaving and byte-code weaving. Source-code weaving takes developed

source code and outputs a modified source code that invokes the aspects. Bytecode

weaving takes the compiled application classes bytecode and outputs a modified

bytecode of the woven application. Source-code weaving was used in early AOP

languages, but bytecode weaving has now been widely adopted, particularly in Java-

based AOP languages, with the advent of the Java 5 JVM Tool Interface (JVMTI) [71].

Bytecode weaving is now used by several AOP-based, enterprise-grade products in the

area of application management and monitoring, such as JBoss Application Server [72],

which is mentioned below.

62

Crosscutting concerns are common in enterprise middleware and this has fuelled the

interest in AOP in conjunction with middleware. To explain why this is so we may

consider an application based on J2EE container managed services. After deployment,

each J2EE component (e. g., a EJB or a servlet) automatically gets services, such as
logging, security and transaction support from the container. These services are

orthogonal to the core business logic. Application developers could reuse these services

without writing any additional code. In short, the J2EE services have the basic

characteristics of aspects as outlined above. However, compared with a true AOP

solution, the J2EE services model has a number of limitations, which stem from the

constraints that J2EE containers impose - in short J2EE dictates how an application

should be developed.

Further evidence for the uptake of AOP for middleware instrumentation and monitoring
is had from the various research frameworks and studies that apply AOP in order to

modularize the instrumentation and monitoring process. Several such research efforts are

considered below.

[73] considers the notion of "Aspectizing Middleware Platforms" by proposing the need
for new architectural methodologies, such as AOP, that could be applied to current

middleware to overcome their increasing complexity. [73] goes on to describe a case

study that uses AspectJ [74] in conjunction with CORBA. The study illustrates how

certain CORBA features such as fault tolerance and interceptor support can be

modularized using AspectJ. Overall, the work demonstrates that, by applying AOP

techniques, pervasive characteristics may be factored in and out of middleware systems

thus making the architecture more modularized and customisable.

[75] describes findings from using AOP for the modularization of Jini services in

pervasive systems. [75] compares a custom non-AOP instrumentation layer against AOP

instrumentation. The non-AOP instrumentation is considered first at the application layer

and second at the framework/middleware layer. The latter reflects the approach used in

the thesis, although on a far simpler scale. The results show that the AOP approach

improves the modularization of instrumentation, particularly in pervasive environments

with many objects scattered across the system.

63

[76,77] describes the SONAR framework based on the combination of dynamic AOP,

JMX and XML. [76] argues that static approaches to instrumentation/monitoring are no
longer suitable for today's complex dynamic distributed systems and goes on to describe

how the SONAR framework provides capabilities to deal with complexity and
dynamism. In SONAR dynamic aspects are used to provide runtime instrumentation that

supports a crosscutting structure. XML is used as a language/framework agnostic
language to fit with multiple AOP frameworks and JMX provides standard-compliant

visualization/management. SONAR uses AspectWerkz [78] to provide dynamic AOP to

structure system wide crosscutting concerns that may be added/removed at runtime.

The success of AOP is reflected through its incorporation in enterprise-grade products

such as JBoss Application Server. JBoss AOP is a 100% pure Java AOP framework that

is tightly integrated with JBoss Application Server. JBoss AOP helps solve the

constraints that J2EE imposes through its support for "Plain Old Java Objects" (POJOs)

as opposed to pre-defined "components". JBoss AOP allows EJB-style services to be

applied to POJOs without the complex EJB infrastructure code and deployment

descriptors. New aspects can be developed and deployed within the application server,

where they become available for all applications.

4.3 Contribution of the Thesis
The contribution provided through this thesis makes use of several ideas described in the

previous sections, particularly the use of dynamic proxies and monitor services. Bearing

in mind the financial and commercial support behind several of the above developments,

the thesis cannot deliver a system of the same compendium of functionality as JMX or

the DASADA initiative. What the thesis does provide is a through treatment of
distributed, dynamic instrumentation in isolation from any management framework. This

treatment is provided from theoretical, practical and programmatic viewpoints.

Overall the main contribution of the thesis is the conception of a dynamic software

instrumentation framework. This framework consists of a series of related models, which

include: a requirements model, a classification model, formal and semi-formal analysis

models and a programming model. The framework specifies an architecture, which

regards instrumentation as services, which are intended to complement core middleware

64

services. A proof of concept implementation of the architecture has been prototyped

using Jini (a Java-based middleware technology) to provide an API for use in distributed

Java applications. A series of case-studies are used to evaluate the architecture and assess
the effectiveness and performance overhead of instrumentation services.

In the chapters to follow, the thesis provides a reference framework, which can be used
by system architects, application developers and even middleware technology providers

as a basis for the development of subsequent instrumentation efforts.

4.4 Chapter Summary
The chapter has reviewed the practices in software instrumentation from its early
inception through to the current commercial systems, such as JMX and the various state

of the art research efforts. The review has deliberately considered software
instrumentation in relation to the different computing platforms and programming

technologies of the day.

The review started with uni-processor architectures and early languages of ALGOL and
FORTRAN and then moved onto parallel architectures. The bulk of the chapter

considered distributed systems in conjunction with object-oriented middleware and in

particular the "state of the art" developments in instrumentation for distributed systems.

This chapter concludes the first part of the thesis, which has been concerned with "setting

the scene" and providing the necessary background information. The next part of the

thesis (chapters 5-8) provides the main contribution in terms of requirements analysis,
formal modelling, design and implementation of the instrumentation services.

65

Chapter 5

Requirements of Instrumentation Services

This chapter considers the requirements that an instrumentation architecture must fulfil in

order to measure and monitor the behaviour of a distributed system. The chapter begins

by considering the different types of requirements that an instrumentation architecture

must fulfil. The chapter then goes on to consider the parameters that must be measured

and monitored and the different types of parameter. This is followed by an outline of the
functional requirements in terms of what instrumentation services must measure and

monitor. The operational requirements are then outlined, which govern how

instrumentation services are incorporated, co-exist and interact with the application

services. The chapter ends with a classification of the different types of instrumentation

service in the form of an instrumentation hierarchy, which is intended to serve as the
basis for the development of the instrumentation architecture.

5.1 Functional and Operational Requirements
In our consideration of requirements we distinguish between functional and operational

requirements. The functional requirements deal with what the instrumentation services

must measure and monitor and govern the different types of instrument that the

architecture must provide. The operational requirements deal with the incorporation of
these instruments within a distributed system and their application and attachment to the

application services that they must measure and monitor. The reasons for this distinction

are:

" To simplify the instrumentation architecture - by separating functional and

operational requirements we are employing a separation of concerns that

reduces the coupling between what instrumentation should measure and

monitor and what facilities are needed to allow this measurement and

monitoring to take place.

66

" To provide generic programming models - that developers may use as

reference models that can be tailored to meet their own specific needs.

" To provide openness - in the sense that it would be possible to re-implement
either the functional or operational aspects.

" To complement core middleware services - middleware services themselves

adopt a similar separation of concerns. For example, CORBA and Jini both

support the RMI protocol, based on the same semantics. However, the
techniques used to incorporate CORBA, or Jini middleware utilities to a Java-
based distributed system are likely to be different. Furthermore, as mentioned
in chapter 1, one of the prime aims of the thesis is to promote the case for

instrumentation as a core middleware service. To strengthen our case we feel

that it is sensible to adopt a similar separation of concerns as the current

middleware technologies.

To further justify our decision for this distinction, we consider a simple case from the
field of instrumentation used in conventional engineering:

The altimeter is an instrument developed by the French physicist Lois Paul

Cailletet [79] that measures vertical distance with respect to a reference
level. Typically an altimeter is used to measure the altitude of the land

surface or any air-bound object such as an airplane, hot-air balloon or

satellite. The physics and engineering technologies used to develop the

measurement functionality for an altimeter remain the same irrespective of
the type of air-bound object for which the altimeter is intended. It is true that

there may be certain design variations depending on the height above the

reference level, but, adopting a simplistic view, we may regard these as

variations based on scale (e. g. 1 mile vs. 100 miles). When we come to

consider the incorporation of an altimeter into an air-bound vehicle then

there are will be some differences depending on whether we are dealing with

an airplane, hot-air balloon or satellite. However, there is also much

common ground: the altimeter is likely to need a power supply; the altimeter

will need to be fixed to the vehicle in some way etc. To summarize, we may

67

treat the physics of an altimeter separately to its actual incorporation within

an air-bound vehicle.

We consider the functional and operational requirements as the essential requirements,

which must be met by an instrumentation architecture that provides a collection of
instrumentation services. Our decision to consider instrumentation as services is once

again influenced by the service-oriented abstraction to middleware technologies - which

we intend to complement with instrumentation capabilities. Also, as will be considered
further in Section 5.2, we choose to adopt a service-oriented abstraction of the

applications within a distributed system. This allows us to abstract the physical

components of a distributed system as a federation of logical services that can be

measured and monitored by an instrumentation architecture that provides instrumentation

services.

In subsequent sections we present an informal outline of the main functional and

operational requirements, but first we must consider the different parameters and

measurement types that our instrumentation services must accommodate.

5.2 Parameters and Measurement Types
Before considering the requirements we need to identify the elements that constitute a
distributed system and focus on the parameters and information contents that characterize

these elements. Primarily, we are seeking to identify an abstraction a distributed system

that reveals the elements that can inform us about the state and behaviour of any
distributed system.

5.2.1 Elements to measure
Recalling the definition of a distributed system (chapter 2, [20]) as:

"a collection of autonomous hosts that are connected through a computer

network with each host executing service providing components and

operating a distributed middleware to enable components to coordinate their

activities giving the impression of a single, integrated computing facility ".

From this definition the main elements are identified as:

68

" The collection of hosts

" The computer network

" The collection of service providing components

" The distributed middleware

As it stands, this list is too general to consider the requirements for instrumentation

services, so it must be refined and modified to fall within the intentions and scope of the

thesis. The first two refinements concern the collection of hosts and the computer

network. Each host could be running a collection of Virtual Machines (VMs), which may

need to be measured and monitored during their operation. As the computer network is

far too general, it is refined to limit consideration to the Network Operating System

(NOS), or more specifically the services and resources provided by the NOS.

Recalling the software layer model of chapter 2 (Figure 2.1), we prefer to consider the

uppermost levels as a federation of services, made up of application services and core

middleware services. This implies that we intend to adopt the service-oriented

programming model considered previously in chapter 3. The advantage of adopting this

model is that it allows us to use a higher-level abstraction in that we are dealing with

logical concepts, where we regard a service as a logical concept such as a chat-room or

printer service.

The logical services are of course provided by physical components and in general, the

relationship between a service and a component is not one-to-one in that several

components may be required to provide a single logical service. A service may also be

uniquely identified by its service proxy (chapter 3), which provides an interface to the

application service and, from the point of view of instrumentation, a suitable point of

attachment or application of instrumentation services. Finally, as we have chosen to

develop our instrumentation as a collection of services it proves simpler to view the

collection of application services to be instrumented as a federation of services. So we

modify "the collection of service providing components " to "the federation of

application services" and "the distributed middleware" to "the core middleware

services ".

69

So the modified list of elements that instrumentation services are required to measure and

monitor reads as:

" The collection of hosts

" The Virtual Machines (VMs) associated with each host

" The Network Operating System's (NOS) resources and services

" The federation of application services

" The core middleware services

Having identified the elements to be measured and monitored, we must next consider the

different types of parameter that characterize these elements and also distinguish between

the different measurements types for these parameters. Previously, chapter 2 described

how a distributed system is characterized by its structure and behaviour and considered

the architectural and fundamental models that we may use to characterize structure and
behaviour.

The architectural or system models described the division of responsibilities between

components and the placement of the components on computers. The architectural

models essentially serve as the basis for the distribution of responsibilities in a distributed

system. The fundamental models of interaction, failure and security are based on
fundamental properties that allow us to be more specific about the interactions, failures

and security risks that particular systems may exhibit. From these architectural and
fundamental models we may identify the main types of parameter that feature in

distributed systems.

5.2.2 Parameter types
There are two main categories of parameter that feature in a distributed system, namely

the static and dynamic categories. Dynamic parameters may also be categorized as

synchronous or asynchronous parameters. There is also a third derived type of parameter,

namely dependency parameters, which may straddle both static and dynamic parameters:

Static Parameters

70

Static parameters, such as names, types, modes, Ids are represented using simple static
data types, such as integers, strings and enumeration types, which are supported by

programming languages. In general, static parameters are represented using static data

types (Integer, String and enumeration types) and not as objects, which have capabilities

to engage in message passing and thereby exhibit dynamic behaviour.

Dynamic parameters
Dynamic parameters may be classified as either asynchronous or synchronous dynamic

parameters:

" Asynchronous dynamic parameters: are independent of time and as such their

time of arrival at a destination cannot be guaranteed. Distributed events are

the main type of asynchronous dynamic parameter that must be monitored by

the instrumentation services. Asynchronous parameters may also occur as

errors or exceptions that occur when a computation fails. Often, such errors

and exceptions give rise to an "avalanche" effect through which further errors

and exceptions may occur.

" Synchronous dynamic parameters: are dependent on time and feature in RMI

calls, distributed transaction processing, concurrent computations and

multimedia transmissions. RMI calls are the main type of synchronous
dynamic parameter that must be monitored by the instrumentation services.

RMI calls are synchronous because, as mentioned previously, the caller is

forced to wait for the receipt of a reply or an exception, indicating that the call
failed. Instrumentation services need to be able to monitor synchronous RMI

calls, both when the call succeeds and when the call fails, resulting in an

exception.

Dependency parameters
Chapter 2 considered the service dependencies that exist between the components of a
distributed system. These dependencies may be modelled as a directed graph (digraph) in

which a directed arc or edge implies that a certain node, or component, uses the service(s)

provided by another component(s). We also learned from chapter 2 how service

71

dependencies are in general dynamic when a component's state changes, giving rise to

changes in its dependencies.

Dynamic parameter representation
Typically, events are the main asynchronous dynamic parameters and RMI calls are the

main synchronous dynamic parameters and both may be represented as object data types.

Certain dynamic parameters may also be re-packaged into specific instrumentation

objects according to their context. For example a remote event parameter is re-packaged

as an instrumentation event object, which provides additional information that specifies

the source and sequence number of the event, which allows comparisons with sequence

numbers of other events of the same type.

This re-packaging of dynamic parameters is a major requirement of instrumentation

services because, in isolation, certain dynamic events may prove meaningless to any

external management agent. This requires that instrumentation services must provide

additional information to assist the managerial agent to make sense of a dynamic

parameter. By careful design of the instrumentation services hierarchy, the "front-line" or
direct instrumentation services, responsible for dealing with dynamic parameters, can

delegate the acquisition of the additional information to simpler services.

Dependency parameter representation
Dependency parameters are said to be derived since they are function of the components

that constitute a distributed system and also a function of the state transitions, which may

occur in a distributed system. At any particular instant in time, we may derive service
dependencies using static and dynamic parameters from bindings between components.

For example, we could build a static graph of nodes and directed edges to reflect the

dependencies at that particular instant. However, over a period of time, the graph may

change, dynamically as a consequence of changes in bindings and hence service
dependencies. As we shall see later in chapters 7 and 8, a binding occurs when one

component (the dependent) has downloaded a copy of the proxy of some other

component (the independent) with a view to invoking the methods of the independent

component. We may represent this relationship as directed edge in a dependency digraph.

72

Instrumentation must be capable of first determining dependency relationships, which

may be accessed through binding relationships. After determining such relationships,
instrumentation must represent them accordingly, but it must also be capable of detecting

when dependencies have changed so that the graph can be revised. This challenge raises

a further contribution of the thesis towards communicating instrumentation. By arranging
instrumentation services into groups, parameters such as dependencies may be derived by

group communication. In other words, the maintenance of a dynamic dependency graph

may rely on several instrumentation services communicating changes in state of their

associated application components amongst each other. The formalisms governing
instrumentation communication are considered in chapter 6, which is concerned with a
formal model of the operational aspects of instrumentation.

5.3 Functional Requirements
The functional requirements outline exactly what instrumentation services must measure

and monitor. The details of how the measurement and monitoring is achieved in

considered in chapter 7, which is concerned with the development of an instrumentation

architecture. As mentioned previously, it is the author's belief that the functional

requirements may be separated from the operational requirements. This approach not

only simplifies our consideration of an instrumentation architecture, but also allows us to

develop generic models of instrumentation that may be used, extended and even revised
by developers to suit their own particular needs. Furthermore, it is anticipated that the

separation strategy used to develop our instrumentation architecture will facilitate the

integration of the architecture with current middleware technologies.

To specify the functional requirements, we consider the five elements highlighted

previously. Typical parameters for each of the five elements are considered through the

tables listed below. It should be pointed out that the parameters in the tables are only a

general set of parameters and there are likely to be additional parameters associated with

specific system requirements. It should also be pointed out that not all of the parameters

are recorded or monitored by the instrumentation services described in the thesis. For

example, all the parameters relating to the hosts and network operating system (i. e. the

platform) were not recorded due to their scope exceeding that of the thesis. The

73

paremeters also reflect constructs and utilities used in Jini middleware, which may not be

directly applicable to other middleware technologies - notably Java RMI, CORBA and
Web Services.

Description Parameter
Host Name String
Host Id IP-Address
Host Type (Desktop-PC, Web-Server, File-Server,

DNS-Server, Palm, PDA, Mobile-Phone)
Host Network Mode (Wired, Wireless)
Host System Clock Time Date
Host Networking Pattern (Unicast, Multicast)

Table 5.1: Host Parameters

Instrumentation services are required to measure/monitor the parameters listed in Table

5.1 relating to each host computer in a distributed system.

Description Parameter
VM Parent Host Id Host
VM Id String
VM Type (J2SE, J2ME, Other)
VM Heap Size Long
VM Memory Long

Table 5.2: Virtual Machine Parameters

Instrumentation services are required to measure/monitor the parameters listed in Table

5.2 relating to each VM that is associated with a host computer in a distributed system.

Description Parameter
NOS Type String
NOS Version Integer
Active Ports SET OF Port
Open Sockets SET OF Socket
Network Services SET OF NetworkService

Table 5.3: Network Operating System Parameters.

Instrumentation services are required to measure/monitor the parameters listed in Table

5.3 relating to the network operating system. The parameters provide basic information

about the network operating system, including its type and version, as well as the more
detailed parameters:

74

" Active Ports - identifies the current set of ports that can be used for

transmissions. Each port object contains an attribute that identifies the host

from which the port may be accessed.

" Open Sockets - identifies the current set of socket connections including their

associated protocol (TCP, UDP).

" Network Services - identifies the current set of network services (DHCP, DNS,

etc.). Each NetworkService object contains an attribute that identifies the host

on which the service is located and a state attribute, which is the enumeration

type {Started, Stopped) to indicate the state of the service.

Description Parameter
Service Name IP-Address
Service Id String
Registry Service Registry
Lease Service Lease
Transaction Service Transaction
Service Attributes SET Of Object
Service Method Signatures SET Of Method
Service Serialized Code Size Long
Service Type {Non-Activatable, Activatable}
Service Group Activation object
Class Files SET OF Class
Clients Dependent on Service SET Of Object
Service Dependencies of Service SET Of Object
Service State (Registered, Unregistered, Active,

Dormant
RMI Calls SET Of RMI Call
Events Received SET Of Event
Events Sent SET Of Event
Exceptions Thrown SET Of Exception

Table 5.4: Application Service Parameters

Instrumentation services are required to measure/monitor the parameters listed in Table

5.4 relating to the federation of application services that may be active or dormant in a
distributed system. The parameters provide basic information about each service,
including its name and Id, as well as the more detailed parameters:

" Registry - the registry service with which the application service is registered.

75

" Lease Service - the lease on the application service.

" Transaction Service -a transaction created by the application service.

" Service Attributes - the attribute values that define the application service's

state.

" Service Method Signatures - the method signatures available for the application

service (both local and remote method signatures).

" Service Serialized Code Size - the size of the code segment used to hold the

application service objects.

9 Service Type - the type of application service - active or passive.

" Service Group - the group of which the application service is part of (for active

services).

" Class files - the class files from which the application service's objects have

been created.

" Clients Dependent on Service - the clients that depend on the application

service.

" Service Dependencies of Service - the other application services that the service

depends on.

" Service State - the state of the service in terms of its registration and whether

active or dormant - for activatable services.

" RMI Calls - the RMI calls made on the application service

" Events Received - the events received by the application service.

" Events Received - the events sent by the application service.

" Exceptions Thrown - the exceptions thrown by the application service (remote

and local).

76

Description Parameter
Middleware Type (CORBA, RMI, Jini)
Middleware Version Integer
Registry Services SET OF Registry
Discovery Management Services SET OF DiscoveryManagement
Transaction Services SET OF Transaction
Lease Services SET OF Lease

Table 5.5: Core Middleware Parameters

Instrumentation services are required to measure/monitor the parameters listed in Table

5.5 relating to the middleware services registered in a distributed system. The parameters

provide basic information about the current middleware technology, including its type

and version, as well as the more detailed parameters:

" Registry Services - identifies the current set of registery services in a
distributed system (e. g. Jini lookup services). Each registry service contains

an attribute that identifies the host with which the service is registered and a

state attribute, which is the enumeration type (Started, Stopped) to indicate the

state of the service.

" Discovery Management Services - identifies the current set of registered
Discovery Management services in a distributed system. Each

DiscoveryManagement service contains an attribute that identifies the host

with which the service is registered and a state attribute, which is the

enumeration type (Started, Stopped) to indicate the state of the service.

" Transaction Services - identifies the current set of registered Transaction

services in a distributed system. Each Transaction service contains an attribute
that identifies the host with which the service is registered and a state

attribute, which is the enumeration type (Started, Stopped) to indicate the state

of the service.

" Lease Services - identifies the current set of registered Lease services in a
distributed system. Each Lease service contains an attribute that identifies the
host with which the service is registered and a state attribute, which is the

enumeration type (Started, Stopped) to indicate the state of the service.

77

These services are likely to vary across different middleware technologies. The list

shown in Table 5.5 are typical services that feature in Jini middleware technology.

5.4 Operational Requirements
The operational requirements outline the additional functionality required of
instrumentation services to facilitate their incorporation, co-existence and interaction with

the application services that they are measuring and monitoring. The operational

requirements also outline the functionality required to provide interfaces to other
distributed agents (such as GUIs) and standard network management protocols (such as
SNMP and WBEM). As mentioned previously, by separating the operational

requirements from the functional requirements we may concentrate attention on the

requirements of instrumentation services that facilitate their application and attachment to

application services. It is anticipated that consideration of the operational functionality in

isolation will assist and strengthen the case for instrumentation as a core middleware

service.

A major operational requirement affecting the viability of instrumentation is the ease with

which instrumentation services can be dynamically attached/removed to/from application

services and joined together to provide instrumentation groups through which
instrumentation services may communicate with each other. As mentioned previously,

the realistic success of distributed instrumentation relies on its ability to be applied

unobtrusively, so as to not hinder an application or introduce additional computational

overheads. This design of unobtrusive instrumentation is one of the major contributions

of the thesis. Its achievement is considered further in chapters 6,7 and 8 and again, it

relies on the design of the instrumentation hierarchy and the programming model used for

instrumentation services.

The main operational requirements of the instrumentation services are considered below:

1. Registration/deregistration

Instrumentation services must be capable of registering with a registry (e. g. a Jini lookup

service) that is found using some form of discovery protocol. The lookup service serves

as a trading service and any instrumentation management software should be able to

78

examine a series of lookup services to determine the current state of available
instrumentation (i. e. which instruments are registered and which are not).

2. Attachment/removal

Instrumentation services must provide functionality to facilitate unobtrusive attachment

and removal to/from application services. This requirement, which is explored in detail in

chapters 6 and 8, can be addressed through the design of the programming model, based

on the use of interfaces and dynamic proxy classes' [80].

3. Inter-instrumentation communications
Instrumentation services must provide functionality to facilitate inter-instrumentation

service communications. Such communications may be achieved through events or

method invocations, depending on the situation and more importantly the information

"richness" of the communication (events are simpler, but limited in terms of information

content). These communications require that instrumentation services must implement

read/write, invoke and notify methods. Instrumentation services must also provide
facilities that allow them to be organized into groups or domains through which
information may be shared and tasks delegated accordingly. This capability for

organization requires that instrumentation services must implement join and unjoin

methods, which allow them to join or leave instrumentation domains.

4. Interface to external management agents
The instrumentation architecture is intended to provide a set of services and utilities that

facilitate the development and runtime management of distributed systems. As such they

are both used in conjunction with other external management agents. The third party

agents may typically include: federated management agents [81], management beans

[52], application logging agents [82], control agents, GUIs and other visualization agents.
The ease with which instrumentation may be integrated and used co-operatively with

such agents is reliant on the interfaces that instrumentation services provide, or more

generally the interfaces supported by the instrumentation architecture. This requires that

instrumentation services provide a series of open, reliable, yet secure interfaces to

facilitate seamless integration (although security aspects exceed the scope of the thesis).

' The dynamic proxy class will be considered further in chapter 8

79

Again, these requirements can be satisfied by adopting similar approaches to those used
in current middleware technologies to provide open interfaces. For example, the Jini

middleware technology has been extended by way of a ServiceUl facility that allows Jini

applications to support any GUI developed using Java's Swing component model.
Instrumentation services are also required to facilitate the integration of legacy systems

and other systems that may not necessarily support a full programmers API. This may be

achieved through the use of surrogates and wrapper classes that essentially allow
instrumentation services to provide a basic API on behalf of a legacy system.

5. Interface to standard network protocols
Along similar lines to point 4 above, instrumentation services are also required to provide
interfaces to standard network management protocols such as SNMP and WBEM. SNMP

is based on a limited set of commands and responses and a message format that specifies

an information content that can be used to provide information about large inter-

networks. Instrumentation services are required to provide support for the command set

and utilities to transmit and interpret SNMP messages, thereby allowing SNMP agents to

utilize the facilities provided by the instrumentation architecture.

WBEM (Web Based Enterprise Management) is based on a Common Information Model

(CIM) and defines CIM schemas and CIM operations that operate over HTTP and are

used to write CIM XML documents. It would be asking too much to expect
instrumentation services to provide full support for WBEM as the CIM is a

comprehensive specification. However, instrumentation services are required to support

the use of CIM operations, which are described in XML. Therefore, instrumentation

services should provide capabilities for parsing CIM XML-based operations and
delivering such operations over HTTP to CIM clients and servers as required (although

support for WBEM exceeds the scope of the thesis).

Many of the above operational requirements can be addressed by combining standard

object-oriented programming techniques (such as interfaces, wrapper classes) together

with object-oriented design patterns (such as dynamic proxy, facade, surrogate and

adapter). The fourth and fifth of the above operational requirements, namely interface to

80

standard network protocols and interface to external management agents will be

considered further in chapters 7 and 8.

It should be pointed out that the above discussion represents a general view of the

additional interface support that instrumentation services should provide. The thesis only

considers a small subset of this support to provide proof of concept. The main concern of
this thesis is that of meeting the basic functional requirements discussed previously and
the operational requirements discussed above in points 1-3. From these operational

requirements we may identify a set of basic instrumentation service operations as:

" Register - registers an instrumentation service with an active lookup service.

" Unregister - unregisters an instrumentation service that was previously

registered with an active lookup service.

" Attach - attaches a registered instrumentation service, via a dynamic proxy, to

an application component, so that the instrumentation service may monitor

and measure the component.

" Detach - detaches an instrumentation service that was previously attached to

an application component leaving the instrumentation service registered.

" Join - joins an instrumentation service, via its dynamic proxy, to a group of
instrumentation services that are already joined so that the group may

communicate and share each others' services.

" Unjoin - unjoins or removes an instrumentation service that was previously
joined to a group of other instruments.

" Read - allows an instrument that is joined to a group of other instruments to

receive information from any other instrument in the group.

" Write - allows an instrument that is joined to a group of other instruments to

send information to any other instrument in the group.

" Invoke - allows an instrument to intervene in the method invocations that a

client component makes on an application server component.

81

" Notify - allows an instrument that is joined to a group of other instruments to

notify the other instruments of changes in its state via a multicast Write

operation.

These basic operations essentially cover the operational requirements described above in

points 1-3. In order to ensure that the states, transitions and axioms governing these

operations are fully understood the operations are to be formally specified in chapter 6.

Several of the techniques used to address the requirements discussed in points 4 and 5 are

considered through the programming models that are considered in chapter 8.

5.5 Classification of Instrumentation Services
Instrumentation services may be classified according to the roles they play and the

functionality they provide. The different roles are identified as below.

1. Direct vs. indirect instrumentation services
Direct instrumentation services are those that are directly attached to an application

component to measure and monitor certain parameters. As such, direct services must
implement the programming model and the necessary interfaces to facilitate dynamic

attachment/removal. In contrast, indirect instrumentation services are not directly

attached to an application component, but they are still capable of providing details about

the performance and behaviour of an application component. Indirect instrumentation

services may be used to communicate with other instrumentation services and, in

particular, for delegating instrumentation activities and responsibilities.

2. Static vs. dynamic instrumentation services
Static instrumentation services are used primarily to record and log information and as

such they have no capabilities for dealing with dynamic behavioural parameters. In

contrast, dynamic instrumentation services are used to respond to and also acknowledge
dynamic parameters. Typically, the dynamic services are capable of intercepting remote

events and remote method invocations (RMI calls) and repacking these objects to provide

meaningful behavioural information. Dynamic dependencies are also accommodated

within the dynamic instrumentation service category as a consequence of the dynamics

inherent in dependency relationships.

82

3. Synchronous vs. asynchronous instrumentation services

Asynchronous instrumentation services are a subclass of dynamic instrumentation

services that measure and monitor dynamic behaviour such as events and dependencies.

Synchronous instrumentation services are also a subclass of dynamic instrumentation

services that measure and monitor synchronous RMI calls (recall, RMI calls are generally

synchronous since the client is held up waiting for a reply or exception).

Based on this informal classification of roles, a basic instrumentation service hierarchy

may be specified as shown overleaf in Figure 5.1.

83

W

ý
b
a
C ý, ýl

m ý '

0 0

CD

ý

C

CD

m
w ß C

E

0

Z
b
a
c
ý
a

ý

N
C
V

2
Cl)

k: l-

i
I

C
m

ý b
a
C

m

0 0

C a

I
ý ý

m E
ý b U,

C

0

U)

C
O
E
2
�S
C

ý 0 .. .ý
0
ý
c 0 :.

> ör

cw
m >w

uý
og

0C
M

w2

_Ö C
O
ý

2

zxlý'
'11ý

ý
ý CL

ý
C 0
ý
w

At the root of the hierarchy is the base class Baselnstrument, which is inherited by all

other instrumentation services. Then there is a distinction between direct and indirect

instrumentation services. Either of these classes may be sub-classed to provide dynamic

or static instrumentation services. Eventually, the hierarchy proceeds to the static leaf

classes of Logger, Analyzer, and the dynamic leaf classes of Gauge, Probe and Monitor,

which are the concrete instantiable instrumentation service classes. This basic hierarchy

is to be developed further in chapters 7 and 8 to provide the infrastructure required for the

instrumentation architecture's API. The activities of the concrete instantiable

instrumentation services are also considered further in chapter 7, but we may conclude

this chapter with a brief description of the roles of each of these instrumentation services.

1. Logger

A Logger is the simplest form of instrument, which simply records or logs some

parameter of interest generally over a period of time. Loggers are the most general

purpose type of instrumentation service in that they may be used to record parameters for

application-level components or middleware services. Loggers record or log values to a

data stream, which may be a simple file or even a stream to another object (e. g. using

Java's ObjectlnputStream or PipedlnputStream). Loggers must be supplied with a

reference to an object that specifies the parameter to be logged.

2. Analyzer
An Analyzer can be used to compute or derive certain metrics generally over a period of

time relating to the application component to which it is attached. Analyzers are supplied

with a reference to a separate user-defined object that performs the computation. So for

example, an analyzer could be used to compute the mean-time between the component

being accessed (i. e. the mean-time for which the component's service is not required).

Essentially, the analyzer provides a facility through which users may perform their own

specific analysis of an application. It does however, require that the user supplies an

appropriate computational object that details the parameters to be analyzed as well

performing the analysis computation.

3. Gauge

85

A Gauge is used to measure and display some value measured on an ordinal scale
between lower and upper limits over a period of time. Typically, a gauge may be used to

measure numeric parameters, such as the rate at which a component is accessed. Gauges

must be supplied with a reference to an object that specifies the parameter to be gauged.

4. Probe

A Probe is responsible for deriving the service dependencies associated with a single

particular application component. A probe will build a partial dependency graph for its

associated component. The probe does not stop at direct or first-level dependencies, but

will iterate beyond these dependencies using a visitor design pattern until there are no
further dependencies. In other words, a probe will build a graph of all components that

may affect the behaviour of the component with which the probe is associated. Probes are

equipped with event handling capabilities through which they may receive notification of

changes in dependencies. A single probe may only derive the dependencies for its

associated application component. The dependency digraph for a complete application

may therefore require the use of many probes communicating with each other.

5. Monitor

A Monitor may be a method invocation monitor (MMonitor) or an event-based monitor
(EMonitor). A method invocation monitor monitors the method invocations that are made

on a component. Method invocation monitors are capable of intervening the method
invocations (RMI calls) made on a component, so that they may access the parameters

used in the invocation and any return values or exceptions that result from the invocation.

An event-based monitor monitors the events sent from a component, or received by a

component. Event-based monitors are capable of re-packaging events as an
instrumentation event objects to provide additional information that specifies the source

and destination of the event and the scope of the event.

The author is unaware of any software instrumentation standard that provides definitions

relating of the above instrumentation services. To this end the author has chosen his own

naming scheme. The names have been chosen to reflect similarities between

instrumentation units used in conventional engineering or the physical sciences. Several

research efforts, concerned with software instrumentation, identify instruments that bear

86

the same names to those provided above. However, the instruments identified by others
do not necessarily provide the same functionality to their namesakes as described above.

For example, [45] consider the use of gauges to dynamically deduce component

configurations. These gauges prescribe more complicated functionality than the gauges
described in the thesis and in fact prescribe functionality more closer to the probe
instruments described in the thesis. [8] describes CORBA-based monitors that are

capable of "peeking" into the implementation of CORBA objects at runtime by using
CORBA's interceptor mechanism. These monitors do bear similarities to the monitors
described in the thesis, differing only in the underlying mechanism that is used - the

monitors described in the thesis use a mechanism based on a dynamic proxy. [14,83]

provide a comprehensive studies of software probes, which considers amongst other
things probe insertion, execution and invocation. The probe service described above does

fall in line with several aspects of the classification, but not all such aspects.

However, such naming discrepancies or mismatches in classification should not hinder

the development of distributed software instrumentation, which after all is a relatively

new and emerging field. Instrument names simply provide a means to refer to instruments

and provided the functionality of the instrument is well-defined then the name plays a

secondary role. It is the author's belief that this will continue to be the case until a
distributed software instrumentation standard or working committee is established.

To conclude this chapter, the philosophy behind the naming of the instrumentation

services described above is described below. As mentioned above, the names were

essentially based on similarities with instrumentation used in conventional engineering or
the physical sciences:

" Logger -a logger is common instrument that records or logs data, such as a
data logger that may be used by meteorologists to log climatic data.

" Analyzers - are often used by geologists to determine the percentage of

certain minerals, occurring in rock samples.

" Gauges - occur frequently in many fields of science, engineering and

everyday life. Generally, a gauge is regarded as an instrument that measures

87

and displays some value measured on an ordinal scale between lower and

upper limits, such as a road-vehicle's fuel gauge.

" Probes - draw the analogy with space probes, which are dispatched to gather
information about a planet or deep space. Through this analogy our own
instrumentation probes are dispatched to gather information about the services
that a particular component depends on.

" Monitors - are often used in medicine and health care to keep a check on

some aspect of a patient's health, such as heart, respiratory or blood-pressure

rates. Such monitors allow doctors to monitor behaviour without dramatic

surgery - for example, a heart monitor allows a doctor to monitor a patient's
heart without having to perform open-heart surgery. The monitor
instrumentation service described in the thesis uses a similar analogy. It

allows a components behaviour to be monitored at runtime without having to

abruptly stop the system at a specific point in order to obtain information.

5.6 Chapter Summary
This chapter has outlined the main functional and operational requirements of
instrumentation services and the different types of parameter that must be measured and

monitored. The chapter has provided a classification of the different types of
instrumentation service based on their roles and responsibilities. The set of ten basic

instrumentation service operations may now be considered further and, in particular,
formally specified, which is the subject of the next chapter. The chapter has also provided
descriptions of the roles of each of the instrumentation services, which will be considered
further in chapter 7. The instrumentation services were based on similarities with
instrumentation used in conventional engineering or the physical sciences.

The analysis of requirements is intended to serve the remainder of the thesis, although it

may prove useful to other practitioners in the field of distributed systems understanding.
This chapter alone has provided a useful research contribution since literature pertaining

to the basic requirements of instrumentation from first principles is not so abundant in the

field of distributed systems understanding and management.

88

Chapter 6

Formal Model of Instrumentation Services

This chapter provides a formal model of the operational functionality required of
instrumentation services as considered previously in chapter 5. The model is developed

primarily using Object-Z, [84-86], which is an object-oriented extension to the formal

specification language Z. The model also uses some Timed CSP [87] notation, which
features in the combined logic-based modelling language of Timed Communicating

Object-Z (TCOZ) [41,88]. This combination was chosen, over other languages, because

it combines the data modelling and algorithmic features and state representation of Z

together with the process control capabilities of Timed CSP. Object-Z, as the name

suggests, also represents the principles of object-orientation, which assists the

development of succinct models that are intended for object-based implementations.

Object-Z schemas are used to represent the behaviour and interactions that characterize

the operational requirements of instrumentation services and, where necessary, Timed

CSP operators are used to represent process sequencing, synchronization, concurrency

and active objects.

The chapter begins with an overview of formal modelling approaches, a statement of the

main aim of the formal instrumentation model and the justification for such a formal

model. This is followed by the formal instrumentation model, which is presented as series

of related models. In particular the formal models describe: the typing system; formal

specifications of middleware lookup services and application-level components are the

actual formal specification of instrumentation services. The final model is that of a

middleware-based application that encapsulates the previous models.

6.1 Formal Modelling
Formal modelling is used to develop an abstract representation of a system of interest. In

general, the abstraction will represent the structural and behavioural characteristics of the

system. As opposed to ad-hoc and semi-formal methods of specifying these

89

characteristics, formal models typically have a sound mathematical framework around

which they are developed. Formal models, which are also referred to as specifications,

may be developed using a variety of formal specification languages. The word formal is

used to indicate that such languages are based on some mathematical principle (e. g. set

theory, predicate calculus or temporal logic) and specifications are developed using a

mathematical-like notation as opposed to a programming language notation.

6.1.1 Formal Specification of Systems
Formal models are crucial to specifying systems that fulfil safety-critical roles, but they

are being increasingly used to specify systems that fulfil non-critical roles, but raise the

need for accurate and concise description. Formal specifications are unambiguous if they

portray exactly one meaning. A specification is consistent if its specified set is non-

empty. Specifications must be unambiguous and consistent, but they are allowed to be

incomplete. Incompleteness of specifications is often unavoidable because anticipation of

all the possible system scenarios is not possible.

Formal methods extend on formal specifications in that they refer to the combination of
formal specifications and formal reasoning about the specifications°. This chapter does

not go so far as to apply formal methods in the strict sense in that no formal reasoning is

performed because the models are simply used to provide the basis of a precise software
implementation. Such formal reasoning exceeds the scope of the research.

The choice of a particular formal specification language is significant to the abstraction

of a system and hence the resulting specification. For example, the decision as to whether

the system should be abstracted in terms of sets, or alternatively in terms of processes

would have a strong bearing on the choice of specification language. Several existing
formal specification languages are: VDM (a formal language that supports a model-

oriented specification style and a set of built-in data types); Z (a formal modelling

language based on set theory and predicate calculus); temporal logic (a property-oriented

language for specifying properties of concurrent and distributed systems); CSP and
Timed CSP (process-oriented languages for specifying concurrent and parallel

processes).

° Formal Methods = Formal Specification + Formal Reasoning.

90

This section is not intended to provide a detailed description of formal specification, but

merely to introduce sufficient material to support the description of the formal

instrumentation model to be considered later in the chapter. However, more detailed

treatments of formal specification and formal methods may be found in [89-91]. Before

moving on to consider the development of the formal instrumentation model, it is

important to clarify exactly what the formal model aims to achieve and to be able to

justify the need for the model. These issues are considered below.

6.1.2 Main Aim of the Formal Instrumentation Model
The thesis is primarily concerned with the development of a dynamic instrumentation

architecture. The architecture is to provide instrumentation services that can be used to

instrument a middleware-based distributed application in order to learn more about its

structure and behaviour. However, in this chapter, we are not so much concerned with the

instrumentation services, but with the instruments themselves that are capable of

providing the services. Much of the chapter refers to instruments as opposed to their

services, which will be considered further in chapters 7 and 8. For this reason, the

modelling abstraction is based on the physical concept of an instrument as opposed to the

logical concept of an instrumentation service. A consequence of this abstraction is that

we will be dealing with sets of instruments, which in turn influences our choice of

modelling towards a Z-based specification language.

The main aim of this chapter is the development of a series of state models that

encapsulates the behaviour and interactions of instruments within the broader context of

an application. In order to achieve this aim, we cannot simply consider instrumentation in

isolation as we are forced to consider instrumentation along with the other entities with

which instruments interact. In particular, we must consider the behaviour and interactions

between instruments and middleware services (primarily lookup services) and also

instruments and application components. To complete the picture we must also consider

the incorporation of instruments within an application and develop formalisms of the

states that instruments may assume and formalisms of the basic operations that

instruments should expose within an application.

91

To emphasize the main aim in another way, recall the conventional engineering example

of chapter 5, namely an altimeter instrument. This example distinguished between the

physics governing an altimeter and the operational aspects in terms of how an altimeter

may be physically incorporated in an air-bound vehicle. If this chapter had been

concerned with an altimeter, it would be expected to deliver the necessary formal

abstractions governing the incorporation of any altimeter within any air-bound vehicle.
This model would specify the axioms governing: the physical attachment of the altimeter;

the connections to control to circuit boards and power supply and the interface commands

or basic operations that the altimeter presents to the control system of any air-bound

vehicle. However, the formal model need not consider the detailed physics governing the

functionality of the altimeter. Of course, the physics would need to be considered, but

this consideration could be provided in a separate series of models, thereby simplifying

the overall treatment of an altimeter.

Finally, one may question "why choose a formal modelling approach - couldn't the same

concepts be described with UML? ", which beckons some justification for using a formal

approach. The answer to this question lies first in the abilities of formal modelling to

produce precise unambiguous descriptions of complex systems and secondly in their

ability to precisely describe states and state-based properties and transitions. The formal

model is developed using a Z-based language that is considered in the next section and it

is worth concluding the current section by emphasizing an important characteristic of Z-

based specifications, relating to their use of types.

Every object in a mathematical language such as Z has a unique type, which is

represented as a maximal set in a specification. As well as providing a useful stepping-

stone to a software implementation, the notion of types means that algorithms can be

developed to check the type of every object in a specification. Several type-checking

tools exist to support the development of standard Z and Object-Z specifications, such as
CADIZ [92], ZTC [93] and Wizard [94]. The models presented in the remainder of this

chapter were checked using ZTC (for standard Z schemas) and Wizard (for Object-Z

classes). Assuming these models specify the correct semantics, we may conclude that

they provide a precise description of the structure and behaviour of instrumentation

within a middleware-based application. The author also believes that the formal models

92

allows instruments to be considered succinctly in the broader context of a distributed

application. A semi-formal approach would have led to a much larger unwieldy model in

order to express instruments within the same context.

6.2 The Formal Instrumentation Model
The formal instrumentation model is presented as follows: first the typing system used

throughout the model is specified. Secondly, formal models of the basic elements with

which instruments interact (lookup services and client/server components) are specified.
Thirdly, the formal model of instrumentation itself is specified and fourthly, a formal

model of an application is specified to represent the interactions between client/server

components, lookup services and instruments within an application.

In order to develop an abstract model of a system's state, we must represent:

" The main entities and their types.

" The relationships between the entities.

" Entity-attribute details, but only where the attribute information is essential.

" The constraints that must operate on and between entities.

" The states that the entities may assume.

" The actions or events causing entities to move from one state to another.

So, our first task is that of specifying the types used to declare the main entities as
follows.

6.2.1 Typing System
The basic types below are used to represent the types of entities throughout the model.

" CLASS - represents a class in a programming language from which object
instances can be created.

" PROXY- represents a standard proxy in a middleware application that is used
for client-server communications. A proxy is regarded as an instance of a
CLASS

93

" STRING - represents a string that is used to identify an Item's id and the

Item's attributes. An Item, which is considered further below, is an object that

contains a PROXY, an id and a set of attributes (attrs). The id and attributes

are using during the lookup process were they are compared against the id and

attributes of a Template (also considered further below).

" INTERFACE- represents an interface that is typically used in a programming
language to specify the method signatures for remote methods.

" METHOD - represents a method (or member function) of a CLASS which
implements a signature defined in an INTERFACE.

The model also uses several "so-called" free or discrete types to represent states, events,

messages, roles and invocation results.

The ROLE free-type specifies the roles that may be adopted by application components.
The CLIENT role represents a component that uses a service provided by some other

component. The SERVER role represents a service-providing component.

ROLE CLIENT I SERVER

The RESULT free-type specifies the two result conditions that follow the invocation of a

method (of type METHOD). The SUCCESS value indicates that the method completed

successfully, whereas the EXCEPTION value indicates that an EXCEPTION was

encountered during the execution of the method.

RESULT :: = SUCCESS I EXCEPTION
As we shall see later, the state of an instrument is represented by the triple (REG,

ATTACH, JOIN), which reflects whether or not an instrument is registered with a lookup

service; whether or not it is attached to a component and whether or not it is joined to a

group of other instruments. The free-types REG, ATTACH and JOIN are used to provide

a compound value or Cartesian product for the state triple.

REG REGISTERED I UNREGISTERED
ATTACH :: = ATTACHED I DETACHED
JOIN :: = JOINED UNJOINED

94

The EVENT free-type is associated with the above states in that it contains the discrete

values that signal events, which cause an instrument to enter the state associated with the

value of a particular event.

EVENT :: = REGISTER I UNREGISTER I ATTACH I DETACH
I JOIN I UNJOIN

The MESSAGE free-type describes the different contents of messages that may be

received or sent by instruments. The first type is a simple DATA type; the second is a

constructed event message type CE VENT((EVENT)), which takes a value of EVENT

type to construct an event message; the third type of message specifies a serious ERROR

condition that prevents message transmission from continuing. Such errors may range
from a Java exception to a serious network failure and the details of such errors are not of

significance, but what is significant is that receive/send transmissions are irrecoverably

halted.

MESSAGE :: = DATA I CEVENT((EVENT)) I ERROR

Finally, the free-type TRANS specifies that an instrument has just undergone a state

transition from an initial state to a final state defined by one of the free types REG,

ATTACH, JOIN.

TRANS :: = REGTRANS I UNREGTRANS I AITACHTRANS
DETACHTRANS I JOINTRANS I UNJOINTRANS

The free-type definitions above offer no extra descriptive power above and beyond what

can be described by given sets and sufficiently rich axioms. However, the main

advantage of free-type definitions is that they can be used to produce more elegant and

compact data type constructions than corresponding given-set based descriptions [89].

The complete typing system is repeated below, which is now used to specify the formal

models of lookup services, components, instruments and applications respectively.

95

ROLE :- CLIENT I SERVER
RESULT :: - SUCCESS I EXCEPTIO: \'
REG REGISTERED I Gý: VREGISTERED
ATTACH ATTACHED I DETACHED
JOIN - JOINED IL : \'JOINED
EI -ENT REGE VT I C: VREGEVT JATT. 4CHE['T (DET. -1CHEi'T

ý JOINEVT I UNJOI. VEi'T
MESSAGE :: = D. -1T. 41 CE[ENT ; EVENT ;; I ERROR
TRANS - REGTRANS I L: VREGTRANS I . -1TTACHTR. 1 \ýS I DET. dCHTR: INS

ý JOI: \'TR -1 fiS IC : ý'JOLVTR -1 NS

Figure 6.1: basic typing system

6.2.2 Lookup Service and Application-level Component Models
The lookup service plays a crucial role in any middleware-based application. Existing

middleware technologies provide lookup services and protocols that facilitate lookup by

name (naming service) or by type (trading service). Whichever lookup approach is used a
lookup service is essentially a repository, which stores a collection of application

component proxies and provides protocols to allow other components to access these

proxies by name or type.

The model uses a simplified abstract representation of a lookup service using the Object-

Z class LUS. This is shown below in Figure 6.2 together with the associated schemas
Item and Template and the axiom instof.

instof : CLASS .. - PROXY

3c: CLASS* (3, p: PROXY einatof (c) =p ýp # , \ZrLL)

FItem sd : STRIA'C
prosy : PROXY
attra :P STRI. VC

Template
id: STRING Ft.
mvs :P CLASS

attra :P STRING

96

,-L GS

items Pltems

I A7T Look-up [items
-O

[prozy'
ttmpl? : Template

: PROXY
3 e: items "(tempi?. id - e. id) , '.

1',, a: temp!?. attrs "3 al : e. attrs Ia- al)
iNt tempi?. types " instof(t) - e. prory)

Register Unregister
,k items) .,

i items)
item? Item

[item?

Item

item? it items
items' - items U {item? }

item? E items
Items' - items', {item? }

Figure 6.2: lookup service class

The state schema of LUS is represented as a set of Items. The LUS class contains an INIT

operation schema, which simply initializes the set of Items to the empty set to represent
the state of a lookup service daemon when it is started. The LUS class also contains
Register, Unregister and Lookup operations. The Register and Unregister operations are

used to register/unregister an Item respectively. The Lookup operation is a crucial LUS

operation which allows clients to find a specific Item by matching the id and attributes of

a Template against the items currently registered with the LUS. The criteria for

comparing an Item against a Template are specified below.

Because the eventual implementation is to be Jini-based the criteria for lookup matching
for a Jini Lookup Service have been used in the Lookup schema operation. The criteria
have been rephrased from [95] in order to apply to the data types used in the model. Items

in the lookup service are matched using an instance of Template. A service item (item)

matches a service template (tmpl) iff:

" item. id equals tmpl. id

" item. proxy (the service proxy object) is an instance of every type in tmpl. types

" item. attrs contains at least one matching entry for each entry template in

tmpl. attrs

97

The Object-Z class Component, shown below in Figure 6.3, is used to provide an abstract

representation of a component that may feature in a middleware-based application.

,.. _
Component

dasses P CLASS
role ROLE
lus LIS

INIT ChangeRole

r? ROLE . Ikrole)
I. -r? ROLE
ro(e- r!

role r?
role` = r?

Figure 6.3: component class

The state schema of Component is represented by a set of classes (classes), a role (role)

(which may be client or server), and a lookup service with which the component can be

associated (lus). The Component class contains an INIT operation schema, which simply

sets the role of the component when an instance of the Component class is created. The

ChangeRole operation schema allows a client to take on the role of a server or vice-versa.

Component

tempi : Template

proxy : PROXY
rmi : PROXY +. PMETHOD
invocation - METHOD x: RESULT

rmi(proxy) - {m - methods I invocation - (m, SUCCESS) V
invocation - (m, EXCEPTION)}

Lookup
Fa(proxy)

h, s' Lookup

The Client class schema inherits the class of Component to represent a client component

in an application. The state schema defines a template attribute tempi that is used to find a

match against an item stored in the lookup service. The proxy attribute is a proxy that is

returned by matching tempi against an Item in the lookup service, thereby allowing the

client to make RMI calls on the proxy. Note that the state of proxy is affected by the

Lookup operation since proxy takes on a value when a match is found. The state schema

98

also defines a total function rmi that maps a proxy to a set of methods to represent the

potential of a client to perform RMI calls on a proxy. A single remote invocation is

represented by the Cartesian product (invocation). The invocation attribute represents the

invocation of method m, which leads to a result r as the ordered pair (m, r), were the

result is success or an exception. The rmi function maps the proxy onto the set of

methods for which the results may have successful outcomes or lead to exceptions. The

Lookup schema operation defines a single axiom which is that of the lookup service's

own Lookup operation.

Server
- ýComponent

item Item
ifac INTERFACE
methods :P 11ETHOD
impf : INTERFACE -+- P MIETHOD

impl(, iface) - methods

Register L? nregister-
A(1us) ý(1us)

lus'. Register lus'. Unregister

The Server class schema also inherits the class of Component to represent a server

component in an application. The state schema defines an Item (item), an interface

(iface), a proxy (proxy) and a set of methods. Note that item contains the server's proxy

along with its id and attributes. The state schema defines a total function imp! that maps

an interface to a set of methods to represent the implementation of the server. The Server

class also contains Register and Unregister operation schemas that allow the server to

register/unregister its item with a lookup service. The axiom parts of the

Register/Unregister schema operations are those of the lookup service's own
Register! Unregister operations. Note that the state of lus is affected by the

Register/Unregister operations as a new item is added to lus, or an existing item is

removed respectively.

One aspect of the registration procedure that is not elaborated in the model is the

discovery protocol. In middleware-based applications, before a server registers, it must

first discover a lookup service with which it may then register. The simplest form of
discovery protocol is that the component registers with the nearest lookup service. The

99

nearest lookup service is usually running on the same computer as the component and

this lookup service is sometimes referred to as the lookup service running on localhost.

More advanced discovery mechanisms may be used to allow components to discover and

register with an alternate lookup service to that of the nearest. Throughout this model, the

simple discovery protocol is assumed to avoid additional complexities.

One may argue that the previous specifications do not do justice to the functionality of a
lookup service and client server application components. However, the specification does

provide a sufficient abstraction for the development of the instrumentation and

application models to follow, which is the main concern of this chapter.

6.2.3 Instrumentation Model
Having considered the formal models of the basic elements with which instruments

interact (lookup services and service providing components) we may now proceed to

consider the formal model of instruments themselves. However, before doing so, we must
introduce some preliminary specifications that simplify the instrument model, which are

shown in Figure 6.4.

DProxy
ýifnas PINTERFdCE

I vSTR L : AiE1'T MONITOR I C114NITOR (; DProzy; ý I GAUGE I CGr1 i'GE;, DPror, y;;,
PROBE I CPROBE ` DProzy fij LOGGER I CLOGGER i.; DProzy 1)

,{\: AL}'ZER I CaN-1Li'ZER; iDProzy;; ý

[;. B. Cl firstElem : (A xB- C) -#- A
B aeavndEZem : (d xBx C) -

therdElem ' (rl xBx C) 4- C

Va: A: b: B: c: C" (firatETcm(a, b, c) -a : ̂, sccondElcm(a, b, c) -b P5 thirdElcm(a, b, c) -

Figure 6.4: dynamic proxy and instrument types

The first schema DProxy represents a dynamic proxy, which is a special kind of proxy,

which is crucial to instrumentation services. It should be noted that a dynamic proxy is

entirely different to a proxy that a client uses to make RMI calls on a server. The dynamic

proxy is included as part of J2SE's API and it is represented as a simple schema that

100

consists of a set of interfaces (faces). Any class that chooses to implement a dynamic

proxy enters a contract, through which it must supply a generic invocation handler that is

capable of invoking the methods specified by any interface within the set of interfaces.

The implementation details of the dynamic proxy will be considered in far greater detail

in chapter 8, but for the current chapter, we are concerned with the inclusion of the

dynamic proxy within the Object-Z instrument class.

The second specification is that of an INSTRUMENT free-type that specifies the different

types of instrument. The format of the INSTRUMENT type is a value depicting the type

of a particular instrument and a constructer, which takes a DProxy entity to construct an

instrument of the desired type (e. g. CMONITOR ((DProxy))). The third specification is

a generic schema that defines three total functions: first, second and third. These total

functions specify mappings that return the first, second and third elements of an attribute

whose type is the Cartesian product (A xBx C). As we shall se shortly, these total

functions are used in the axioms that involve the state of an instrument that is represented
by triple (REG, ATTACH, JOIN) outlined previously (Section 6.2.1).

Equipped with these specifications, we may move on to consider the abstract

specification of an instrument. From chapter 5, we recall the set of basic instrument

operations as:

" Register - registers an instrumentation service with an active lookup service.

" Unregister - unregisters an instrumentation service that was previously

registered with an active lookup service.

" Attach - attaches a registered instrumentation service, via a dynamic proxy, to

an application component, so that the instrumentation service may monitor

and measure the component.

" Detach - detaches an instrumentation service that was previously attached to

an application component still leaving the instrumentation service registered.

" Join - joins an instrumentation service, via its dynamic proxy, to a group of

instrumentation services that are already joined so that the group may

communicate and share each others' services.

101

" Unjoin - unjoins or removes an instrumentation service that was previously
joined to a group of other instruments.

" Read - allows an instrument that is joined to a group of other instruments to

receive information from the other instruments.

" Write - allows an instrument that is joined to a group of other instruments to

send information to the other instruments.

" Invoke - allows an instrument to intervene in the method invocations that a

client component makes on an application server component.

" Notify - allows an instrument that is joined to a group of other instruments to

notify the other instruments of changes in its state via a multicast Write

operation.

These are the very operations that must be represented in the formal instrumentation state

model. The Object-Z class Instrument, shown below in Figure 6.5, provides an abstract

representation of an instrumentation service. The class schema first inherits the classes of
LUS and Server that were considered previously. The state schema and the various

operation schemas that make up the Instrument class follow the inheritance specifications

and these schemas are each described further below.

102

Instrument
. rL

L'S, Server

type . INSTR C' AfENT
state :i REG " .

ATT. WH JOLh')
trans : TRANS
item : Item
Zus. L US
dprory. . DProry
group :P DProry
buffer: eq AIESS. 4 GE
attachment .

INTERFACE -e- DProzl,
joined : DProry -+- P DProry
invocation .

METHOD " RESULT

LM1'IT
dprory. rfacrs -0
group -0
buffer -
state -t UNREGISTERED, DET-iCHED, C'NJOIA'EDi

Register C'rtn+gtster _ FA,
state, us) Aý state, ius l

trans - REG TRANS
Ius'. Register
firstEemý, state') - REGISTERED

.
Attach

---. -- A(state, dprory
server? . Server

trans - ATTACXTRdNS
server?. tfaor ty dprory. tfaces
dpror, y. tfaces' - dprory. ifaces U

{server?. iface}
attachment (server ? tface) - dprary'

seaondEkm(state) -ATT4CJYED

Join
state, group)

trans - JOIN TR ANS
dprozy t group
group' - group U {dprorv)
lorned(dprozy) - group`
thtrdElem(state')- JOINED

Read
A(buffer)
input? : aeq MESSAGE
recv :T 3IESS. 4GE .t 1fESS. 4GE

i dproxy} C ran joined
nerv({i . ran input? Ii vi ERROR}?

ran buffer

lnvafie
server?: Server
mthd? :. fETHOD

attachment (server?. iface)- dprosy
{ mthd?) E raa server?. rmpl
invocation - (mthd?, SUCCESS)

invocation - imthd?, EXCEPZIO. ti')

trans - U: vREGTR. d: vS
lus'. L'mrgfsfer
firstEkm(state'? ý UNREGISTERED

Detach
-- It state, dprory)

server? : Server

trans - DETaCHTR. a1VS
server?. iface E dprory. ifacrs
dprory. ifacrs' - dprory. ifaces

I server?. iface)
attachment (server?. iface j -, P4 dprory'

secondEJemistate'1 - DETWHED

Unjoin
hate, group)

trans -L N'JOINFR 4NS
dp-zy e group
group' - group '' {dprory j
{dprory} ¢ raajoined
group' -0 -

thirdElem(state`) - C: 'JOINED

r
output' . eq. VESSAGE
sendite

W:

PMESSAGE . PMESS. 4GE
{dprosyj cranjoined
sendiranbuferº -

{i . ran output: Iif ERROR}

. M1otify
A(buffer)
event' : EVENT
evtgen : TRANS +. EVENT

evtgen(trnns) - event:
buffer ý CEYENT(event:)}

Instrument I i*6 self : ̂ . {i. dprozy} E
ranjaine+d * Write

Figure 6.5: instrument class

103

The state schema of Instrument consists of the following state attributes:

" type - the type of instrument (monitor, gauge, probe, logger, analyzer).

" state - the state of an instrument that represented by triple (REG, ATTACH,

JOIN).

" trans - the transition that takes an instrument from some initial state to a final

state (REGTRANS, ATTACHTRANS, JOINTRANS).

" item - the instruments service item, which contains the instrument's standard

proxy.

" lus - the lookup service with which the instrument registers/unregisters

" dproxy - the lookup service with which the instrument registers/unregisters.

" group - the group of instruments that have been joined via their dynamic

proxies and have the potential to communicate with each other using
Read/Write operations.

" buffer -a read/write buffer represented as a sequence of messages.

" attachment -a total function that maps a server's standard proxy to an
instruments dynamic proxy, thereby implying that the instrument is attached

to the server component.

" joining -a total function that maps the dynamic proxy of an instrument to a

set of dynamic proxies of other instruments, thereby implying that the

instrument is joined to a group of other instruments. As a member of the

group of instruments, the joined instrument may receive/send messages
from/to other instruments using Read/Write operations.

" invocation - an attribute that represents the invocation of method m, which
leads to a result r as the ordered pair (m, r), similar to the invocation attribute
in the Client state schema.

The Instrument class contains an INIT operation schema, which first initializes the set of
interfaces (that an instruments dynamic proxy may implement) to the empty set, the

104

group of instruments to the empty set and the read/write buffer to the empty sequence.

The INIT operation then initializes the initial state to the triple (UNREGISTERED,

DETACHED, UNJOINED).

The remaining schema operations specify the basic instrument operations identified in

chapter 5 as explained below. The operations Register, Unregister, Attach, Detach, Join

and Unjoin all change the state of the instrument. These state transitions are represented

by the E(state) specifications and axioms that use firstElem(state'), secondElem(state')

and thirdElem(state'), which specify the final state using the ' (apostrophe) decoration.

All of the schemas operators are applied to the current instrument (self) and when this is

obvious the keyword self may be omitted.

Register/Unregister - register/unregister an instrument with/from an input the lookup

service (lus) in a similar fashion to the Register! Unregister Server schema operations.

Register/Unregister also alter the state of the current instrument E(state). The axioms of

Register specify that the registration/unregistration follow from the transition

REGTRANS. The firstElem(state) = REGISTERED axiom specifies that the REG

component of state after the Register operation is REGISTERED. The axioms of

Unregister essentially specify conditions that are the reverse of Register. As was the case

for the Component class, the details of how instrument's discover a lookup services (i. e.

the discovery protocol) with which they may register are not elaborated in the Register

schema. Again, it is assumed that instrument's will discover the nearest lookup service

and register with that lookup service.

Attach/Detach - attach/detach an instrument to/from an input application-level server

server? and alter the state of the current instrument E(state). The axioms of Attach

specify that the server's interface must not already exists in the set of interfaces

implemented by the instrument's dynamic proxy; the set of interfaces implemented after

the Attach operation dproxy. ifaces' is the union of the original set and the input server's

interface dproxy. ifaces' = dproxy. ifaces u (server?. iface). The total function attachment

maps the server's interface to the dynamic proxy of the instrument as

attachment(server?. iface) = dproxy'. Finally, secondElem(state) =A TTACHED specifies

105

that the ATTACH component of state after the Attach operation is ATTACHED. The

axioms of Detach essentially specify conditions that are the reverse of Attach.

Join/Unjoin - join/unjoin the dynamic proxy of an instrument to/from a group of
dynamic proxies, group, that already join a group of instruments. Join/Unjoin also alter
the state of the current instrument A(state). The axioms of Join specify that the dynamic

proxy of the current instrument must not already exist in the group of proxies; the group

of dynamic proxies after the Join operation group' is the union of the initial group and
the current instrument's dynamic proxy group' = group v {dproxy}. The total function

joined maps the instrument's dynamic proxy to the group of dynamic proxies
joined(dproxy) = group'. Finally, thirdElem(state') = JOINED specifies that the JOIN

component of state after the Join operation is JOINED. The axioms of Unjoin essentially

specify conditions that are the reverse of Join.

Read/Write - allow the current instrument to receive/send messages from/to other
instruments. Read alters the state of the current instrument buffer A(buffer), whereas
Write does not, since the current contents of buffer are sent to a receiving instrument.

These schema operations operate on the buffer attribute in the state schema - buffer : seq
MESSAGE). In Z, a sequence is a special kind of function that is used to model an

ordered collection of objects, whereas with sets there is no ordering. A sequence of
MESSAGE items s= (msg,, msg2, msg3) is represented as the set of mappings {1

i msg,, 2H msg2i 3H msg3} and the contents of s is its range (ran s), which provides

the set of objects with the indices 1,2 and 3 removed as {msgi, msg2, mssg3}.

The axioms of Read specify that the dynamic proxy of the current instrument must be

joined to a group of dynamic proxies. The total function recv then maps the contents of
the input sequence input? (i. e. ran input?) to the contents of the current instrument's

buffer (i. e. ran buffer), assuming no ERROR element exists in ran input?.

recv({i : ran input ?Ii* ERROR}) = ran buffer

The axioms of Write are similar to those of Read, except that for Write an output message

output? is produced.

106

Invoke - is used by the current instrument to invoke the methods of a service providing
input server component server?. The capability for instrumentation services to invoke

methods on service providing components has already been mentioned in chapter 5 and

will be considered further in chapters 7 and 8. Through this capability, instrumentation

services may intervene client invocations and gather information about the parameters

and results of the invocations. Invoke operates on an input method mthd? of the input

server component server?. It does not affect the state attribute of the current instrument

(since it has already changed). The axioms of Invoke specify that there must be an

attachment mapping between the input server's interface and the current instrument's

dynamic proxy as attachment(server?. iface) = dproxy; the input method must be in the

range of the impl total function (ran server?. impl). The invocation attribute specifies that

the invocation must be either of the ordered pairs (mthd?, SUCCESS) or (mthd?,

EXCEPTION).

Notes - is used by the current instrument to notify other instruments of any change in its

state E(state). Notify works in a multicast fashion in that the current instrument notifies

all instruments in the group of which the current instrument is a member. Notify generates

an output event!, which is sent to all other instruments in the group using the Write

operation. In the axiom part of Notify the total function evtgen is used to generate the

output event. The instrument's buffer must then equate to a message constructed from the

output event as buffer = (CEVEN7(event!)). The message is then sent to all instruments

in the group (i. e. the instrument's whose dynamic proxies are in ran joined) except for

the current instrument self. The final axiom also specifies that the message is sent by the

Write schema operation.

Vi : Instrument Ii# self A {i. dproxy} E ran joined " Write

As already mentioned, the main aim of the chapter is the development of a formal state

model that encapsulates the behaviour and interactions of instruments within an

application and the Instrument class is crucial to achieving this aim. It is apparent that the

Instrument class contains no information that specifies how instrumentation services

measure or record the various parameters of an application. The details relating to the

107

measurement and recording functionality of instrumentation services will be the subject

of chapters 7 and 8.

Before we move on to consider the formal model of an application, it is worthwhile re-

emphasizing why a formal model is necessary. It is the author's belief that the separation

of behaviour and interaction from the measurement and recording functionality leads to a

simpler concise model of instrumentation. It is also the author's belief that the formal

treatment of behaviour and interaction delivers the precise structure, states and axioms.
These structure, states and axioms cannot be represented with such precision using less

formal approaches. There is also a likelihood that aspects of the formal model may be

overlooked with less formal approaches. These views are based on the clarity of the

abstraction that can be achieved through a formal model and the fact that the formal

model can be checked for correctness and precision using tools such as ZTC and Wizard.

In contrast, the functionality governing the measurement and recording aspects of
instrumentation, does not justify a formal treatment, as we shall discover in chapters 7

and 8. This is so because measurement and recording functionality is not so tightly

coupled to the elements that are being measured and recorded (i. e. the elements that make

up a distributed application, such as middleware and the application's software

components). However, where the behaviour and interaction model is concerned, the

coupling between instrumentation services and application components is far tighter.

On this note, we may proceed with the formal model to further develop our

understanding of instrumentation operating in the context of a middleware-based

application

6.2.4 Application Model
The Object-Z class Application, shown below in Figures 6.6 and 6.7, combines the

lookup service, client/server component and instrumentation models considered

previously. The class provides an abstract representation of an active (i. e. running)

middleware-based application that incorporates dynamic instrumentation. The

Application class schema inherits the classes of LUS, Client, Server and Instrument

considered previously. As Application is an active class (unlike the LUS, Server, Client

108

and Instrument classes) it contains a TCOZ MAIN process that will be considered later in

this section.

109

Application
F-L

L. 'S, Server, Client, Instrument

insts PInstrument

servers P server

clients P Client
lookups PLC'S
instti_servers PServer
attached_insts PInstrument
federation P Sere er + PLUS
instrmn PServer + Plnstrvment

instd_servers C servers
attached_insts C mats
attaehed_insts - {i tnsts I r. dprozy E ran attachment}
instd_srrve"rs - Is servers (s dace E dom attachment}
instrmn(instd_servers) - attached_tnats

INIT
V1 lookups s I. INIT
VC: clients e e. INIT
VS: servers 9
Ha servers ss Register

Vi insts st INIT
Wi insts si. Register
instd_cmps -0
attached_insts -0

Instr umentSer"er UninstrumentServer
c366nstd_servers, attached_insts) : 1i instd_servers, attached_insts)
server? Server server? : Server

mat? : Instrument inst? Instrument

{server? } CT dom instrmn {server? } E dom instrmn
{ inst? } ran instrmn { inst? }E ran instrmn
mat?. dproxy ¬ ran attachment - inst? dprozy E ran attachment w

inst? Attach inst? Detach
instd servers' - mstd_servers U {server? } instd_srrv ers' - instd_servers '" {server? }

attached_inats - attached _insta
U{inst? } attached_insts' - attached_insts {inst? }

Client Servcr
dient? Client
server? Server
inst? : Instrument

client? E clients
server? E servers
{server? } E domfederation
dient?. Loot-up
server? proxy E dom client? rim

server?. methods E ran client?. rifle
3m: METHOD ImE server?. methods " server?. iface E dom attachment

((m, SUCCESS) - client?. invocation V (m, EXCEPTION) - client? invocation))
3 m: METHOD ImE server?. methods s In strum entServer inst?. Invoke -*-

client?. invocation - km, SUCCESS) t inst?. invocation - (m, SUCCESS) 'v i
client?. invocation - m, EXCEPTION) , inst? invocation - (m, EXCEPTION)))

InstManager

MAIN -µAIV1 loolvps: c chents: s servers: i: insts "
(Oe : EVENT 9 InstillanagerilClientSenýerNlc. ChangeRolells. ChangeRole): A

Figure 6.6: application class

110

Instllanager
server? Server
type? INSTRUMENT
dprozy? DPro: y
event? EVENT
mst' Instrument
factory INSTRI7. IIE. VT r- Instrument
3 ignal EI'ER'T + Instrument

server? E servers
rast' E rnsts
type? - LOGGER a-

(factory(CL000ER(dprozy7)) - inst' ' inst' dprory - dprory?)
type? - GAUGE -o

i factoryi CGAUGEi dprory?)) - inst' inst. dprory - dprory?)
type? - PROBE -*

ý factory(CPROBE(dprory?)) - isst' rst'dprozy - dprory?)
type? - MONITOR *

j factory(CIIONITORi dprory?)) - irrst' inst. dprozy - dprory?)
type? - ANALYZER "*

i factory(CANAL }'ZER(dprory?)) - irrst' inst' dprory - dprozy?)
event? - REGEI'T -* (signal(event?) - inst' inst'. Register)
event? - UNREGEVT -º tsignal(event?) - tust' inst. Unregister)
event? - ATTACHEVT -r isignal(event?) - irrst' InstrumentCmp
event? - DET. 4CHEVT isignallevent?) - inst' UninstrumrntCmp
event? - JO14EYT -+ (signal(event?) - irrst' inst. Join)
event? - UNJOINEt'T -* t signal(event?) - irrst' .n inst. Unjoin)

Figure 6.7: application class - instrument manager schema operation

The state schema and the various operation schemas that make up the Application class
follow the inheritance specifications and these schemas are each described further below.

The state schema of Application consists of the following state attributes:

" insts - the set of instrument s (monitors, gauges, probes, loggers, analyzers).

" servers - the set application server components that are assumed to be

registered with a lookup service when the application is active.

" lookups - the set of lookup services that are running.

" instd servers - the set of currently instrumented server components (i. e. those

that are attached to instruments).

" attached insts - the set of instrument services that are currently attached to

application server components.

" federation -a total function that maps a set of registered application server

components to a set of lookup services with which the application server

111

components are registered. The federation function represents the federation

of application services that the application's server components provide.

" instrmn -a total function that maps a set of application server components to

a set of instruments, which effectively instrument the server components.
instrmn essentially provides a snapshot of the applications instrumentation

mappings.

The axiom part of the state schema first specifies that instd_servers is a subset of servers
(instd

_
cmps c cmps) and attached insts is a subset of insts (attached

_
insts c insts).

Note that these axioms involve the subset c operator and not the strict subset operator C,

so it is possible for the sets to contain the same elements. The next axiom for

attached insts specifies it to be the set of instruments such that the dynamic proxy of

each instrument i is in the range of the total function attachment.

attached _
insts ={i: insts I idproxy e ran attachment)

The next axiom for instil servers specifies it to be the set of components such that the

interface of each server components is in the domain of the total function attachment.

instd
_ servers ={s: servers I s. iface a dom attachment }

Equipped with these two axioms, the instrmn axiom simply maps instd servers to

attached insts.

The Application class contains an INIT operation schema, which initializes the elements

of the sets: lookups, clients, and servers using their own INIT operations and also

registers the servers and insts using the Register operations defined in their associated

classes. The final axioms of the INIT operation schema specify instd servers and

attached insts as empty sets.

InstrumentServer/UninstrumentServer - provide "transaction-like" operation schemas in

that they combine all the axioms that are required to take a component and an instrument

from an uninstrumented state to an instrumented state (InstrumentCmp) and vice versa
(UninstrumentServer). InstrumentServer/UninstrumentServer also alter the state of the

state schema attributes instd servers and attached insts as A(instd servers,

112

attached insts). As we shall see shortly from the InstManager schema, these schema

operations are triggered by ATTACH and DETACH events respectively. The first and

second axioms specify that server? must not be in the domain of the total function

instrmn (dom instrmn) and inst? must not be in the range of instrmn (ran instrmn). The

third axiom states that if ins!? is not attached (i. e. its dynamic proxy is not in the range of
function attachment) then its state variables must be those that result from the Attach

operation of the Instrument class.

inst ?. dproxy v ran attachment inst ?. Attach

The final two axioms specify the final states of instd servers and attached insts as
instd servers' and attached insts' as set unions such that instd servers' = instd servers

u {server? } and attached insts' = attached_insts U {inst? }. The axioms of
UninstrumentCmp essentially specify conditions that are the reverse of InstrumentCmp.

ClientServer - represents the client server communications that may take place in a

middleware-based application that are achieved via clients invoking methods on servers.
The input parameters for ClientServer are: the server component server?, the client

component client? and an instrument inst? that may be used to intervene the method
invocations made upon server? when it is instrumented.

The first two axioms of ClientServer specify that client? and server? must be members of

the their associated sets clients and servers that constitute the application's components.
The third axiom specifies that server? must be in the domain of the total function

federation. The fourth axiom specifies the client lookup using the client's own Lookup

schema operation. The fifth and sixth axioms specify that the server's proxy must be in

the range of the client's rmi total function and the server's methods must be in the range

of the rmi function respectively. These two axioms essentially specify that the client has

the capability to perform RMI calls on any of the server's methods.

The seventh axiom specifies the client's invocation of method m on the server, when the

server is not instrumented, which may lead to either of the ordered pairs (m, SUCCESS)

or (m, EXCEPTION). In more detail, the axiom states that if a method m that is a member

of server?. methods exists, then, for this method, it is true that, when the server is not
instrumented ({server ?}e dem instrmn), it follows that any invocation of this method by

113

client? will result in either SUCCESS or an EXCEPTION (client?. invocation = (m,

SUCCESS) v client?. invocation = (m, EXCEPTION)).

The final axiom is similar, except it specifies invocation when the server is instrumented.

This is indicated by the InstrumentServer operation and the inst? Invoke operation
(InstrumentServer n inst?. Inkove). If this final axiom is satisfied then, as for axiom

seven, it follows that for any invocation of this method, on the instrumented server?, by

client? the invocation attribute will be either of the ordered pairs (m, SUCCESS) or (m,

EXCEPTION). However, because server? is now instrumented then the instrument's

invocation attribute inst?. invocation will also be (m, SUCCESS) or (m, EXCEPTION).

Effectively this specifies that inst? will participate in the invocation, just like client? and

will receive the same invocation result.

client?. invocation = (m, SUCCESS) A inst?. invocation= (m, SUCCESS) v
client?. invocation = (m, EXCEPTION) A inst?. invocation = (m, EXCEPTION)

Essentially specifies that an invocation by client? on an instrumented server? that is

instrumented by inst?, leads to either of the ordered pairs (m, SUCCESS) or (m,

EXCEPTION).

It must be emphasized that the final axioms specify the states governing method

invocations and do not actually elaborate an invocation. The semantics of

client?. invocation and inst?. invocation are considered further in chapters 7 and 8, but for

now, we may simply state that inst? actually performs the invocation on behalf of client?.

inst? uses the method invocation parameters that are passed to it from client?; inst? then

performs the invocation and returns any results back to client?. The approach to

achieving this is based on a combination of the Remote Method Invocation (RMI)

protocol considered in Section 3.2.4, and the dynamic proxy that will be considered in

chapters 7 and 8.

InstManager - shown in Figure 6.7 is the final schema operation of the Application class.

InstManager specifies the states governing an instrumentation manager process. In the

programmatic sense, an instrumentation manager may be a remote unmanned application

control program, or even a human controlling the applications instrumentation through

some instrumentation GUI. The main roles of InstManager are the creation of

114

instruments to demand and the signalling of instruments to change state, via the Register,

Unregister, Join, Unjoin schemes of the Instrument class and the

InstrumentCmp/UninstrumentCmp schemas of the Application class.

The attributes for InstManager are:

" server? - an input component to be instrumented/uninstrumented.

" type? - an input type of instrument requested.

" dproxy? - an input dynamic proxy that will be used to create an instrument.

" event? - an input event that will be used to signal an instrument to change its

state.

" inst! - an output instrument that the factory will be created by a factory, or

signalled to change its state by an instrumentation event.

" factory -a total function that maps a type of instrument to the actual
instrument created of that type.

" signal -a total function that maps an instrumentation event to an actual
instrument, such that the instrument assumes the state prescribed by the event.

The first two axioms of InstManager specify that server? must be a member of the

application server components servers and inst! must be a member of the applications
instruments insts. Axioms three to seven specify the states governing the construction of
instruments. These axioms use the factory total function in conjunction with the

constructors, such as CLOGGER ((DProxy)) that were specified in section 6.3.3. Axiom

three states that if the input type type? is LOGGER, then it follows that factory maps the

constructed INSTRUMENT free type CLOGGER(dproxy?) to the output instrument inst!

and the dynamic proxy of inst! is that of the input dynamic proxy used as the parameter
in CLOGGER. This is specified as factory(CLOGGER(dproxy?)) = inst! A inst!. dproxy

= dproxy? for a logger instrument and axioms four to seven specify the same for the other

types of instrument.

Axioms eight to thirteen specify the state transitions of inst! that are signalled by the
input event event?. Axiom eight states that if the input event is REGEVT, then it follows

115

that signal maps event? to the output instrument inst! and the state variables of inst! must
be those that result from the Register operation of the Instrument class. This is specified

as signal(event?) = inst! A inst!. Register for a REGEVT event and the axioms for

JOINEVT, UNJOINEVT, AITACHEVT and DETACHEVT events specify similar

conditions. Note that as mentioned previously, InstrumentCmp/UninstrumentCmp

provide "transaction-like" operation schemas in that they combine the Register and
Attach operations of the Instrument class. By doing so, they provide all the axioms that

are required to take a component and an instrument from an uninstrumented state to an
instrumented state (InstrumentCmp) and vice versa (UninstrumentCmp).

The final specification of the Application class of Figure 6.6 is that of the MAIN process

that is used in TCOZ to indicate that the Application is being defined as an active class. A

MAIN process is often defined as au expression [89], which is also referred to as a
definite description. Such expressions are used when it proves difficult to construct a

predicate to describe unique behaviour in a complex system. Ap expression may be used

to provide a unique binding that satisfies any given constraints.

So, for example, if a Stack was declared as an active class, we may write the MAIN

process for a stack, S, as:

MAIN =µS" (Push QPop); S

This example MAIN process uses the external choice operator to allow choice between

Push and Pop operations, according to what events are requested by the stack's

environment.

The Application MAIN process is specified as:

= µ. d I lookups: c clients: s: servers-, i: insts " MAIN,
(:)e : EVENTS Inst. IIanagerNIClientSemerllc. ChangeRolells. ChangeRole) ;A

The MAIN process uses the TCSP external choice operator in its intentional form to

specify that the environment may choose any appropriate event e to determine the

behaviour of InstManager. The TCSP asynchronous parallel indicates that ClientServer,

InstManager and the ChangeRole operation execute concurrently without any

synchronization. The final part of the MAIN process essentially closes the loop on

application A using the TCSP notion of process sequencing (P ; Q), which acts as P until

116

P terminates by communicating 4 and then proceeds as Q. So MAIN acts as the

InstManager/ClientServer combination until they terminate and then proceeds as A,

which returns back to the InstManager/ClientServer until A eventually terminates,

thereby terminating the MAIN process.

6.4 Chapter Summary
This chapter has provided a formal model of the instruments that provide instrumentation

services, based on a combination of Object-Z schemas together with some TCSP

operators. The overall instrumentation model has been described through a series of

related models that have described: the typing system; middleware lookup services and

application-level components; the actual formal model of instrumentation service

providing instruments. The final model considered the incorporation of instruments

within an application and developed the formalisms of the states that instruments may

assume and formalisms of the interface commands that instruments should expose within

an application.

These state models and axioms will serve as the formal basis for chapter 8, which is

concerned with the implementation of instrumentation services. However, for the next

chapter, we move on to address the functional requirements of the instrumentation

services (i. e. the details relating to the measurement and recording functionality of
instrumentation services - similar to the physics of the altimeter analogy).

The chapter has provided a novel contribution by formally specifying the operations

required of an abstract instrument in terms of a formal state-based model and associated

axioms. In addition, it is hoped that the chapter may go some way towards promoting the

use of formal methods for the specification of structural and behavioural characteristics

associated with distributed systems.

117

Chapter 7

An Instrumentation Architecture for Measuring
and Monitoring Applications

This chapter considers the development of the instrumentation architecture based on the

classification of instrumentation services of chapter 5 (Figure 5.1). The main aim of the

chapter is the development of an architecture that fulfils the functional requirements
defined in chapter 5, namely the measurement and monitoring functionality. The

architecture is developed through a series of UML models that represent the functional

aspects of measurement and monitoring in a middleware-based application.

The chapter begins by describing how system-wide information (relating to the

underlying computing platforms) can be acquired for Java-based application. The chapter

then goes on to develop the architecture, based on the classification hierarchy of chapter
5, through a series of semi-formalized UML models. In particular, models are developed

that provide the structure and measurement functionality for the actual instantiable

instrumentation services of logger, analyzer, gauge, probe and monitor as well as the

various support or infrastructure classes represented in Figure 5.1.

The direction in which we are heading is towards the implementation of instrumentation

and like the ascent of Everest, this journey is complicated so two separate teams have

taken different routes with a view to meeting at the summit. The first team took the

formal specification route of chapter 6, whereas the second team is about to start the route

of the current chapter. Both teams intend to meet at the summit of chapter 8, where they

will combine their ideas to pitch the flag of the expedition, namely the implementation of
instrumentation architecture.

7.1 Accessing Application Information
When we set about instrumenting a complete application, there are two main categories

of entities that we are likely to want to learn more about. We may consider these

118

categories as system-wide resources and application-specific parameters themselves. The

system-wide resources relate to the computing platforms on which our application

components run and the network and associated networking devices which connect

platforms. Chapter 2 has already defined the platform as the combination of operating

system and computer hardware, including networking capabilities.

Although system-wide resources are essential to a complete understanding of a
distributed system, they are not the main concern of this thesis. This thesis is more
concerned with measuring and monitoring the application-level components and the
distributed middleware infrastructure. However, the problem is that to measure and

monitor the latter, we are likely to need some information regarding the computing

platforms.

For this reason, the next section consider some `pragmatic' techniques that may be used
to access information relating to Java-based platforms. We do not explore the use of these

techniques further in this chapter, but they will be revisited in chapter 8 (concerned with
the implementation) and again in chapter 9, which considers instrumentation case studies.

7.1.1 Accessing System-wide Resources
Certain system information, relating to host computers, operating system and virtual

machine environment may be obtained using language specific, or middleware specific

utilities. For example, Java provides the j ava . lang . System class that provides a

get Properties method that provides information about the Java Virtual Machine (JVM)

environment and operating system. Java also provides a useful j ava .l ang . Runtime

class, which provides a getRuntime method that can be used to go beyond the JVM level

and access the operating system itself. In particular, the Runtime class provides

capabilities for determining the total memory and free memory of a host and the heap

size of a JVM. Java and Java RMI are often used as the base development language for

developing distributed systems in conjunction with Jini middleware technology. The Java

RMI/Jini combination makes it possible to access system resources on a range of

networked devices, including servers, workstations, printers and other small foot-print

devices not usually found on a network. Java RMI's Remoteserver class provides a

119

getclientxost method that can be used to capture the address of the client executing a

remote call on a server.

The Java Management Extension [24] (considered previously in chapter 4) may be used
to access information through existing network management protocols. JMX provides an

agent-based API that allows management services to be used within distributed Java-

based applications. In particular, JMX provides integration with existing management
technologies such as SNMP and future technologies such as the Web Based Enterprise

Management (WBEM) standard, which is a relatively new management protocol for use
in Storage Area Networks (SANS). Finally, whilst the above techniques provide
techniques for accessing system-wide resources they do not necessarily provide direct

capabilities to record or log information. Such logging may be carried out through

general-purpose third-party logging software, such as the Jakarta log4j project [82],

which provides general purpose logging utilities for Java based applications.

Having considered the techniques used to access system-wide resources, we may move

on to consider our main concern, namely the access of application-specific properties,

which manifest as the structural and behavioural properties of our application's

components.

7.1.2 Accessing Component Structural and Behavioural Properties

When we instrument the components of an application, we are interested in determining

the structure and behaviour of the components. Before we proceed, we must be clear

about what structure and behaviour refer to: we may regard a component at runtime as a

collection of objects, grouped together to provide some prescribed functionality. These

objects are instances of the classes that constitute the structure of the component. The

behaviour of a component is a runtime characteristic that is defined in terms of the

collective states of its objects and the interactions between its objects and interactions

with the outside world (i. e. interactions in the broader context of an application). The

state of a single object at runtime is defined by its attributes and the runtime parameters

of its methods during their invocation.

We may determine the structure using the introspection capabilities provided by modem

object-oriented programming language. Introspection is the technique through which we

120

may "look into" a component to determine its structure, based on its attributes, method

signatures, constructors, inheritance hierarchy etc. Java has a well-developed
introspection library: for example, Java provides the j ava. lang . class method, which

can be used to access a variety of parameters associated with a Java class (class name,

class attributes, class methods etc.). Similar structural parameters may be accessed in

CORBA-based applications, through CORBA's IDL utilities and the CORBA Interface

Repository, which is based on Abstract Syntax Trees (ASTs), as described in [96].

Java also provides a reflection API through which can be used to introspect classes and
also acquire behaviour of the objects that implement classes. The reflection API, which

was touched on in chapter 3, is based on the principle of computational reflection, which
is described further in [97]. Essentially, reflection provides capabilities through which we

may look into or peek at a components implementation and runtime behaviour. Java's

reflection API allows us to reflect on runtime objects and access the attributes and any
inner classes, which define the object's state. The reflection API also allows us to access
the methods and their associated parameters and return types, which define state
transitions and behaviour. CORBA provides interceptors, which can be used to provide

reflection like capabilities. These capabilities are considered in [43] which describes

experiences in using interceptors to implement reflection. As considered in chapter 4, the

work of [8] describes how reflection and CORBA interceptors may be used to peek into

CORBA objects at runtime.

Whilst we may use introspection and reflection to determine a components structure and
behaviour, we often also need to learn more about a component's interaction with other

components and more particularly the components on which it depends. Chapters 2 and 5

have previously considered to notion of dynamic dependencies between components.
Chapter 5 described how dependencies are determined from the bindings associated with

a component. Chapter 5 also described how a binding occurs when one component (the

dependent) has downloaded a copy of the proxy of some other component (the

independent) with a view to invoking the methods of the independent component.
Reflection could be used to determine component bindings, but it would prove difficult to

identify all dependencies, beyond the immediate dependencies. This is so because the

immediate independent components may have dependencies themselves and to obtain a

121

complete representation of dependencies, we must visit these secondary dependencies.

The alternative approach we use is based on the service dependency work conducted by

[7] and makes use of Administrable and Dependent interfaces.

7.1.3 Administrable and Dependent Interfaces
Jini applications (considered further in chapter 8) consist of Java components, referred to

as Jini services, which communicate with each other through proxies using the RMI

protocol. Proxies are moved around in a Jini system and clients may download server

proxies so that they may communicate with the server via RMI calls on the methods that

its proxy specifies. Jini middleware technology provides an Administrable interface

through which its own core services and programmer-defined application services may be

administered. If a service implements the Administrable interface then it must
implement a getAdmin method, which returns an administration object that implements

whatever administration interfaces are appropriate for the particular service. Jini itself

provides several administration interfaces for its own core services, but the main
intention of the Administrable interface is to provide a hook onto which application

programmers may attach their own administration interfaces.

The instrumentation architecture uses the Administrable interface in conjunction with a

Dependent interface (Figure 7.1). The Dependent interface declares

getDeclaringClass and getBindings methods and a ServiceAdmin class (Figure 7.1)

implements the Dependent interface. Any application component, which is likely to

depend on other components must implement the Administrable interface and therefore

must implement the getAdmin method. The getAdmin method is required to return a

ServiceAdmin object.

As we shall see shortly, instrumentation services that are designed to determine

dependencies need only invoke the components getAdmin object to access its bindings

from the ServiceAdmin administration object that is returned. By adopting this approach,

we have introduced a compromise to instrumentation being unobtrusive. The need for

application programmers to implement the Administrable interface and return a

ServiceAdmin object does raise two drawbacks: first, programmers are required to

expend extra effort and second, the extra code does intrude on their own application

122

classes. However, the extra effort, which is relatively small, does provide a direct and

consistent means for dealing with the complexities of dependencies and consequently, the

compromise is thought to be justified.

public interface Dependent
public Class getDeclaringClass();
public object(] getBindings();

}
public class ServiceAdmin implements Dependent

public Object obj = null;
public Object[] bindings = null;

public ServiceAdmin(Object obj) {
this. obj = obj;

}
public Class getDeclaringClass()

return this. obj. getClass();
}
public Object[] getBindings() {

return bindings;

}
}

{

{

Figure 7.1: dependent interface and service admin object

The use of the Administrable and Dependent interfaces and the combination of the

serviceAdmin class and the getAdmin method will be considered further in chapter 8.

7.2 Architectural Models
This section develops the architectural models that elaborate the classification of
instrumentation services of chapter 5 to represent measurement and monitoring
functionality. Before we embark on the development of the UML models, we illustrate

the architecture informally through Figure 7.2.

123

API

Managcnenc Agat

Loggas

Application Components

Gauges NAnalyzers Probes

Instrumentation Infrastructure

Loggers Gauges ! Analyzers

Middl eware

OS and Virtual Machines

Figure 7.2: instrumentation layer

Monitors
Interfaces

System-wide
Resources
And
Third-party
Logging
Software

This figure shows the instrumentation infrastructure sandwiched between middleware

and application component layers. The instruments, Loggers, Gauges, Analyzers, Probes

and Monitors sit on the outer surface of this infrastructure, straddling the Middleware and
Application Component layers. All the instruments sit between the infrastructure and the
Application Components whereas only Loggers, Gauges and Analyzers sit between the
infrastructure and Middleware, since these are the only three instruments designed for

measuring and monitoring middleware. To the left there is a Management Agent,

containing a Controller, which may access instrumentation services via an API. To the

right there are utilities that provide access to system-wide resources and third-party
logging software applications. Instrumentation services themselves may require access to

these resources or may use the services of general purpose logging software to log or

record system-wide resources.

In this chapter, we are concerned with the development of the instrumentation

infrastructure, the five instantiable instruments and the instrumentation API. As we shall

see shortly, the instrumentation infrastructure is made up of a hierarchy of protected

support classes that are exclusive to the architecture and may not be instantiated by

Management Agents. The five instruments are represented as public classes that may be

instantiated and used via their APIs by Management Agents. The API is represented as

the various constructors and methods that the five instruments provide. The interfaces,

used to access system resources and third-party logging software, are not considered in

this chapter, but they will be considered further in chapters 8 and 9.

124

The UML models are developed to represent the above informal representation in a semi-
formal fashion and thereby describe the instrumentation architecture in terms of structure
(hierarchy) and behaviour. These models are presented in two stages: first, use case

models are developed to provide diagrammatic descriptions of the architecture from the

users' perspective (i. e. Management Agents). The users' may range from actual people

such as system administrators controlling the application's instrumentation through some
instrumentation GUI through to remote unmanned application controlling software. The

use case diagrams are used to show the functionality that the architecture will provide and

to show which users will communicate with the system in some way when it provides
that functionality.

The second stage of models is based on class diagrams and sequence diagrams, which

capture the structure and interactions respectively required for measuring and monitoring

application components. The link between the two stages of modelling is that classes and

their attributes and methods should become apparent from the use case models. In other

words, we conduct the use case modelling from the users' perspective to uncover or

reveal the classes, attributes and methods that must be represented in the classes that form

the architecture. It is true that we already have a pretty good idea regarding the classes,

which emerged from the instrumentation classification of chapter 5, but the same cannot
be said for the attributes and methods of the classes.

7.2.1 Use Case Models
As shown in Figure 7.3, the use case models emerge from the overall coarse-grained

package diagram.

125

I

I
Logger

Management
Agent

\. ýýf-ý ý
-4 i

Analyzer

Probe

/ --\
\ J' I //

1ý ý'
i\l

// 1 // iý- \
\A%/

\\// V/ ý ý Middleware
Application

Components

Figure 7.3: system package diagram

Kb Monitor

The package diagram shows the five instrument packages and their associations with
Management Agent, Middleware and Application Component packages. By looking in to

each of these packages we may develop the use case models that represent the main

entities (stick-like actors) and the interactions between these entities through use cases
(elliptical processes).

Request Mor*m
Request Probe Applcatbn

Request Analyzer Component
(from Application C..)

Figure 7.4: management agent use cases

The first use case model is that of the Management Agent, shown in Figure 7.4. This

model shows the Controller playing a central role in coordinating the activities associated

126

with the management of an application. The Controller may request services from any of

the five instruments. The Controller may then process the results from the

instrumentation services and use this information to revise either the middleware or

application components ("Process Results" use case). As they stand, use cases such as
"Request Logger" tell us little about the activities involved in this process, so we may

expand each of the instrument request processes as activity diagrams. The activity
diagrams shown below in Figures 7.5 to 7.9 represent the activities that take place within

the request processes, just as if we were to "lift the lid" and "look into" each of these

processes.

Because the request processes occur within the Management Agent package, the activity

diagrams of Figures 7.5 to 7.9 represent activities undertaken by the Management Agent

and not the instrument in question. The diagrams do however represent the states of the

instruments whilst the various activities are taking place. Within the diagrams, the boxes

with rounded ends represent activities and states are represented as boxes with rounded

comers.

Set Log Set Gauge
Parameter Parameter

Set Log Streem Set Gauge
Limits

Start Logger
Start Gauge

Logging

Gauging

Access Log
Stiesm

Access
Measurement

Figure 7.5: logging activity diagram Figure 7.6: gauge activity diagram

127

Set Compute Probing
Object

Set Analysis Access Digraph
Parameter

Start Analyzer
"

Analyzing

Access
Compute Object

Figure 7.7: analyzer activity diagram Figure 7.8: probe activity diagram

Monitor
Object

Set Method
lmocaYon

Set Evert
Intake

Method

Recehe
Evert Access Invocation

Object

Access Event

Figure 7.9: monitor activity diagram

128

The first three activity diagrams of Figures 7.5 to 7.7 are similar and represent the

Management Agent setting appropriate parameters before Loggers, Gauges and
Analyzers are started. The instruments then enter their appropriate states of Logging,

Gauging and Analyzing and when these states end the Management Agent may access
the results. The request probe activity diagram is the simplest of all the activity diagrams

since the probe does most of the work and as we shall see shortly, a probe gets its

parameters directly from application components as component bindings. The request

monitor activity diagram differs in that it contains two optional routes - one for event

monitoring and one for method invocation monitoring.

Notice that none of the diagrams include an attachment operation through which an
instrument is attached to the component that it measures or monitors. Of course, this is a

necessary operation, which must take place before an instrument can perform any form of

measurement or monitoring. However, this is regarded as one of the basic instrument

operations that were considered in chapter 6. The semantics governing these operations
have already been covered in chapter 6 and, with the exception of invoke, their semantics

are not considered further in this chapter. The basic operations will however be

represented as methods in the class diagrams to follow later.

The activities relating to processes "Process Results", "Revise Component Behaviour"

and "Revise Middleware Service" have not been elaborated further, through activity

diagrams, as they are not relevant to the development of the instrumentation architecture.

ý Method Inwcatlon

ý ýý
Client Server

Receive Events

Figure 7.10: application components use cases

129

The Application Component package expands to the use case model shown in Figure

7.10. This model shows that an application component may be a client or a server and the

two may engage in method invocations (client invokes methods on server) or they may
transmit events amongst one another. Of course, application components do a lot more,
but from the point of view of our model, method invocations and event transmissions are

the main concern.

Lookup SeMce

Lease Ser ce Security SerAce
;

)ý

Transaction
SeiAce

Dtscooery SenAce

Figure 7.11: middleware services hierarchy

The Middleware package expands to the use case model shown in Figure 7.11. This

model shows a simple representation of a middleware services as one of several core

services found in most current middleware technologies. Again, although this model

omits the vast amount of activity undertaken by middleware services, it is sufficient for

the development of the overall instrumentation model (i. e. provides a suitable abstraction

of middleware services).

C

Middleware
Seneca

Prom Middlwam)

Get Log Parameter

Logger

Record Log Parameter

Write Lop Parameter

Controler

(from Management-)

130

Figure 7.12: logger use cases

The Logger package expands to the use case model shown in Figure 7.12. This model

shows the interactions between a Logger, an Application Component or Middleware

Service, a Controller and a Logger Stream. The Logger must first get the parameter to be

logged from the Controller and then access this parameter from either an Application

Component or Middleware Service. The Logger then records the parameter and writes it

to a stream.

Write Gauge Parameter

Figure 7.13: gauge use cases

The Gauge package expands to the use case model shown in Figure 7.13. This model is

similar to the Logger model of Figure 7.12, except that the gauge must also get the

gauging limits from the Controller. The Gauge does not write its data to a stream, but to a

measurement object that may be accessed by the Controller when it is processing the

Gauge's results.

131

Controller

piom Man emeM. a9

ý

ý ý
Get Compute Object

Middleware
Ser 4ce

prom Middlewne)

Get Analysis Parameter

Compute Object

Figure 7.14: analyzer use cases

The Analyzer package expands to the use case model shown in Figure 7.14. This model
is similar to the Logger and Gauge package, except that the analyzer must also get the

Compute Object, which will be used to perform the analysis and store the result.

Access Admin Object

VIM CortponenMs

CD

Dependency
f lmmnh

Bald Dependency Digraph -

Figure 7.15: probe use cases

The Probe package expands to the use case model shown in Figure 7.15. The main
difference in this model is that the Controller is not present, but a middleware Lookup

Service is. This is so because the Probe will determine the dependencies of the

component to which it is attached and the Probe needs to be made aware of any changes

in its component's dependencies via the Lookup Service with which the component is

registered. The Probe determines the dependencies of its component by determining the

132

component's bindings. After acquiring this set of direct dependencies, the probe must

recursively visit each of the other independent components to see if they themselves have

any dependencies of their own before the probe can build the complete dependency

digraph.

CD 0 .ý

(hum ApplIuron C..) '\ z\ Generate In ocation object

y

Recehe Notification ýý
Generate E%ent Object

Event Object

Figure 7.16: monitor use cases

Invocation Object

The Monitor package expands to the use case model shown in Figure 7.16. The monitor

model represents the interactions for event monitoring and method invocation

monitoring, although the two different tasks will be conducted by different types of

monitor. The monitor begins by getting either an event or a method from the Controller.

If the monitor is an event type, it must register in order to receive notifications of any

such events from the Application Component. After notifications are received the

monitor then repackages the event in the form of an event object. In contrast, method
invocation monitors must first access the appropriate method before they perform the

invocation on behalf of a client component. The method, its parameters and any results
from the invocation are then repackaged as an invocation object.

As mentioned previously, we already have a pretty good idea regarding the classes, from

the instrumentation classification of chapter 5, but the use case models have revealed

additional, less obvious classes. We have also revealed the activities that take place
between Management Agent Controllers and instrumentation services. These activities

will assist in developing the API that instrumentation services must provide to

133

Management Agents via their constructors and methods. For this chapter we are only

concerned with developing the basic shape of the API so that we may craft it further and

incorporate middleware utilities in chapter 8, which deals with the implementation of
instrumentation services.

7.2.2 Class and Sequence Diagrams
The classes that constitute the architecture are based on the instrumentation classification
developed in chapter 5. We may recall the classification hierarchy (Figure 5.1), which is

repeated in Figure 7.17 to assist the explanation of the instrumentation architecture

classes. The following class diagrams and associated sequence diagrams provide a semi-
formal description of the architecture that may be used as the basis of an implementation.

The class diagrams represent structure and the sequence diagrams represent the behaviour

required of the architecture. The design starts with the root of the hierarchy tree and

works through the various infrastructure classes towards the concrete instantiable

instrumentation services.

134

40

0

ý °
C U
ß ý
C,,

ýý

I

m

0 ý ý cý

C

I

O

e

ý ý
a

Co 0

1° ý

0

I a
c

to
0 N

CO)

2
C

O

L

ý
c
0

c 0
4=

Ö

OC

W
ME

11 11
`
os

08
33
W3

1<: I--

C
O

'11\

S
0
CL

ý
.ý 0
ý
W

7.2.3 Baselnstrument Class

UnicastRemoteObject
(from server)

<<Interface>>
RemoteEvent

Listener

'%notify()

ýý

\
\J

«Interface»
Runnable
from lang)

hunp

L
Basehstnament

$p type : INSTRUMENT
$pbuffer : String

thread : Thread
pwrapper : DProxy

« Interface »
InwcationHandler

lbinwkep

R \
ý

Directlnstrument

*Base lnstrumentQ
hegister()
O*unregister()
'6join()
'%unjoinQ
head()
lbwrite()
'%notiy()
*reflect()

16Directtnstrument()
%ttach()
*deta ch()
lbinvoke()

*UnicastRemoteobject()
VI*UnicastRemoteObjectQ
W*UnicastRemoteObject()
klone()
'bexportObject()
4bexportObject()
*exportObjectQ
**unexportObjectQ

ýa v

Indirectinstrument

*ndirectinstrument()

Figure 7.18: Baselustrument class

chapter 8 considers the implementation of the architecture using Java and with this in

mind, several of the class diagrams refer to classes supported by versions of J2SE from

vl. 3 upwards. The BaseInstrument class, shown in Figure 7.18, is at the root of the
instrumentation class hierarchy. BaseInstrument subclasses the

UnicastRemoteObj ect Class from the j ava . rmi. server package to allow Java RMI

communication. BaseInstrument implements the Runnable interface from the

java. lang package so that instruments may run as Java threads. BaseInstrument also

implements the RemoteEventListener interface provided by Jini middleware. This

136

requires that Baselnstrument implements a notify method, which is in fact an
implementation of the basic instrument operation Notify that was considered in

chapters 5 and 6. Through the notify method the current instrument may notify other
instruments, to which it is joined, that its state has changed. Baselnstrument contains
the following attributes:

" type - the type of instrument (logger, gauge, analyzer, probe or monitor).

" buffer -a message string that is used for communications with other
instruments

" thread -a Java thread in which the instrument may run, when it is required
to run for a period of time until it is terminated.

" wrapper -a dynamic proxy through which instruments may be attached to

application components.

aaseinstrument declares a constructor and methods that cover seven of the basic

instrument operations, considered previously in chapters 5 and 6, namely register,

unregister, join, unjoin, read, write and notify. The reflect method is a

generic method that uses Java's reflection API to access a specific parameter of an

object at runtime, where the object is an instance of some specific class. The parameter

may typically be an attribute, a method, a parameter or return value of a method
invocation, an inner class, or an inherited class. The reflect method is a private

method that may only be invoked by other classes within the instrumentation hierarchy.

Direct Instrument and Indirect Instrument are the two subclasses of

Baselnstrument. These classes distinguish between instruments that are directly

attached to application components and those that are indirectly attached, generally via

a direct instrument. The Direct instrument class provides the capability to attach
instruments to application components, via the dynamic proxy wrapper attribute. To

provide this dynamic attachment capability, Direct instrument implements the

InvocationHandler interface from Java's reflection API. The Direct instrument

class also implements the final three basic instrument operations of Attach, Detach and
Invoke, via attach, detach and invoke methods respectively.

137

It is at this stage that we may see the benefit of the separating instrumentation

functional and operational requirement. Between them, Baselnstrument and

Direct instrument declare methods relating to the ten basic instrument operations of:
Register, Unregister, Attach, Detach, Join, Unjoin, Read, Write, Invoke and Notify. The

states and axioms governing these operations have already been specified in chapter 6,

so we need not concern ourselves with these methods for the remainder of the class
hierarchy model.

However, the Invoke and Notify operations are given some further explanation as these

two operations may be overridden by method and event monitor instruments

respectively. The basic invoke method is used by Direct instrument to perform

method invocations on a server on behalf of a client, as specified in the Invoke and
ClientServer schemas of chapter 6. The basic notify method is used by

Baseinstrument to inform other instruments that its state has changed in some way, as

specified in the Notify schema of chapter 6. Later in the section, we shall see how these

methods are overridden to perform more specific monitoring activities.

7.2.4 Static Instrumentation Services: Logger, Gauge and Analyzer

Staticinstrument

$pparam : Object

*Staticlnstrum entQ
**start()
%top()
*setParamQ

Logger

'%Gauge()
*gauge()
'6setLimits()
**getMeasurementQ

pobj : Object

*Analyzerp
%nalyze()
*getComputeObj()
*setCom puteObj()

Gauge
omeas : Measurement

Analyzer

pout : OutputStream

koyger0
%p()
*setStisamp
4petStmamp
I%open()
*close0

Figure 7.19: Staticlnstrument class hierarchy - Logger, Gauge and Analyzer

138

The Static Instrument class, shown in Figure 7.19, may subclass either
Direct Instrument Or Indirect Instrument. Staticlnstrument contains the single

attribute param, which is the parameter that is to be logged, analyzed or gauged. The

three subclasses of Static Instrument are the three static instruments Logger, Gauge

and Analyzer, which are instantiable classes. Staticlnstrument contains start and

stop methods to start and stop logger, gauge and analyzer threads respectively. The

set Param method is used by management agents to set the parameter of interest for the

instrument.

The Logger class contains the out attribute, which is a Java outputstream to which

information is to be written. Logger contains a log method, which may run as a thread

to log the parameter over a period of time. Logger also contains open and close

methods to open and close the logger's stream respectively and getStream and

setStream methods, used by management agents to set and access the logger's stream

respectively.

The Gauge Class Contains the meas attribute, which is an object of type Measure. Gauge

contains a gauge method, which may run as a thread to gauge the parameter over a

period of time. Gauge also contains a setLimits method, used by management agents

to set the gauge limits and a getMeasurement, used by management agents to access

the gauged measurement.

The Analyzer class contains the obj attribute, which is a java. lang. Object that

represents the compute object used in the computational aspect of the analysis.

Analyzer contains an analyze method, which may run as a thread to analyze the

parameter over a period of time. Analyzer also contains getcomputeObj and

setcomputeObj methods, used by management agents to access and set the computed

object respectively.

139

; Aaent

T

4
T

Logger()

setParam()

setStream()

: Comoonent

i

flet3 tream ()

clo4e()

Loaner

I
I

1 reflect()
ý

param I

ý opeý()

Li-

I loo(
ýý

T

Stream

ý

I

ý
I
i

_ý

Figure 7.20: Logger sequence diagram

The sequence diagram of Figure 7.20 represents the time sequence of interactions

between the objects involved in a logging activity, which are represented as boxes

arranged horizontally in the diagram. The vertical lines or "swim-lanes" represent the

lifeline of each object and time is measured vertically downwards. Horizontal lines are

used to represent the activation of communication messages such as object creation, via

constructors and method invocations and their results.

The logger sequence begins when a management agent creates a Logger object, via its

constructor Logger (). The agent then invokes the logger's setParam and setstream

methods to set the parameter to be logged and the stream to which results are to be

140

logged respectively. Typically, in a Java implementation, these invocations would pass

Java references of objects to the logger. The logger then invokes its reflect method to

access the specified component parameter to be logged. The logger then opens the

stream and its log method is then invoked to record or write the parameter to a stream.

The log method may either be invoked in a single pass to record one single value of the

parameter. Alternatively, as shown in Figure 7.20, it may be invoked within a thread to

repeatedly record the value based on the granularity that is set for the thread. When the

log method returns the logger closes the stream and the management agent may access

the stream using the getstream method.

: Aaent : Gauae : Component : Measurement

ý- ý

1.

-r

vauye{)I

setParam()

setLimits() i

reflect()
J.

ý

Measuýment()`ý

param ý-rE------

gauge()

ý

yetMeasurement() ir

i

ý
I

ý

Figure 7.21: Gauge sequence diagram

The gauge sequence diagram is shown in Figure 7.21. The sequence for the gauge is

similar to that of the logger with a few small exceptions: when the gauge constructor is

141

invoked, by a management agent, it goes on to call a measurement constructor to create

a measurement object. The agent then invokes the BetParam and setLimits methods

to set the parameter to be gauged and the gauging limits respectively. As for the logger,

the gauge method may be invoked in a single pass fashion, or as shown in the diagram,

within a thread. When gauge returns, the management agent may access the

measurement via the getMeasurement method.

: AaenS

ý -1
ý Analyzer()`I

Lii i I setParam()

i UI
ý

setComputeWj()

-.

J
I reflect()
L I

param

IaneMie()
ý
L

7 ComDOflerd Object

I--- --l

i !
Li

ý

g°tcompuc°onic)rII

Figure 7.22: Analyzer sequence diagram

The analyzer sequence diagram is shown in Figure 7.22. The sequence for the analyzer
is similar to those of logger and gauge except that a reference to a computational object

that will perform the analysis is passed to the analyzer via the setComputeobj method.

142

When the analysis is complete, the management agent may access the computational
object via the getcomputeobj method.

; Aaent

i

Logger()

setParam()

: Logger

i

-

I
I

T

T

setStream()

ý

4
read()

: Direct h strumen t

r-
param

--1

open)

: Stream

ý

ßo9() II!

closa()

9etStream() IIII

I

Figure 7.23: indirect Logger sequence diagram

The diagrams of Figures 7.20 to 7.22 represent the sequences for the direct static

instruments of logger, gauge and analyzer. However, these static instruments may also

be indirect if the Staticlnstrument class subclasses Indirect Instrument. Such

indirect static instruments are not directly attached to an application component and

they must use a direct instrument in order to access a component's parameters

indirectly. Figure 7.23 shows the sequence diagram for such an indirect logger

instrument. In Figure 7.23, the component is replaced with another instrument, which

must subclass Direct Instrument (i. e. it may be a logger, gauge, analyzer, probe or

monitor, but it must subclass Direct instrument). Through this arrangement, the

143

indirect logger may use the read method of the Baselnstrument class to indirectly

access a component's parameters.

All the previous sequence diagrams show static instruments recording and measuring

parameters for application components, but the static instruments may equally be

applied to record or measure middleware service parameters. Figure 7.24 shows the

sequence diagram of a logger recording a parameter associated with a middleware

service. The sequence diagram is similar to those of Figures 7.20 to 7.22, except that
instead of using the reflect method, the getAdmin method of the middleware service
is invoked. This invocation returns an administration object from which the logging

parameter may be accessed. Recall how Section 7.1.3 remarked that Jini provides

several administration interfaces for its own core services. Jini's core middleware

services implement these interfaces and by doing so, they implement getAdmin

methods through which the associated administration objects may be accessed. Chapter

8 will consider the programmatic details relating to the invocation Of getAdmin

methods and the subsequent access of administration objects.

144

Agent

i
i a-.

Logger()

Y aetParam()

Looser

I
i ý
i ,

: MiddlewareSenice

Y
setStream()ý

ý I
ii getAdmin()

>9 7
adrrWnObject

ol)Jn()

I 'o9()

i
cý e()

: Stream

ý

I
I

>LJ
I

4

pets troem ()

Figure 7.24: Middleware Logger sequence diagram

145

7.2.5 Dynamic Infrastructure Classes

Dynamiclnstrument
4pobj : DynamicObject

**Dynamicinstument()
'6starX)
O*stop()

Z±T\
Asyncro nouslnstrument II Sp ch rono us Ins turne nt

O#AsynchronousInsbvmenq)
dbezception : RemoteEzception

O*Synchronouslnstrument()
*setRemoteEzception()
**getRemoteEzception()

Figure 7.25: Dynamiclnstrument class hierarchy

The Dynamic Instrument class, shown in Figure 7.25, is a subclass of
Direct Instrument. Dynamiclnstrument contains the single attribute obj, which

represents an object of class DynamicObject. The two subclasses of
Dynamic Instrument are Asynchronous Instrument and Synchronous Instrument.

Asynchronous instruments are used for monitoring asynchronous parameters such as
distributed events and dynamic dependencies via probe instruments. Synchronous

instruments are used to monitor synchronous parameter such as RMI calls where the

client must be prepared to wait to receive exceptions back from the server.

Like the StaticInstrument Class, Dynamic Instrument contains start and stop

methods to start and stop the different types of dynamic instruments respectively. The

Asynchronous Instrument subclass is a simple class, which consists of only a

constructor. The SynchronousInstrument subclass contains a RemoteException

attribute that may result if an RNII call should fail.

146

DyremicCbjec3
Qpid : aD

*Dynamid]bjedp

DVamidrnocaionObjed
4pmeriod : NaIiod
Odient : Objed
osw. «: Object
OPar'artm: Obied[)
~val : Objed

icE%e,, Db; ed
Qperent: RernoieE%ent
QerentlD : Long
Osouroe : Object
psegNLxn : Long

*DwarridnwoationObjedp
*selpientPddress0
%esener0
%eparams0
%eFakn\U0

tDynamicFwntObjed()
'bsetlDQ
SetSouroe()
*setSegtVunO

DsnamicDi9raph
: Ocrnp : Object
«MW: Vkcbr
pedges: lkcbr
Ograiph : \kcbr \kclor

$Dynarr9cDi9i'aPhO
$seWodesp
**setEdgesp
$drawQ

Figure 7.26: DynamicObject class hierarchy

The DynamicObject class, shown in Figure 7.26, is used in conjunction with the

Dynamic Instrument Class. DynamicObject contains a single id attribute, which is an

object id. (oID) (a typical instrumentation scenario, may contain many such distributed

dynamic objects that are uniquely identified by their OlD). The Dynamic Object class
has three subclasses, namely DynamiclnvocationObject, DynamicEventObject and

DynamicDigraph to represent the three different types of dynamic behaviour and

characteristics associated with application components. Dynamiclnvocationobject

and DynamicEventObject essentially repackage the dynamic behaviours of method
invocations and events respectively to provide supplementary information relating to

the behaviour. DynamicDigraph produces a new artefact, which is a graph of the
dependencies associated with a particular application component.

The DynamicinvocationObject class contains an attribute that represents the method

on which invocation is to take place and further attributes that represent: the server, the

client's address, the invocation parameters and the invocation result (if any). All these

attributes are of j ava . lang . Object type, except params, which is an array of

java. lang. Object (Object []). DynamiclnvocationObject also contains

associated "set" methods that an invocation monitor instrument may use to set the

appropriate parameters relating to the invocation.

147

The DynamicEventObject class contains attributes that represent the event's identifier,

and the source object associated with the event. The seqNum attribute represents the

value of the sequence number on the event kind that was current when the registration

was granted, allowing comparison with the sequence number in any subsequent events.

The event represented by DynamicEventObejct is of type RemoteEvent, which is a

Jini middleware class that extends j ava . ut i1. EventObject and the source of the

event is of java. lang. Object type. DynamicEventObject also contains associated

"set" methods that an event monitor instrument may use to set the appropriate

parameters relating to the event.

The DynamicDigraph class has a cmp attribute, which represents the component for

which the digraph is to be derived. The nodes and edges attributes represent the other

components in the digraph and the relationships or connectivity between all the

components respectively. The graph attribute is the graphical combination of the nodes

and edges attributes The nodes attribute is aj ava . ut i 1. vector in which each element
is a reference of j ava . Lang . Object type. The edges attribute is aj ava . ut il. Vector

of Edge type, where Edge is represented as a pair of references of j ava . lang. Object

types. The graph attribute is a Vector of vectors, which is derived by combining the

nodes and edges Vectors. DynamicDigraph contains associated "set" methods that a

probe instrument may use to set the appropriate parameters relating to the digraph.

DynamicDigraph also contains a graph drawing method, draw, which does not
physically draw a graph in the graphics sense, but assembles an in-memory

representation of a graph based on its node and edge connectivity.

148

7.2.6 Asynchronous Instrumentation Services: Probe and Event
Monitor

Asynchronous Instrument

lbAs ynchronouslnstrum ent()
L

Event Instrument
pevent : RemoteEvent

'%E ventinstrum ent()
44registerO
'%notiy()

Figure 7.27: Asynchronouslnstrument class hierarchy

As shown in Figure 7.27 the Eventlnstrument class subclasses
Asynchronous Instrument in order to factor out the common event handling
functionality required by the Probe and EMonitor instruments. The Eventlnstrument

class contains an event attribute of type RemoteEvent to represent the event of interest.
The Event Instrument class also contains a register method to register its interest in

occurrences of the event of interest.

Note that Eventinstrument overrides the notify method of Baselnstrument. The

notify method in Baseinstrument is used by the current instrument to notify other
instrument's, to which it is joined, that its state has changed. In Event Instrument the

notify method still maintains this capability, but adds additional code so that the

Event instrument is made aware of occurrences of the remote event of interest (i. e. the

overridden notify is invoked whenever the event occurs, but this is not necessarily

communicated to other instruments to which the event instrument is joined).

149

Eventlnstrument

pevent : RemoteEvent

*Event Instrument()
hegister()
**notify()

ýý Probe II EMonitor

'%Probe()
, %visit Q
**getDynam i cDigraph()

*E M onitor()
*getDynam icE MsntObject()

Figure 7.28: EventInstrument class hierarchy - Probe and EMonitor

The Event instrument class has two subclasses, Probe and EMonitor, which are
instantiable instrument classes in that management agents may directly create objects of

these classes. The Probe class is used for deriving the dependency digraph for a

particular component. It contains a visit method, which implements a visitor design

pattern, [53], which allows the probe to recursively visit other application components

and their lookup services to build up a complete picture of the particular application

component's dependencies. This recursive descent and the visitor design pattern will be

considered further in chapter 8. The getDynamicDigraph method may be invoked by a

management agent to access the resulting dependency digraph after it has been

drawn/redrawn (bearing in mind this digraph may change over a period of time). The

EMonitor class is used to repackage an event of interest. EMonitor contains a

getDynamicEventObj ect, which may be invoked by a management agent to access the

repackaged event object.

150

7.2.7 Synchronous Instrumentation Services: Method Invocation
Monitor

Synchronous Instrument

pexception : RemoteException

*Synchronous Instrument()
*setRemoteException()
'%getRemoteE xception()

4 M Monitor

pmethod : Method

O*iNMonitor()
tinwkeQ
I%getDy n amic InwcationO bjectQ

Figure 7.29: Synchronous class hierarchy - MMonitor

The MMonitor subclasses synchronous instrument to provide a facility for dealing

with synchronous RMI calls, which have the potential to throw a RemoteExcpetion.

The MMonitor class contains a method attribute of type Java. lang. reflect . Method

to represent the method of interest. The MethodInstrument class also contains an

invoke method, which overrides the invoke method of Baselnstrument to add

additional code, which captures the characteristics of the invocation.

Chapter 8 will describe the implementation of the Baseinstrument invoke method,

which is based on Java's dynamic proxy facility (j ava . lang. reflect . Proxy).
Chapter 8 will also describe how Methodinstrument overrides the invoke method so
that the method invocation may be repackaged as a method invocation object. The

Methodinstrument class has a single subclass, MMonitor, which is also an instantiable
instrument class. MMonitor contains a getDynamicinvocationObject, which may be
invoked by a management agent to access the repackaged method invocation object.

As for the instantiable static instrument classes, sequence diagrams may be used to

represent the time sequence of interactions between the objects involved in the dynamic

151

instrument's activities. These sequences, which are similar to the sequence diagrams for

static instruments (Figs. 7.20 to 7.22) are represented below in Figs. 7.30 to 7.32.

152

; Aaent

Probe()

: Comoonent : DvnamicDiaraoh

T-- -- -I
DynamýDiprapA()`I

ý
petAdmin()

edminOb)sct ý

U

ý. rc >

T

i
ý

i
se odes()

I
selddpes()

d'sw(

YI register()

, ASR()O

) qtAdmfn(

ý

I
I
I

satf4odss()

se dpes()

re4ww()

ro I
-Y

ý

I

pýDYnsmk Dfparph4)

Figure 7.30: Probe sequence diagram

: LookuoSeMce

notify(ý

-r

153

The probe sequence diagram is shown in Figure 7.30. The probe sequence begins when

a management agent creates a probe object, via its constructor Probe (). The probe's

own constructor then goes on to create a digraph, via the DynamicGraph constructor.

Assuming the component implements the Dependent interface, the probe may then

invoke the getAdmin method of the application component to access its administration

object. This object will in turn allow the probe to access the component's bindings, via

the getBindings method as described in Section 7.1.3.

Equipped with this immediate set, the probe must traverse each of these other

components and access their own getAdmin methods to determine their secondary

dependencies using the visit method. As the probe recurses through the various
dependent and independent components it may derive the nodes and also the edges
between nodes. When the recursion is finished (i. e. the visit method returns) the

setNodes and setEdges methods of the DynamicDigraph class are used to set its

nodes and edges attributes accordingly. The probe's draw method is then used to build

an in-memory representation of the initial digraph.

If the probe is invoked in single-pass mode then the initial digraph represents the

instantaneous dependencies associated with the component. However, if the probe is

run as a thread it may at some stage be notified of changes in its components bindings

via the notify method. This notification does not come from the component, but from

the lookup service with which the component is registered. Such notifications occur

when the component accesses the lookup service in order to download a new proxy of

another application component from the lookup service. This action results in a change

in the lookup service's mappings, which leads to an event being generated of which the

probe is notified.

The lower half of the sequence diagram represents this action when a probe is running

in thread mode. After the draw method of the initial graph drawing (as described above)

returns, the probe registers with the components lookup service and receives any

subsequent notifications of changes in the components bindings, via its notify method.

The cycle above is then repeated and the probe gets a new administration object and

redraws the dependency digraph. In single pass mode, a management agent may access

154

the digraph when the probe's draw method returns, via the getDynamicDigraph In

thread mode, a management agent may repeatedly access the digraph object when the

probe's draw method returns and the probe thread is still running.

EMonitor()

Y

TI

soD(

setlource()

I I setSpqNum()

4etDynamicErentObject(p

Figure 7.31: EMonitor sequence diagram

The event monitor sequence diagram is shown in Figure 7.31. The event monitor

sequence begins when a management agent creates an event monitor object, via its

constructor EMonitor O . The monitor's own constructor then goes on to create a

dynamic event object, via the DynamicEventobj ect constructor. The monitor then uses
its register method to register with the application component so that it may receive

notifications of the remote event. When such events do occur the monitor's notify

method is invoked and the monitor may then use the setsource and setDest methods

to repackage the event as a dynamic event object. The management agent may then use

: EMonitor

register()

: Comoonent

Dynamick%entOqject()
1

i
i i ý
i

: DvremicEoentObiect

ýI E
remoteEwnt

ý

I
notify()I

155

the getDynamicEventobj ect to access the repackaged event object. Like the probe, a

monitor may either be invoked in a single pass to acknowledge a single event, or

alternatively, it may be invoked within a thread to acknowledge events over the period

of time for which the thread runs.

7 AgOM
T-
ý

MMoNtor(1
ý

T`

ýi
11 irnoke()
i1 iI

: Comoonent : Dvnamiolnwca6on0biect

r- 1
II

ovnamidrnöcatianObiect()I

>y

ý
I
I

Y I
cl

T
J.

T
q9tQýnsrrkh, pcationObjtc, K(ý

--4 seta MSSO

set")

ý
I

I

selFýremsc

fi--
seü24tumVal()

Figure 7.32: MMonitor sequence diagram

The method invocation monitor sequence diagram is shown in Figure 7.32. The

sequence diagram is similar to that of the event monitor. The main difference is that the

method invocation monitor uses its invoke method to perform the invocation of the

method on a server component, as prescribed by the management agent. As mentioned

previously, Baseinstrument implements an invoke method, which is called each time

156

a client invokes a method on a server and this action will be considered further in

chapter 8. The overridden invoke method extends on this action by capturing the

parameters and any return values that feature in the invocation and this extension will
also be considered in chapter 8.

By capturing the invocation parameters and return value, the monitor instrument has

full access to the characteristics of the invocation and it uses the setclientAddress,

setServer, setParams and setReturnvai to repackage the invocation as an
invocation object. The management agent may then use the

getDynamicinvocationobject to access this invocation object. Like probe and event

monitors, the invocation monitor may be invoked in single pass or thread mode.

7.3 Chapter Summary
This chapter has developed the instrumentation architecture for measuring and
monitoring distributed applications. The architecture is based on the classification of
instrumentation services of chapter 5 (Figure 5.1) and it has been developed through a
series of UML models. The development process has taken advantage of the separation
of operational and functional aspects relating to instrumentation services.

The main strength of the architecture is that it provides an extendable instrumentation

layer capable of supporting additional specific instrumentation services to suit specific

application requirements. The architecture comprises the infrastructure classes and a
small number of general purpose instrumentation services that can be instantiated to

measure/monitor distributed application components. The general purpose
instrumentation services may be combined to conduct more complex
measurement/monitoring tasks.

Whilst chapter 6 considered the operational aspects, this chapter has concentrated on
the measurement and monitoring (i. e. functional) aspects. Now that these two parallel
analysis and development stages of the journey have been completed, we may move on
to the summit of our journey. This summit is that of the implementation of the
instrumentation architecture to be considered next in chapter 8.

157

Chapter 8

Implementing the Instrumentation Architecture

This chapter considers the implementation of the instrumentation architecture using
Java and Jini middleware technology. The implementation essentially brings together

the formal analysis model of chapter 6 and the semi-formalized models of chapter 7. In

doing so, the implementation fulfils the operational and functional requirements

considered in chapter 5. The chapter begins with an overview of Jini middleware

technology and describes the basic operations considered in chapters 5 and 6. The

chapter goes on to describe several programming constructs, which are central to the
implementation. In particular, the use of Java's dynamic proxy, Java's reflection API,

Jini's Administrable interface and the visitor design pattern are all considered in

relation to the architecture's infrastructure classes. The chapter then describes the
instantiable instrumentation services, which may be used directly by management

agents. The chapter ends by considering how third-party software applications may be

used in conjunction with the architecture.

&I Jini Middleware Technology
Jini Middleware Technology (also referred to as Jini Network Technology) is a Java-

based middleware developed by Sun Microsystems. Originally, Jini was developed as a
technology to provide plug and play capabilities in networks that may contain a diverse

range of physical devices including devices not normally found in a conventional

network. However, Jini has rapidly pitched its stall amongst existing middleware

technologies, such as Java RMI, CORBA and DCOM. Jini is in some ways related to
Java RMI and Java RMI provides the main communication protocol for Jini. Aspects of
Java RMI and its use in distributed application programming have already been

mentioned in chapter 3. Through this section, we shall see how Jini raises the level of

abstraction of Java RMI to facilitate service-oriented programming.

158

8.1.1 Jini Service-oriented Architecture
Jini's abstraction of a network is that of a federation of services, where a service

represents a logical concept such as a printer or a chat-room. The notion of services is

taken even further in the Openwings framework [26], as was mentioned in chapter 4.

Jini provides a general-purpose middleware based on dynamic discovery and lookup

protocols and communication is based on Java's RMI protocol. One of Jini's greatest

strengths is its support for mobile code, which allows Java objects to be moved around

a network in a "freeze-dried" format from which they may be reconstituted when they

arrive at their destination. This so-called freeze-dried format is that of Java serialization

and code is said to be marshalled over the network.

It is not the purpose of this chapter to extensively describe Jini's architecture, but only

to provide a general background and to describe the major concepts relating to its

architecture. This background is intended to provide sufficient information to support

the description of the instrumentation architecture's implementation. However, more
detailed and thorough treatments of Jini may be found in [25,98,99]. Jini's architecture
is organized, into three categories: infrastructure, programming model and services, as

shown in Figure 8.1.

JVM

OS

Network

" JavaSpaca
Services

" Leasing
" Remote Events Programming Model
" Transaction

" Discovery
" Join
" Lookup

Infrastructure

Figure 8.1: Jini architecture

The infrastructure layer (sometimes called core services) provides services for

discovering Jini communities (groups of services), joining services on these

communities and searching for services (lookup). The infrastructure is also responsible
for providing minimal conditions for services to get into Jini networks. The

programming model layer provides a set of APIs that enables the construction of

159

reliable application-level services. Whilst the first layer is concerned with infrastructure

issues such as service availability and location, the second layer covers application-

specific problems in a distributed context such as fault-tolerance (Leasing Service),

asynchronous communication (Distributed, or Remote Events) and distributed

consistency (Transaction Service). The last layer contains services that make use of
both the programming model and infrastructure. These services will typically be

programmer-defined services although Jini does provide its own JavaSpaces service,

which implements a distributed shared memory facility.

8.1.2 Jini Services
Jini's fundamental abstraction is that of a service and Jini services may consist of
hardware, software or a combination of the two. A service implements an interface (a

Java interface), which describes the behaviour of the service. This interface is required
by the platform for every service, since it is the interaction point between the service

and its clients. The implementation of the service, however, is known only to the

service itself. The interface is actually a remote interface, of the form described in

chapter 3. In chapter 3, we learnt that remote interfaces are one of the two main

concepts at the heart of a distributed object model (the other being remote object

references). We also learnt that every remote object has a remote interface that specifies

which of its methods can be invoked remotely.

Proxies are crucial to the design of Jini services and there are at least five different

ways of creating Jini proxies (depending on the application) which are considered
further in [25]. The type of proxy considered throughout this chapter is an RMI-based

proxy, based on Java's RMI. Jini is actually protocol independent, but Java RMI is the

most popular choice of underlying communication protocol. RMI-based proxies are

generated by Java's RMI compiler (rmic), from information provided by a Java RMI

interface and the remote objects that implement the interface. As mentioned in chapter
3, a Java RMI interface extends Java RMI's Remote interface and specifies the

signatures of methods that are to be implemented by one or more remote objects. The

SimpleServiceinterface shown below is an example of an RMI interface.

public interface SimpleServicelnterface extends Remote {

160

private void doSomething();

}

A remote interface is often the starting point for developing a Jini service, since it

allows the developer to specify the signatures of the methods that will subsequently be

implemented by the service itself. As we shall see shortly, the interface also fulfils the

important role of providing the remote reference through which a client may use RMI

calls to communicate with a service. Essentially, the interface, or more specifically

remote interface, plays a crucial role in allowing a client to communicate with a remote

server object. Later in section 8.2.2, we shall see how remote interfaces serve as the

main means through which we can attach instruments to Jini services, via the dynamic

proxy class.

Within a Jini community a service is described by three elements: an identifier, a proxy

and an array of attributes. The proxy is mandatory in that it must not be NULL,

whereas the identifier and attributes must be present but may be NULL valued. The

identifier is assigned to the service when it starts, the proxy is a mobile code entity,

which represents the service at any of its clients. The proxy also implements the

service's interface and isolates the communication protocol with the backend server
from the client. The proxy essentially fulfils the roles of the stub and skeleton files used

by Java RMI, as was described in chapter 3. Attributes provide additional information

relating to the service, such as its location, its status, any GUI associated with the

service. The three elements are referred to as the service item (also the service object)

and are represented by Jini's ServiceItem class. The service item was introduced

previously in the formal modelling chapter (chapter 6).

In Jini applications, services may associate themselves with one another to form

communities, which are also known as groups. We may recall from chapter 5 and 6 the

basic instrument operations of Join and Unjoin, which are intended to allow

instrumentation services to organize into instrumentation groups. A community is

regarded as a logical entity represented by a java. lang. String, which reflects either

the physical or organizational structure of its services. As we shall see in chapter 9, this

facility allows us to construct complex instruments as a community of primitive

instruments, which communicate amongst each other. Within a community, services

161

interact with one another either as clients or servers. To support this interaction, they

must get references to themselves and each other and this is accomplished through a

special Jini core service, referred to as a Lookup Service.

8.1.3 Discovery Protocol
The Lookup Service acts as trader/broker between a client and the RMI registry to

match a template specified by the client based on type and associated attributes. A
lookup service describes the services that are available in a Jini community and
provides operations for registration and service searching. However, before these

operations can be used, a new service must get a reference to a lookup service that is

active (running) within an existing community. This process is defined by the
Discovery protocol. In this protocol, a service does not need to know the location of the
lookup service, which means that clients need no prior configuration to find a service
that they want to use. An asynchronous protocol version, implemented with UDP

multicast, searches for lookup service references within the local network radius. When

a reference is found, a remote notification is sent back to the new service and the new

service is then able to retrieve the lookup service's own proxy. The code fragment

below illustrates the use of this protocol.

public class SimpleService {

class Listener implements DiscoveryListener {

public void discovered(DiscoveryEvent evt) {
ServiceRegistrar[] lookupServices;
LookupServices - evt. getRegistrars();

}
}
LookupDiscovery Id =

new LookupDiscovery(new String[] {"instrument_1"));
ld. addDiscoveryListener(new Listener();

}

The protocol may be implemented by the class LookupDiscovery. When the ld object
is created, an asynchronous search of the community named "instrument_i" begins in

the local network. Then a listener object is registered with ld so that when a lookup

service is found, the discovered method is invoked to get a reference to the lookup

162

service. Note that the Jini lookup service itself implements the ServiceRegistrar

interface.

Once a new service has a reference to the lookup service, it can register itself by

invoking the lookup service's register method, as shown in the code fragment below.

Serviceltem item = new Serviceltem(id, this, attributes);

ServiceRegistration sr = lookupService. register (item,
Lease. FOREVER);

The item argument represents the service item. It provides an identifier to the service

(of serviceID type) as the first argument, and a list of attributes (an array of Entry

objects), to represent the service's properties, as the third argument. The second

argument is a reference to an instance of simpleservice (specified as this). This

argument is actually the proxy part of the service item, which will relay any remote
invocations back to the object represented by simpleservice item.

In some cases, a reference to a backend server object may be more appropriate. For

example, we may use new SimpleServicelmpl () as the second argument, where

SimpleServicelmpl is a backend server implementation object to which remote

method invocations are to be forwarded. The actual registration is performed by the

register method, which registers item with a lookupService object. The second

parameter in the register method is a constant declared by the Lease class defining for

how long the service registration is valid. The er object is a record of the registration

and, through the lease object that is enclosed on it a simpleservice is able to renew its

interest in maintaining registration.

8.1.4 Lookup Protocol
A service in a community may also want to look for another service, so as to act as a

client of the other service, thereby using the functionality that the other service

provides. This search is performed using the Lookup protocol and the code fragment

shown below may be used to implement the lookup protocol.

Class[] classes - new class[] {SimpleServiceInterface. class};
ServiceTemplate template = new ServiceTemplate(id, classes,

163

attributes);

Object proxy = lookupService. lookup(template);

The template object specifies the service's identifier, the interface that the service
implements and the service's attributes. The result of the lookup method is a service
proxy matching all the data specified by the template. The criteria used for matching by

the lookup service was considered previously in chapter 6 (section 6.2.2).

Figure 8.2 illustrates the three steps that take place in Jini client-server

communications. Figure 8.2 (a) shows the initial situation where a client wants to use
the functionality provided by a service. Figure 8.2 (b) shows the steps that take place

resulting in the client being in a position to make RMI calls on the service.

Lookup Sexvies

(Service

ý+ý+

ý
Attmbýrtes

J

Client

Figure 8.2 (a): Jini client-server communication - initial state

1. msium , -''
3. RMI calk

ý",]. lookup

----------- _",

J

Figure 8.2 (b): Jini client-server communication - RMI calls

164

The first step is service registration, where the service registers its service item with the

lookup service. The second step is client lookup, where the client constructs a template

and the lookup service sends the client a proxy, which matches the client's template. At

this stage, there are three copies of the service's proxy in existence: one stored in the

service itself, one stored in the lookup service and now one stored locally in the client.
The client may use its local copy to communicate with the service's proxy by invoking

its methods using Java RMI calls. Later in Section 8.2.2, we use this pattern of

communication to our advantage by wrapping the service's proxy within an
instrumentation service's proxy to acknowledge all method invocations made by

clients.

Having briefly considered the relevant aspects of Jini, we may now proceed to see how

these ideas may be used to implement the dynamic instrumentation services that

constitute the instrumentation architecture.

8.2 Implementing Dynamic Instrumentation Services
Dynamic instrumentation services are implemented as Jini services themselves.

Chapters 6 and 7 have considered the basic instrument operations and the class

hierarchy underlying the architecture. This section first describes the implementation of

the basic instrument operations. This is followed by descriptions of the infrastructure

classes and the instantiable instrument classes of Logger, Gauge, Analyzer, Probe and

Monitor. The section also considers the programming constructs of dynamic proxy,

visitor design pattern and Administrable interface, which are used to implement

certain instrumentation services.

8.2.1 Discovery and Registration
The structure of the instrumentation infrastructure and instantiable classes was outlined

in chapter 7. Throughout this section, the implementation of these classes are described

through a series of incremental stages. Each stage will consider the implementation of

several related methods, which either implement the basic instrument operations or

provide measurement/monitoring functionality.

165

We begin by considering the Register and Unregister basic instrument operations,

which are implemented within the Baseinstrument class. The register and

unregister methods are implemented using the Jini discovery protocol and the service
registration techniques described previously, as shown in the code below.

public interface Baselnstrumentlnterface extends Remote,
RemoteEventListener {

public void register() throws RemoteException;
public void unregister()throws RemoteException;;

}
public class Baselnstrument extends UnicastRemoteObject

implements DiscoveryListener, LeaseListener,
Baselnstrumentlnterface {

Serviceltem item = null;
ServicelD id = null;
Entry[] attributes = null;
ServiceRegistrar registrar = null;
protected boolean[J state = null;
protected LeaseRenewalManager leaseManager =

new LeaseRenewalManager 0;
protected Object wrapper = null;

public Baselnstrument() throws Exception {

super();
state = new boolean[) {false, false, false};

)
public void register() throws RemoteException {

LookupDiscovery ld = null;
try {

ld - new LookupDiscovery(LookupDiscovery. ALL_GROUPS);
catch(Exception e) {

System. err. println(e. toString());
}
discover. addDiscoveryListener(this);
fireRemoteEvent(0);

}
public void unregister() throws RemoteException

try {
leaseManager. cancel(sr. getLease());

} catch(UnknownLeaseException e) {
System. err. println(e. toString());

}
fireRemoteEvent(1);

}

{

166

public void discovered(DiscoveryEvent evt)
throws RemoteException {

ServiceRegistrar registrar = evt. getRegistrars()[0];
Serviceltem item = new Serviceltem(id, this, attributes);
ServiceRegistration sr = null;
try {

sr = registrar. register(item, Lease. FOREVER);
} catch(java. rmi. RemoteException e) {

System. err. print("Register exception: ");
e. printStackTrace();

}
try

System. out. println("service registered at
registrar. getLocator(). getHost());

} catch(Exception e)
System. err. println(e. toString());

of +

}
leaseManager. renewUntil(sr. getLease(), Lease. FOREVER,

this);

}

}

Baselnstrument implements the remote interface Basernstrumentznterface, which

specifies the method signatures for the basic instrument operations and the reflect
method, which is considered in section 8.2.4. BaseInstrument also implements Jini's
DiscoveryListener and LeaseListener interfaces. By implementing

DiscoveryListener there is no need to use the inner-class Listener, as shown in the

previous discovery protocol code.

The constructor of BaseInstrument first calls the superclass method super to create

an instance of UnicastRemoteobject. The constructor then initializes the instruments

state variable, which is a boolean array of three elements. The three elements represent

an instrument's registration, attachment and joining states respectively (element 1:

register = true / unregister = false, element 2: attached = true / detached =
false, element 3: joined = true / unjoined = false). Later in section 8.2.3 we

shall see how the state variable is updated on receipt of specific events.

After Baseinstrument has been created, its register method may be invoked. The

register method simply sets up the discovery protocol by adding the discovery

listener. When the first lookup service is found (evt. getRegistrars () [0)), by the
invocation of discovered, the service item of aaseinstrument is registered via the

167

lookup service's own register method. The discovered method also uses a lease

renewal utility, leaseManager. renewUntil, which will essentially keep the

Baselnstrument registered until it is eventually unregistered, when the unregister
basic instrument operation is invoked. Given that an instance of Baselnstrument will

remain registered until its lease is cancelled, we may deduce a simple implementation

of the unregister operation, which simply cancels the service's lease.

Both the register and unregister methods use the fireRemoteEvent method to transmit

an event, indicating the registration state, to the current instrument and any instruments

to which it is joined. This will be considered further in section 8.2.3.

8.2.2 Dynamic Instrumentation Proxies
Figure 8.2 illustrated the sequence of actions and subsequent RMI communication for a

simple Jini-based client-server arrangement. In order to instrument such an

arrangement, we need to develop a technique through which we may place
instrumentation services in between the client and server. By doing so, we are then able
to measure and monitor aspects of the communication. The key to placing
instrumentation services between clients and servers lies in the Dynamic Proxy design

pattern, which serves as the basis for the implementation of the Attach, Detach and
Invoke basic instrument operations.

The dynamic proxy is a design pattern, which allows new interfaces to be implemented

at runtime by forwarding all calls to an invocation handler. Java provides a dynamic

proxy facility through the class java. lang. reflect. Proxy and the

InvocationHandler interface. The following description of Java's dynamic proxy
facility makes use of the example provided in [100], but with a modified description.

Listed below is a program, which represents the movement of an "explorer" around a
Cartesian grid. The program includes an interface named Explorer and an
implementation of the interface, ExplorerImpl. The explorer can travel in any

compass direction, and can report its current location. The class Explorerlmpl uses
two integer values to track the explorer's progress around the grid. The TestExplorer

class sends the explorer on 100 random steps, and then logs the explorer's position.

168

import java. lang. reflect. Method;
import java. lang. reflect. InvocationHandler;
import java. lang. reflect. Proxy;

interface Explorer
public int getXO;
public int getY();
public void goNorth(;
public void goSouth();
public void goEast();
public void goWest();

ý
class Explorerlmpl implements Explorer

private int x;
private int y;
public int getX() {return x; }
public int getY() {return y; }
public void goNorth() {y++; }
public void goSouth() {y--; }
public void goEast() {x++; }
public void goWest() {x--; }

}
public class TestExplorer {

public static void test(Explorer e)
for (int i=0; i< 100; i++) {

switch ((int)(Math. random()
case 0:

e. goNorth();
break;

case 1:
e. goSouth();
break;

case 2:
e. goEast();
break;

case 3:
e. goWest();
break;

}

{

{
* 4)) {

}
System. out. println("Explorer ended at "

+ e. getX() + ", " +
e. getY());

}

}
public static void main(String[] arge)

Explorer e= new Explorerlmpl();
test(e);

}

{

The result of running Test Explorer would produce a single line of output, such as:

169

Explorer ended at -2,8

Now, imagine that the requirements for the application change, and it becomes

necessary to log the explorer's movement at each step. Because the client test program

was coded against an interface, this is straightforward: a LoggedExplorer wrapper

class could be created, which logs each method call before delegating to the original

Explorer implementation. This is an acceptable solution because it does not require any

changes to Explorerlmpl. Using this approach, the new LoggingExplorer wrapper

class could be written as below.

class LoggingExplorer implements Explorer {
Explorer realExplorer;
public LoggingExplorer(Explorer realExplorer)

this. realExplorer = realExplorer;
}
public int

return

}

getX () {

realExplorer. getX();
}
public int getY() {

return realExplorer. getY();
}
public void goNorth() {

System. out. println("gcNorth");
realExplorer. goNorth();

public void goSouth() {

System. out. println("goSouth");
realExplorer. goSouth();

public void goEast()
System. out. println("goEast");
realExplorer. goEast();

public void goWest() {
System. out. println("goWest");
realExplorer. goWest();

}

{

The LoggingExplorer class delegates to an underlying real Explorer interface, which

allows logging to be added to any existing Explorer implementation. The only change

client test programs of the Explorer interface need to make is to construct the

LoggingExplorer so that it wraps the Explorer interface. To do this, the

TestExplorer'S main method may be modified as follows:

170

public static void main(String[] args) {
Explorer real = new Explorerlmpl();
Explorer wrapper = new LoggingExplorer(real);

test (wrapper);
}

When the above program is run, the output would be similar to that shown below.

goWest
goNorth

goWest
goNorth
Explorer ended at 2,2

By delegating to an underlying interface, a new layer of functionality has been added

without changing the ExplorerImpl code and this was achieved with only a trivial

change to the client test program.

However, the LoggingExplorer wrapper class approach has two major drawbacks:

first, it is tedious because each individual method of the Explorer interface must be

re-implemented in the LoggingExplorer implementation. The second drawback is that

the underlying problem (i. e. logging) is generic, but the solution is not. If it becomes

necessary to log some other interface, then a separate wrapper class must be written.

The Dynamic Proxy class API can solve both of these problems. A dynamic proxy is a

special class created at runtime by the Java Virtual Machine (JVM). A proxy class that

implements any interface, or even a group of interfaces, may be requested by calling

the proxy's newproxylnstance method, as shown below.

Proxy. newProxylnstance(ClassLoader
classLoaderToUse,

Class[] interfacesToImplement,
InvocationHandler objToDelegateTo)

The JVM manufactures a new class that implements the interfaces that are specified,

forwarding all calls to InvocationHandler's single method:

public Object invoke(Object proxy, Method meth, Object[] args)
throws Throwable;

171

All that is required is an implementation of the invoke method in a class that

implements the InvocationHandler interface. The proxy class then forwards all calls
to this invoke method.

Such a proxy may be used to implement the Explorer interface by replacing the
LoggingExplorer wrapper class with the Logger class shown below.

public class Logger implements InvocationHandler {
private Object delegate;

public Logger(Object o)
delegate = o;

}

}

public Object invoke(Object proxy, Method meth, Object(] args)
throws Throwable {

System. out. println(meth. getName());
try {

return meth. invoke(delegate, args);
} catch (InvocationTargetException e) {

throw e. getTargetException();
}

}

This implementation of the invoke method can log any method call on any interface. It

uses reflective invocation on the method object to delegate to the real object.

The TestExplorer main method may then be modified, as shown below, to create a
dynamic proxy class.

public static void main(String[] arge) {
Explorer real = new Explorerlmpl();
Explorer wrapper - (Explorer)

Proxy. newProxylnstance(
Thread. currentThread(

). getContextClassLoader(),
new Class[] {Explorer. class},
new Logger(real));

test(wrapper);
}

The static method Proxy. newProxyInstance creates a new proxy that implements the

array of interfaces passed as its second parameter. In this example, the proxy only

needs to implement the Explorer interface. All invocations of Explorer methods are

172

then dispatched to the InvocationHandler that is passed as the third parameter. On

running the updated code each step of the Explorer is logged to system. out.

The dynamic proxy class solves both of the problems of the wrapper approach. First,

there is no tedious re-implementation of methods because invoke can handle all

methods. Second, and most important, the dynamic proxy logger can be used to log

calls to any interface in the Java language. The dynamic proxy logger is indeed

dynamic, since it can adapt to implement any specified interface. The logging

operation, of the dynamic proxy logger, is method-generic, that is, logging does not

require any decision making based on the specifics of the method being called. This is

exactly what we want for instrumentation services and dynamic proxies excel when

adding method-generic services.

However, there is one drawback incurred from using dynamic proxies: like all

reflective code, they are somewhat slower than "normal" code. If there is doubt in the

performance of dynamic proxies, benchmarks associated with Java reflection should be

consulted, such as those described in [101]. Chapter 9, which considers real
instrumentation case studies considers the performance of applications with and

without instrumentation services.

The previous logger example was simply used to demonstrate the concept of the

dynamic proxy. It is not the actual implementation of our own logger instrumentation

service, although the logger instrumentation service does take full advantage of the

above ideas. The dynamic proxy is incorporated into the Directlnstrument class,

which extends the aaselnstrument class. This gives all direct instantiable instruments

(logger, gauge, analyzer, probe and monitors) the capability to implement any interface

that is implemented by a Jini application service. Indirect instruments do not implement

a dynamic proxy, since they receive information indirectly from other direct

instruments. As we shall see later, certain instruments (method invocation monitors)

will override the basic invoke method of Direct instrument to provide more

specialized facilities for dealing with method invocations.

173

The incorporation of the dynamic proxy within Direct Instrument involves the

implementation of the instrument operations, Attach, Detach and Invoke as shown
below.

public class DProxy implements InvocationHandler {

private Object obj;

public DProxy(Object obj) {
this. obj = obj;

}

}
public object invoke(Object proxy, Method meth, Object[] args)

throws Throwable {
System. out. println(meth. getName());
try {

return meth. invoke(obj, args);
} catch (InvocationTargetException e) {

throw e. getTargetException();
}

}

public class Directlnstrument extends Baselnstrument {

public Directinstrument() throws Exception
; super o;

}

{

public void attach(Object impl, Class[] ifaces) {
if (state[0]) {

if (wrapper != null)
wrapper = null;

wrapper = (object) Proxy. newProxylnstance(
impl. getClass(). getContextClassLoader(,
ifaces,
new DProxy(impl));

fireRemoteEvent(2);

}

}

public void detach(Object impl, Class iface) {
Class[] ifaces = wrapper. getClass(). getInterfaces();
Class[] newIfaces = new Class[ifaces. length-1];
for (int i=0; i< ifaces. length; i++)

if (ifaces [i] != iface) newIfaces [i] = ifaces [i) ;
wrapper = null;
attach(impl, newIfaces);
fireRemoteEvent(3);

}

174

The DProxy class implements an instrumentation service's dynamic proxy. AS DProxy

implements Invocationxandler, it must implement an invoke method, so that the

JVM can forward all calls made on the specified object, obj, to the invoke method.
The wrapper object (inherited from Baselnstrument) represents an instance of a

dynamic proxy that may be accessed throughout the Direct instrument class and any

of its subclasses. The parameters of the attach method are an object impi, which
implements the interfaces specified in the array of interfaces, if aces.

The attach method first requires that the instrumentation service is registered (i. e.

state (O1 is true). The attach method then uses the Proxy. newProxyInstance to

create a new proxy that implements the array of interfaces. All invocations made on the

methods specified by the interfaces, ifaces, are then dispatched to the invocation

handler (new DProxy (imps)) that is passed as the third parameter.

The detach method simply removes and interface, if ace, from the list of interfaces

implemented by the proxy instance. As there is no direct means to change the list of
interfaces of a proxy instance, the detach method first removes the original proxy
instance (wrapper = null) and invokes the attach method to create a new instance,

containing the revised interface array, newIfaces. Note that each time

Proxy. newProxyinstance is called, a new proxy instance is created, so it is

important to ensure that there is only ever one instance within Direct Instrument and

any of its subclasses. Similar to the register and unregister methods, the attach

and detach methods use the fireRemoteEvent method to transmit an event, indicating

the attachment state, to the current instrument and any instruments to which it is joined.

The attach and detach methods may be invoked to attach and detach an
instrumentation service to a Jini service as shown below, where inst is the

instrumentation service in question.

public class SimpleService implements SimpleServicelnterfacel,
SimpleServicelnterface2 {

}

175

SimpleService ss = new SimpleService ()

inst. attach(ss, ss. getClass(). getlnterfaces())

inst. detach(ss, SimpleServicelnterface2)

In many cases, the array of interfaces implemented by a dynamic proxy will only
consist of a single interface, as was the case for the previous logger example. However,

instances do arise when a class implements several interfaces, which each prescribe
different behaviours. When this is so, the multiple interfaces often range from generic
to more specific interfaces. For example, a graphics object used in a GUI may
implement graphics-based interfaces and also mouse event listener interfaces.

The previous example of the dynamic proxy based logger was simply intended to
demonstrate the concept of the dynamic proxy and as such, it did not consider aspects

of distribution. However, where distributed instrumentation services are concerned, this
issue must be explained further. the significant point lies in the differences between the
interface array used in the logger example and Direct Instrument dynamic proxies. In

the logger example, standard Java interfaces are used, whereas in Direct instrument,

the interfaces are Java RMI-based interfaces, or remote interfaces. If a dynamic proxy

provides a wrapper, which implements a remote interface then method invocations

made on a remote object, via its remote interface, are forwarded to the dynamic proxy's

invoke method.

Essentially, the operation of instrumentation attachment may be regarded as wrapping a
Jini service proxy within the dynamic proxy of an instrumentation service to provide a

compound proxy. The client may still use the service's proxy as before to communicate

with remote server objects, via Java RMI calls. However, it is unaware that these calls

are forwarded to the dynamic proxy's invoke method on the server-side. This

instrumented communication pattern may be illustrated by modifying Figure 8.2 to

represent the action of wrapping the service's proxy to create a compound proxy, as

shown in Figure 8.3.

176

Lookup Service

I- Aktion Se: vioe
Cüsat

Inrtrw entetion Service

kJ

Figure 8.3 (a): instrumenting application service - initial state

Lookup service

ID+

Attnbnt

DPmxy

3. lookup

DPeoxy

Figure 8.3 (b): instrumenting application service - attach operation

177

I-
Appli atioa Semce

M+ Petry +

Att&ut"

ý

4. gvoke()"

Irrtrmnentatioa Service

--3. RMI cells

Figure 8.3 (c): instrumenting application service - intervening RMI calls

Figures 8.3 (a) to (c) represent the stages that take place when an application service is
instrumented using the attach operation: and the client makes RMI calls on the
instrumented application service:

" Figure 8.3 (a) shows the initial state before the application service has

registered with the lookup service.

" Figure 8.3 (b) shows the attach operation, where the application service's

proxy is wrapped within the instrumentation services dynamic proxy
(DProxy) to create a compound proxy.

" The application service's item is then registered but the actual proxy object
bound in the lookup service registry is the application service's proxy

wrapped up in the dynamic proxy (i. e. the compound proxy).

" When the client performs a lookup a match is found against the application

service's proxy but the actual object sent to the client is the compound proxy
(actual proxy wrapped in DProxy).

" Figure 8.3 (c) shows the client making RMI calls on the now instrumemted

application service. DProxy maintains a reference to the application

service's proxy so RMI calls are propagated from DProxy first to the

178

service's proxy and then onto the remote object that implements the

application service.

" The instrumenting of the application service and intervention on RMI calls
is completely transparent to the client.

" If the detach operation was applied to Figure 8.3, the communication pattern

would revert back to that of the uninstrumented pattern of Figure 8.2.

Note that typically the instrumentation service would also have registered with the

lookup service This allows the instrumentation service to be made aware of any event

notifications that the application service receives/sends. It also allows the

instrumentation service to receive notifications from other instrumentation services.
However, if the instrumentation service registration was shown the diagram would be

cluttered and obscure the main point of portraying the instrumenting of an application

service.

8.2.3 Instrumentation Service Communications
Instrumentation services may communicate with other instrumentation services using

the basic operations of Read, Write and Notify. However, before instrumentation

services can communicate they must be joined to one or more other instrumentation

services. Joining takes place through the instrumentation service's service item and its

dynamic proxy. If an instrumentation service finds the service item of another
instrumentation service and accesses the dynamic proxy instance of the other service, it

may then communicate with the other service via read, write and notify methods.

The join, unjoin, read, write and notify methods are implemented within the

Baseinstrument class as shown in the code below.

public interface Baselnstrumentlnterface extends Remote,
RemoteEventListener {

public void notify(RemoteEvent event)
throws UnknownEventException, RemoteException;

public EventRegistration addRemoteEventListener(
RemoteEventListener listener,

MarshalledObject handback)
throws RemoteException;

179

public object getProxy();
public ServerSocket getServerSocket();

}
public class

static
static

implements DiscoveryListener,
Baselnstrumentlnterface {

Baselnstrument extends UnicastRemoteObject

final int MAX INSTRUMENTS = 100;
final int PORT = 9000;

Serviceltem item = null;
ServicelD id = null;
Entry[] attributes = null;
ServiceRegistrar registrar = null;

LeaseListener,

public boolean[] state = null;
protected LeaseRenewalManager leaseManager

new LeaseRenewalManager();
protected Object wrapper = null;
public Vector group - new Vector();
public Vector proxies = new
String buffer;
ServerSocket serverSocket
Socket socket = null;
BufferedReader in = null;
PrintWriter out = null;
public long count = OL;

Vector();

null;

public Dictionary listeners a new Hashtable();

public Easelnstrument() throws Exception {

superO;
state = new boolean[] {false, false, false};
try {

serverSocket = new ServerSocket(PORT);
} catch (IOException e) {

System. err. println(e. toString());
}

}
public void join() throws RemoteException {

if (state[0]) {
Class[] classes =

new Class[] {BaseInstrumentInterface. class};
ServiceTemplate template =

try {
new ServiceTemplate(id, classes, attributes);

ServiceMatches matches =
registrar. lookup(template, MAX

-
INSTRUMENTS);

for (int i=0; ic matches. items. length; i++) {
BaseInstrumentlnterface bi =

(BaseInstrumentInterface)matches. items[il. service;
if (bi I. null) {

bi. addRemoteEventListener(bi, new
MarshalledObject("Baselnstrument"));

180

if (bi != item) {

group. addElement(bi);
proxies. addElement(bi. getProxy());

}

}

}

}
fireRemoteEvent(4);

} catch(Exception e)
System. err. println(e. toString());

}
}

public void enjoin()
group = new Vector();
proxies = new Vector();
fireRemoteEvent(5);

}
public Object getProxy() {

return wrapper;
}
public String read() {

if (state (0] && state [2]) {
try {

socket = serverSocket. accept();
in = new BufferedReader(new

Input St reamReader (socket. get Input Stream())
String s= in. readLine();
in. close();
socket. close();
return 8;

} catch (IOException e) {
System. err. println(e. toString());

}
?

}

public boolean write(BaseInstrumentInterface receiver) {
if (state [01 && state [21) {

try {
for (int i=0; i< group. size(); i++) {

Baselnstrumentlnterface bi =
(BaseInstrumentInterface)group. elementAt(i);

if (bi == receiver)
socket = bi. getServerSocket(). accept();

}
if (socket t= null) {

out =
new PrintWriter(socket. getOutputStream());

out. print(buffer);
out. close();
socket. close();
return true;

}
else {

181

return false;
}

} catch (IOException e) {
System. err. println(e. toString());

}
}

}

public ServerSocket getServerSocket() {
return serverSocket;

}
public EventRegistration addRemoteEventListener(

RemoteEventListener listener,
MarshalledObject handback)
throws RemoteException {

try {

listeners. put(listener, handback);
return new EventRegistration(O, this, null, count);

} catch(Exception e) {

System. err. println(e. toString());

}
}

public void notify(RemoteEvent event)
throws UnknownEventException, RemoteException {

try {
Baselnstrumentlnterface bi =

(Baselnstrumentlnterface)event.
getRegistrationObject(). getSource();

if (bi != this) { // events from other instruments
switch ((int)event. getID()) {

case 0:
//register
break;

case 1:
//unregister
group. remove(bi);
proxies. remove(bi. getProxy());
break;

case 2:
//attach
break;

case 3:
//detach
proxies. remove(bi. getProxy());
break;

case 4:
//join
break;

case 5:
//unjoin
group. remove(bi);
proxies. remove(bi. getProxy());
break;

default:
System. err. println("Unknown Event");

182

break;
}

}

else events from ourself
switch ((int)event. getID()) {

case 0:
//register
state [0] = true;
break;

case 1:
//unregister
state(0] = false;
break;

case 2:
//attach

state [1] = true;
break;

case 3:
//detach
state [l] = false;
break;

case 4:
//join
state [2] - true;
break;

case 5:
//unjoin

state [2] = false;
break;

default:
System. err. println("Unknown Event");
break;

}
} } catch(IOException e) {

throw new UnknownEventException("IOException: "+
e. getMessage());

} catch(C1assNotFoundFcception el) {
throw new

UnknownEventExcept ion("C1assNotFoundExcept ion: 11 +
el. getMessage();

}
}
protected void fireRemoteEvent(long id) {

Enumeration enum = listeners. keys();

while (enum. hasMoreElements()) {
RemoteEventListener listener =

(RemoteEventListener)enum. nextElement();
RemoteEvent event = new RemoteEvent(this, id, count,

(MarshalledObject)listeners. get(listener));
try {

listener. notify(event);
} catch(UnknownEventException e) {

e. printStackTrace();
} catch(RemoteException el) {

183

}

}

}
I

++; count

el. printStackTrace(;

The join method uses Jini's serviceMatches class, which is part of the core lookup

package.

package net. jini. core. lookup;

public Class ServiceMatches {
public Serviceltem[] items;
public int totalMatches ;

}

If a service wants to search for more than one match to a service template from a

particular lookup service, then it specifies the maximum number of matches it would
like returned as the second parameter in the lookup method (lookup (template,

MAX_INSTRUMENTS). The requesting service then receives a ServiceMatches object,

which contains an array of items of Serviceltem type that match the specified

template.

The number of elements returned in items need not be the same as totalMatches. For

example, if there are five matching services stored in a lookup service then

totalMatches will be set to five after the lookup method is invoked. However, if the

second parameter in the lookup method is specified as two matches, then items will be

set to be an array with only two elements. Not all elements of this array need be non-

null, since one element may represent a "stale" service, whereas the other elements

represent valid active services. Null elements allow the requesting service to distinguish

between those services that may be used and those that may not if, for example, their
leases have expired.

The join operation is performed primarily on an instrument's service item and, more

significantly its dynamic proxy. The join method uses a template to find services that

implement the Base Instrument Interface. When a group of instrumentation service

184

items have been found, they are stored in the group vector. The service item of

aaseinstrument will also feature in the group of service items returned, so it and any

null items are not stored in group. Remote event listeners are added to each service
item returned in the group, including the service item associated with the current
instance of saseinstrument. As we shall see shortly, these remote event listeners

allow the instrumentation services within the group to notify each other of any changes
in their respective states.

The dynamic proxy wrappers of each instrumentation service are accessed using the

get Proxy method and stored in the proxies vector. Through these proxies, any

instrumentation service, within the group, becomes privy to any method invocations

made on the application-level services attached to the group. The unjoin method

simply cancels the effects of any joining by resetting the group and proxies vectors.

The uni oin method effectively severs the link between the current instrument and any

other instruments, with which it was previously joined.

The main aim of the Join instrument operation is to allow compound instrumentation

units to be dynamically constructed from the primitive instrumentation service classes

of logger, gauge, analyzer, probe and monitor. So for example, an event monitor, a

method invocation monitor and an analyzer may be joined together to form a compound

instrument. This compound instrument may then be used to analyze the access patterns

that clients make on a particular application-level service over a period of time. The

monitors will be responsible for detecting and repackaging events and method

invocations. The analyzer may then examine the repackaged objects and use them to

compute access/usage patterns over a period of time by determining: which clients

access the service, the specific events/invocations that each client receives/makes, and

the frequencies at which communications occur.

When several instrumentation services are joined they may communicate with one

another using read, write and notify methods. The read and write methods allow

instrumentation services to directly read and write message streams between one

another. The read and write methods use direct TCP socket connections so that

reading and writing can proceed, whilst an instrumentation service is engaged in other

185

activities (e. g. a separate thread is running monitoring method invocations). The read
method will read the stream transmitted via a socket into the instrumentation service's
buffer. The write method will transmit the current contents of buffer via a socket to a
specified receiving instrument whose service item is currently stored in group. Both

read and write require that the state of the current instrument is registered and joined
(state [o] && state [2]), but not necessarily attached.

The basic notify method is used to communicate state changes between a group of
instrumentation services. Later, we shall see how the basic method is overridden by

event monitor instrumentation services. The basic notify method is invoked whenever
the current instrumentation service or any other instrumentation service, within a group,
undergoes a change in state (e. g. it has been detached from an application service).
Because each instrumentation service has a remote event listener (from

addRemoteEventListener) it is registered to receive specific event within the group.
Whenever such events occur the group members receive notification via their notify
methods.

If notify is invoked and the event source is an instrumentation service other that the

current instrumentation service, then the first switch statement is executed. If the event
received indicates that an instrumentation service's state has changed to that of
unregistered, or unjoined, then the instrumentation service is removed from group. If

the event indicates that the instrumentation service is now detached, then its dynamic

proxy is removed from proxies.

If notify is invoked and the event source is the current instrumentation service, then
the second switch statement is executed. The event's ID is then used to update the

state variable of the current instrument. One may regard this as an overly complex
approach for maintaining the state of the current instrument. For example, one may

argue: "why not simply update the state variable within each of the basic instrument

operations? ". The answer to this, and the reason for the approach is that events that

affect the current instrumentation service's state may not always be sent by the current
instrumentation service itself. Certain events may come from elsewhere within an

application, especially lookup services.

186

If a lookup service should fail, an event will be sent to notify of service registration
failures and this event must be interpreted by an instrumentation service so that its

registration state may be updated. On a less dramatic scale, a lookup service may refuse
to renew the lease of an instrumentation service and this must also be interpreted to

maintain a consistent registration state for the lookup service. In summary, the event-
based approach faithfully maintains state of instrumentations services by

accommodating events that may occur elsewhere in a distributed application.

The fireRemoteEvent method is used by each of the basic instrument operations to

signal a change in state to all instrumentation services who have registered to receive

notification of such events (i. e. all instrumentation services in group). The event is sent

to all instruments by enumerating all event listeners, currently registered to receive

events.

Having considered the implementation of the ten basic instrument operations, we may

proceed to consider several important programming constructs used to access runtime
information from application-level services. The first is the use of reflection to

introspect and access structural and runtime information from application-level

services. The second is the use of Jini's Administrable interface and the third is the

visitor design pattern to determine the dependencies associated with application-level

services.

8.2.4 Using Reflection to Access Runtime Information
Reflection is a feature of the Java programming language, which allows an executing
Java program to examine or introspect upon itself and even manipulate internal

properties of the program. Through the reflection API it is possible for a Java class to

obtain: the names, types and runtime values of its attributes (fields), the signatures of

all its methods and constructors and even the superclasses and interfaces. Reflection

was introduced previously in chapter 7 as a technique that is used in the instrumentation

architecture to access structural class information and runtime (behavioural)

information relating to an object. In this section, we consider the use of Java's

reflection API to provide reflective capabilities within the aaseInatrument class.

187

The main reflection entry point for the aaseinstrument class is the reflect method
shown below.

public class Baselnstrument extends UnicastRemoteobject
implements DiscoveryListener, LeaseListener,
Baselnstrumentlnterface {

public static final int NCLASSES = 20;
public static final int SUPERCLASSES = 0;
public static final int INTERFACES = 1;
public static final int CONSTRUCTORS = 2;
public static final int FIELD = 3;
public static final int METHOD = 4;
public static final int ARRAY = 5;

public Baselnstrument() throws Exception {
super(;

}
public Object reflect(Object object, String str, int type,

int index) {
Object param = null;
switch(type) {
case SUPERCLASSES:

param = reflectSuperclasses(object);
break;

case INTERFACES:

param = reflectlnterfaces(object);
break;

case CONSTRUCTORS:

param = reflectConstructors(object);
break;

case FIELD:
param = reflectField(object, str);
break;

case METHOD:
param = reflectMethod(object, str);
break;

case ARRAY:
param = reflectArray(object, str, index);
break;

default:
System. err. println("Invalid Parameter");
break;

}
return obj;

}
Class[] reflectSuperclasses(Object object)

Class[] classes = new Class[NCLASSES];
Class subclass = object. getClass O;

{

188

Class superclass = subclass. getSuperclass();
classes[0] = superclass;
int i=0;

while (superclass != null) {

subclass = superclass;
superclass = subclass. getSuperclass();
classes[i++] = superclass;

}

}
return classes;

Class[] reflectInterfaces(Object object) {

Class clazz = object. getClass();
Class[] interfaces = clazz. getInterfaces();
return interfaces;

}
Object reflectConstructors(Object object) {

Class clazz = object. getClass();
Constructor[) constructors = clazz. getConstrucmrs();
return constructors;

}
public Object reflectConstructorParams(Constructor c)

return c. getParameterTypes();
}

public Object reflectConstructorExceptions(Constructor c) {
return c. getExceptionTypes();

}
Object reflectField(Object object, String f) {

Field fld = null;
Object value = null;
try{

Class clazz = object. getClass();
fld = clazz. getField(f);
value = fld. get(object);

} catch (Throwable e) {
System. err. println(e);

}
}
return value;

public Object reflectFieldType(Field f)
return f. getType();

}
Object reflectMethod(Object object, String m) {

Object method = null;
try {

Class clazz = object. getClass();
Method[] methods = clazz. getMethods();
for (int i=0; i< methods. length; i++) {

if (methods [i] . getName () . equals (m))
method = methods [i] ;

}

189

} catch (Throwable e) {
System. err. println(e);

}
return method;

I
public Class[) ref lectMethodParams(Method m) {

return m. getParameterTypes();
}
public Class ref lectMethodReturn(Method m) {

return m. getReturnType();
}
public Class [J reflectMethodExceptions(Method m) {

return m. getExceptionTypes();
}
Object reflectArray(Object object, String f, int index) {

Field arr = null;
Object value = null;
try (

Class clazz = object. getClass();
Field[] fields = clazz. getFields();
for (int i=0; i< fields. length; i++) {

String fieldName = fields[i]. getName(;
Class typeClass = fields[i]. getType();
if (fieldName. equals("arr") &&

typeClass. isArray()) {
Object array = fields[i]. get(object);
value = Array. get(array, 2);

}
}

} catch (Throwable e) {
System. err. println(e);

}
return value;

}
}

The reflect method is used to access a parameter that is to be measured or monitored

for a target class and its associated runtime instance. The process through which the

reflect method operates has already been considered in the sequence diagrams of

chapter 7. Essentially, this process requires that a management agent specifies a

runtime instance of a class (object object) along with a type (e. g. FIELD) associated

with the parameter to be reflected on. Additional parameters may also be used to

identify the name of a particular attribute or method or the index of an array. Based on

the type of parameter, the reflect method then calls an appropriate method to access

the parameter of interest. The reflect method may be used to access: superclasses,

190

interfaces, constructors, attributes (fields), methods and arrays and also parameter types

and exceptions associated with any of the previous.

The following code shows the reflect method in action, when incorporated into a simple

test program.

public class TestReflection {

}

public object reflect(Object object, String str, int type,
int index) {

// coded as above

}
public static void main(String args[]) {

TestReflection tr = new TestReflection();
MyClass me = new MyClassO;
System. out. println(tr. reflect(mc, "", SUFERCLASSES, 0));
System. out. println(tr. reflect(mc, "idNumber", FIELD, 0));
System. out. println(tr. reflect(mc, "lastName", FIELD, 0));
System. out. println(tr. reflect(mc, "arr", ARRAY, 2));
System. out. print ln(tr. reflect (mc, "larger", METHOD, 0));
Object m= tr. reflect(mc, "doSomething", METHOD, 0);
Class(] classes = tr. reflectMethodParams((Method)m);
for (int i=0; i< classes. length; i++) {

Object object - classes[i];
System. out. println(object. toString());

}
}

public class MyClass

public String firstName = null;
public String lastName = null;
public int idNumber = 0;
public int [] array = new int [] {5,6,7} ;

public MyClass(String fname, String lname, int id) {

this. firstName = fname;
this. lastName = lname;
this. idNumber = id;

}
public MyClass()

this("Denis", "Reilly", 12345);

}
public boolean larger(int a, int b) {

if (a > b)
return true;

else
return false;

191

}

}

public String toString() {
return (lastName + ", "

It l 11)

}

+ firstName +
11 [° + idNumber +

The example shows how we may access information for an instance me of the class

Myclass. When this example is run, the output is as shown below.

[Ljava. lang. Object; @273d3c]
12345
Reilly
7

public boolean larger(int, int)
int
int

The first print statement prints out the array of superciasses for Myclass, which in this

case is the single class j ava . lang. obj ect. The second print statement prints the value

of the attribute (field) idNumber and the third print statement prints the value of the

attribute lastName. Notice that the values of idNumber and lastName are the runtime

values, when an instance of Myclass has been created, and not the initial values. The

fourth print statement prints the value of the third element of attribute array. The fifth

print statement prints the method signature of the larger method. The final print

statements print the types of parameters of the larger method. In this simple example

they are primitive int types, but if they were classes other than primitives we could

access their respective classes to determine their runtime values. We could also access

the return value of the larger method using the dynamic proxy's invoke method that

was described previously in section 8.2.2.

Taken together, the reflect and invoke methods allow an instrumentation service to

access structural and runtime (behavioural) information from a target class. However,

they may also be used to extend beyond a single target class. For example, the reflect

method provides access to the superclass and other class fields of any given target class.
We may then visit each of these classes and any of their superciasses and class fields

and access the parameters of these classes in a recursive fashion. Through this

192

capability, we may build up a comprehensive picture of a classes' structure and runtime
behaviour. Furthermore, by using the join operation, we may delegate the

instrumentation of the target class and its ancestors and descendants amongst a group of
instrumentation services.

8.2.5 Using Administrable and Dependent Interfaces to Represent
Dependencies

Previously, chapters 5 and 7 considered the issues associated with determining the

dynamic dependencies of an application-level service. Chapter 5 also described how a
binding occurs when one service (the dependent) has downloaded a copy of the proxy

of some other service (the independent) with a view to invoking the methods of the

independent service. Chapter 7 went on to consider the problems of accessing the

bindings of a service and proposed a compromise based on the use of the

Administrable and Dependent interfaces. In this section, we consider the use of these

interfaces to provide capabilities through which we may derive the bindings and hence

dependencies associated with an application-level service.

The approach to represent dependencies is based on the service dependency work

conducted by Hasselmeyer [7,9]. The approach makes use of Jini's own

Administrable interface. The Administrable interface allows application

programmers to attach service-specific information to their services so that the

information may be accessed and even changed by any client or any other service

within a Jini federation. Such information may be retrieved, as an admin. object, by

invoking the method getAdmin. Of course, any service that implements the

Administrable interface is required to implement the getAdmin method, which returns

an admin. object.

Chapter 7 described the compromise introduced into the architecture, which places a

requirement on application programmers. The requirement, for any dependent services
is that programmers must include an admin. object and must implement Jini's

Administrable interface in order to return the admin. object. Through this

compromise, probe instrumentation services may then gain access to the bindings

associated with an application service.

193

The Dependent interface is specified as below.

public interface Dependent {
public Class getDeclaringClass();
public Object(] getBindings();

}

A service admin. object implements this interface as below.

public class ServiceAdmin implements Dependent
public Object obj = null;
public Object[] bindings = null;

public ServiceAdmin(Object obj) {
this. obj = obj;

}
public Class getDeclaringClass() {

return obj. getClass();
}

{ public Object(] getBindings()
return bindings;

}

{

}
Then any application-level service, which is likely to be dependent on other services

must include a ServiceAdmin attribute and must implement the Administrable
interface by implementing the getAdmin method, which returns the ServiceAdmin

object. The elaboration of these requirements is shown for the Simpleservice example
below, where the comments highlight the extra code that the programmer must add.

public class SimpleService implements SimpleServicelnterface
// include admin. object attribute
public ServiceAdmin sa - null;
public AnotherServiceInterface asi = null;
ServiceTemplate template = null;
ServiceRegistrar registrar = null;
int count = 0;

public SimpleService O{
super(;
// construct admin. object
sa = new ServiceAdmin(this);

}
public void findAnotherService() throws RemoteException {

Class[) classes = new Class[]
{AnotherServiceInterface. class);

template = new ServiceTemplate(null, classes, null);

try {

{

194

asi = (AnotherServiceInterface)
registrar. lookup(template);

add each remote interface reference
to admin. object's 'bindings'

sa. bindings(count++] = asi;
catch(java. rmi. RemoteException e) {

System. err. println(e. toString());

}
}

// implement getAdmin
public object getAdmin() {

return sa;
}

}

Probe Service
Probe instrumentation services are responsible for determining the dependencies of a
target application service and the code below shows how a probe uses the getAdmin

method to access the immediate dependencies for a target application service. When a
probe has access to these ̀ immediate' dependencies, it may visit each binding to see if

the remote object, associated with the binding, has its own dependencies. This allows a
complete graph to be built up, which represents all the dependencies (immediate,

secondary, tertiary, etc.) associated with a target service.

public class Probelnstrument extends Eventlnstrument {

static final int. NNODES = 100;
static final int. HEDGES = 100;
ServiceAdmin sa = null;
Object target = null;
Object root = null;
Object[] objs = null;

public Probelnstrument(SimpleServicelnterface sei) {
super();
this. target a sei;

1

interface visitor {

void visit(Object obj) throws RemoteException;
I
public class DynamicDependencyDigraph extends DynamicObject {

ServiceAdmin sa = null;
Object(] objs = null;

class Node {
Object obj;
String label;
void accept(Visitor visitor) throws RemoteException {

visitor. visit(obj);

195

}
}
class Edge {

Node from;
Node to;
double len;

}
Node nodes[) = new Node [NNODES) ;
Edge edges H= new Edge [NEDGES];
int nnodes, nedges, len = 0;

public DynamicDependencyDigraph() {

super();
}

Node findNode(Node n) {
for (int i=0; i< nnodes ; i++) {

if (nodes[i]. equals(n)) {

return nodes[i];
}

}
return addNode(n);

I
Node addNode(Node n) {

Node node = new Node();
node. obj = n. obj;
node. label = n. label;
nodes[nnodes) = node;
nnodes++;
return node;

}
Node fromNode, toNode = null;

void addEdge(Node from, Node to, int len) {
Edge e= new Edge();
e. from = findNode(from);
e. to = findNode(to);
e. len = len;
edges[nedges++] = e;

}
class DigraphVisitor implements Visitor {

public void visit(Object obj) throws RemoteException {
try {

fromNode = new Node();
fromNode. obj = obj;
fromNode. label = obj. getClass(). getName();
sa = (ServiceAdmin)obj. getAdmin();
if (sa. getBindings(). length > 0)

objs = sa. getBindings();
} catch(java. rmi. RemoteException e) {

196

}

}

}

}

}
}

System. err. println(e. toString();

public void draw() {
try {

fromNode = new Node(;
fromNode. obj = root;
fromNode. label root. getClass(). getName(;
Visitor visitor = new DigraphVisitor(;
int i=0;
while (objs. length > 0) {

toNode = new Node();
toNode. obj = objs[i];
toNode. label = objs[i]. getClass(). getName();
addEdge(fromNode, toNode, len);
visitor. visit(toNode. obj);
toNode. accept(visitor);
i++;

ý

}
catch(java. rmi. RemoteException e) {

System. err. println(e. toString());
}

public void getAdmin() throws RemoteException {
try {

sa =
(ServiceAdmin)((SimpleServiceInterface) target) . getAdmin()

root = sa. obj;
objs = sa. getBindings();
DynamicDependencyDigraph graph =

new DynamicDependencyDigraph();
graph. draw();

} catch(java. rmi. RemoteException e)
System. err. println(e. toString());

}
}

The Probeinstrument class extends the Eventinstrument class (to be considered

shortly) so that that it may receive notification of any changes in bindings from the

application service's lookup service. The Probeinstrument class also contains a

DynamicDigraph inner-class, which extends the DynamicObj ect class. The structure of

these classes was considered previously in chapter 7 and the code above shows the

actual implementation of the DynamicDigraph class. The DynamicDigraph class

contains its own inner-classes of Node, Edge and the important Digraphvisitor class.

The Digraphvisitor class implements the visitor design pattern so that it may visit the

197

remote objects associated with each binding to recursively check out their own
bindings.

The visitor design pattern, described further in [53], is often used to separate the

structure of an object collection from the operations performed on that collection. For

example, it can separate the parsing logic in a compiler from the code generation logic.

By keeping the two separate, different code generators may then be used with relative

ease. In this instance, the visitor is used to separate the traversal of the digraph from the
logic used to actually build the graph. The visitor pattern also specifies how iteration

occurs over the object structure.

To implement a visitor design pattern a visitor interface is first specified, which

provides the method signatures of the visit methods that will visit the objects in a

collection. Each object in the collection has an accept method that takes a visitor

object as an argument. The accept method of an object's class calls back the visit

method for its class. A concrete visitor class can then be written, which combines the

visit and accept methods to visit all the objects in the collection and performs some

particular operation on each object.

The Digraphvisitor class is the concrete visitor class, which is used by the draw

method of the DynamicDigraph class. The draw method is responsible for building an
in-memory representation of the dependency digraph as a graph of nodes
interconnected by edges. The draw method contains a while loop, which joins nodes

and edges together and visits the remote object associated with each node via calls to

visitor. visit (toNode. obj) and toNode. accept (visitor).

The main entry point for the Probelnstrument is its own getAdmin method, which

provides access to the ServiceAdmin object associated with a target application

service. The target dependent service itself is added to the root of the dependency

digraph. The immediate bindings are then obtained and stored in the obj s array. A

DynamicDigraph object is then created and its draw method is invoked, which
initiates the recursive descent into the obj B array, using the visitor pattern, to determine

any secondary, tertiary etc. dependencies.

198

This approach for determining dependencies does impose additional effort on the

applications programmer in that they are required to implement an additional interface

and include a serviceAdmin object. However, the approach does provide a consistent

means for dealing with dependencies, which are inherently complex to determine with a

wholly unobtrusive approach.

The above code shows how dependencies may be determined to provide an
instantaneous snapshot of the remote objects on which a component depends. However,

as mentioned in chapters 5 and 7, these dependencies may well change over a period of

time. In order to monitor such dynamic dependencies, probes are equipped with event
handling capabilities, which will be mentioned further in the next section.

Having considered the main programming constructs used to access runtime
information from application-level services, we may proceed to look at the

implementation of the remaining instantiable instrumentation services (logger, gauge,

analyzer and monitor). These services are all descendants of the aaseInstrument class

and have access to its state variables and methods. As considered below, the

instantiable instrumentation services and their infrastructure classes also introduce

additional functionality of their own.

8.2.6 Instantiable Instrumentation Services
The above sections have considered the implementation of the aaseinstrument class

through a series of incremental stages. The above sections have also considered the
implementation of the Direct instrument and Probeinstrument classes. This section

considers the various infrastructure classes within the class hierarchy (Figures. 5.1 and

7.17) and goes on to describe the implementation of the remaining instantiable

instrumentation services.

We begin with the indirect instrument class, shown below. indirect Instrument is

a simple class used to represent instrumentation services that are not directly attached to

application services, but may receive information from a direct instrumentation service.

199

public class Indirectlnstrument extends Baselnstrument {
public Indirectlnstrument() {

super();

}
}

Next, we have the static Instrument class, shown below, which is the parent class for

the static instruments of logger, gauge and analyzer. There are two "flavours" of

Staticlnstrument, one that extends Direct instrument and one that extends

indirect instrument (IStaticinstrument). The code below represents the

Direct Instrument flavour, but the code is identical for both classes.

public class Staticlnstrument extends Directlnstrument {

public Object param = null;
public String name = null;
public int type = 0;
public int index = 0;
public Thread thread = null;

public Staticlnstrument()
super();
thread = new Thread(task, "Instrument Task");

}

}

public void setParam(Object object, String name, int type,
int index)

}

param = object;
this. name = name;
this. type = type;
this. index = index;

Runnable task = new Runnable()
public void run o

runInstrument();

};
}

public void runInstrument()
}

public void start() {
thread. start();

}
public void atop()

thread = null;

}

{

{

{

200

The StaticInstrument class implements a setParam method, which "primes" the

class with the parameters that may later be used by any of its subclasses to invoke the

reflect method considered previously. The Static Instrument class also contains a
Java thread and start and stop methods to start and stop the thread respectively. The

method that the thread runs is runlnstrument, which is left empty so that it may be

overridden by a subclass to provide appropriate measurement/monitoring code.

It may seem wasteful to create a thread object for each instance of the

Static Instrument class. However, if a subclass instrumentation service is required to

run in single-pass mode (i. e. measure or monitor a single value), then the thread object

need not be started and it will be destroyed by the garbage collector, when the subclass

instance itself is destroyed by the garbage collector. The incorporation of the thread

within the static Instrument class, alleviates the need to replicate threads and their

associated code within the subclasses of StaticInstrument (i. e. logger, gauge and

analyzer instrumentation services).

Logger Service

The Loggerlnstrument class, shown below, implements a direct logger that may be

run in single-pass mode or thread mode according to the value of mode. The

Loggerlnstrument class contains methods that provide access to an Outputstream to

which information is to be logged. The log method actually performs the logging, by

acquiring the parameter of interest using the reflect method and writing its value to

the outputstream. If the logger is started in thread mode, the thread is started and the

overridden runlnstrument method is invoked to repeatedly log the parameter.

public class Loggerlnstrument extends Staticlnstrument {

public Printwriter out = null;
public OutputStream stream - null;
boolean mode = true;

public LoggerInstrument(boolean mode)
super();
this. mode = mode;

}
public void open()

out = new PrintWriter(stream);

}

{

201

public void close() {
out. close(;

}

}
public void setStream(OutputStream stream)

this. stream = stream;
}
public OutputStream getStream() {

return stream;
}

{

public void logo
if (mode) t

param = reflect(param, name, type, index);
out. write(param. toString());

}

}
else {

start () ;
}

public void runInstrument() {
while (true) {

param = reflect(param, name, type, index);
out. write(param. toString());

}
}

If the logger was an indirect logger it would not call the reflect method. Instead, it

would call the read method of another direct instrumentation service to access param.

Gauge Service
The Gaugelnstrument class, shown below, implements a direct gauge, which is similar

the logger class above. The main difference is that a gauge provides a comparative

measurement against low/high values. The low/high values are set using the setLimits

method and each gauged value is stored in a measurement object. As for an indirect

logger, an indirect gauge would call the read method of a direct instrumentation

service rather than the reflect method.

public class Gaugelnstrument extends Staticlnstrument {
boolean mode = true;
Object high, low = null;

public Gaugelnstrument(boolean mode) {

super();
this. mode = mode;

}

202

public class Measurement {
public Object low;
public Object reading;
public Object high;

}

public Measurement measurement = null;

public void setLimits(Object low, Object high) {
this. low = low;
this. high = high;

}
public Measurement getMeasurement() {

return measurement;
}
public void gauge() {

if (mode) (
param = reflect(param, name, type, index);
measurement = new Measurement();
measurement. low = low;
measurement. reading = param;
measurement-high = high;

}
else {

start () ;
}

}

public void runInstrument O{
while (true) {

param = reflect(param, name, type, index);

measurement = new Measurement();
measurement-low = low;

measurement. reading = param;
measurement-high = high;

}
}

}

Analyzer Service
The Analyzer Inatrument class, shown below, implements a direct analyzer, which is

similar the previous logger and gauge classes. The main difference is that an analyzer

uses a computation object, computeobject to perform some form of computational

analysis on the parameter of interest. The computation object is provided by the

management agent which is using the analyzer and this object must implement a

compute method that is used to perform the analysis. As for indirect loggers and

203

gauges, an indirect analyzer would call the read method of a direct instrumentation

service rather than the reflect method.

public class AnalyzerInstrument extends Staticlnstrument
boolean mode = true;
public object computeObject;

public AnalyzerInstrument(boolean mode) {
super();
this. mode = mode;

}

}

public void setCompute0bject(Object compute) {
this. computeObject = computeObject;

}
public Object getComputeObject()

return computeObject;
}

{

public void analyze() {
if (mode) {

param = reflect(param, name, type, index);
computeObject. compute(param);

}

}
else {

start () ;
}

public void runInstrument() {

while (true) {

param = reflect(param, name,
computeObject. compute(param);

}
}

type, index);

{

The Dynamic instrument class, shown below, is similar to the Staticlnstrument

class except that there is no need for a setParam method, because the dynamic

instrumentation services of probe and monitor work directly on the remote object to

which they are attached.

public class Dynamiclnstrument extends Directlnstrument

public Thread thread = null;

public Dynamiclnstrument() {

super();
thread = new Thread(task, "Instrument Task");

}

{

204

Runnable task = new Runnable()
public void run() {

runInstrument();

}

}; ý
public void runInstrument()

public void start() {
thread. start();

}
public void stop() {

thread = null;
}

{

{

The Asynchronouslnstrument class, shown below, is a simple class, which is used to

simply distinguish between asynchronous and synchronous instruments.

public class Asynchronouslnstrument

public Asynchronouslnstrument()
super O;

}

extends

{

Dynamiclnstrument {

The Synchronous Instrument class contains a RemoteException attribute, which is

set by the mmonitor subclass if an RMI call should fail.

public class Synchronouslnstrument extends Dynamiclnstrument {
RemoteException exception = null;
Timer timer = null;

public Synchronousinstrument() {

super();
init () ;

}

}

void setRemoteException(RemoteExcpetion
exception = e;

}
RemoteException getRemoteF]cception()

return exception;

}

{

e) {

205

The Eventinstrument class, shown below, is used by those instrumentation services

that are required to receive event notifications from application services or lookup

services (probes and event monitors). The notify method was declared previously to

allow instruments to receive notification of events from other instrumentation services.

The Eventinstrument class overrides this notify so that, as well as receiving

instrumentation event notifications, it may receive notifications from application

services and lookup services.

public class EventInstrument extends Asynchronouslnstrument {
public RemoteEvent event = null;

public EventInstrument() {

super();
}

public EventRegistration register(Object object) {

return this. addRemoteEventListener(object, new
MarshalledObject("Event Object"));

}
public void notify(RemoteEvent event)

throws UnknownEventException, RemoteException {
try (

Object object =
(Object)event. getRegistrationObject(). getSource();

deal with instrumentation event
if (object instanceof Baselnstrumentlnterface) {

if (object != this) { // events from
other instruments

switch ((int)event. getID()) {

case 0:
//register
break;

case 1:
//unregister
group. remove(object);
proxies. remove(object. getProxy();
break;

case 2:
//attach
break;

case 3:
//detach
proxies. remove(object. getPIDxy());
break;

case 4:
//join
break;

case 5:
//unjoin

206

group. remove(cbject);
proxies. remove (object

. get Proxy());
break;

default:
System. err. print ln ("Unknown Event");
break;

}
}
else events from ourself

switch ((int)event. getID()) {

case 0:
//register
state [0] = true;
break;

case 1:
//unregister

state[0] = false;
break;

case 2:
//attach

state [l] = true;
break;

case 3:
//detach
state [l] = false;
break;

case 4:
//join
state [2] = true;
break;

case 5:
//unjoin
state [2] = false;
break;

default:
System. err. println("Unknown Event");
break;

}
}

}
else { // events from application services

// and lookup services
this. event = event;

}
}

}
} catch(IOException e) {

throw new UnknownEventException("IOException: I' +
e. getMessage();

) catch(ClassNotFoundException el) (
throw new

UnknownEventException(
"C1assNotFoundException: 11 +

el. getMessage());

}

207

The Eventlnstrument class implements a register method, which uses the

addRemoteEventListener method (of Baseinstrument) to add a new event listener

for the object of interest. When a new listener has been added, notifications of any

events are sent to the notify method defined in Event instrument. This notify

method retains the same code as for BaseInstrument, but appends the extra lines to

receive non-instrumentation events. These events may be used by probes to rebuild

dependency digraphs or repackaged by event monitors to create dynamic event objects,

as will be considered shortly.

The implementation of a probe was considered previously through the

Probeinstrument class. As mentioned previously, the Probelnstrument class can be

used to provide an instantaneous snapshot of the remote objects on which a component
depends. However these dependencies may well change over a period of time and

probes may be required to rebuild the dependency digraph. This functionality is

provided by the above notify method of the Event inst rument class. The probe may

register to receive event notifications from the lookup service with which the probe's

application service is registered. Such events may be checked to see if they affect the

probe's application service and if so, be used to force the probe to rebuild the

dependency digraph.

Event Monitor Service
An event monitor serves a different purpose, when Event Instrument's notify method

receives event notifications. An event monitor will repackage an event into a dynamic

event object, which may then be inspected by a management agent. An event monitor is

implemented through the EMonitorinstrument class shown below. The

EMonitorinstrument class simply sets the fields of a DynamicEventobject using the

event object inherited from the Eventlnstrument class. Similar to the previous static

instruments, EMonitorinstrument may be run in single pass mode, or in thread mode.

In thread mode the runinstrument method is used to repackage a series of events

while the thread remains active.

public class EMonitorinstrument extends Eventinstrument {

boolean mode - true;

public EMonitorinstrument(boolean mode) {

208

super() ;
this. mode = mode;

}
public class DynamicEventObject extends DynamicObject {

public long id;
public object source;
public long seqNum;

}

public DynamicEventObject eventObject = null;

public Object getDynamicEventObject{) {

return eventObject;
}

public void monitor() {
if (mode) {

eventObject = new DynamicEventObject();
eventObject. id = event. getIDO;
eventObject. source =

event. getRegistrationObject(). getSource();
eventObject. seqNum = event. getSequenceNumber(;

}
else {

start () ;
}

}

public void runInstrument() {
while (true) {

eventObject = new DynamicEventObject();
eventObject. id = event. getIDO;
eventObject. source =

event. getRegistrationObject(). getSource();
eventObject. segNum = event. getSequenceNumber () ;

}
}

}
Method Invocation Monitor Service

The MMonitorInstrument class, shown below, is used to intervene on method

invocations made upon application services. The Methodlnstrument class overrides

the invoke method so that method invocations, made on application services, may be

repackaged as dynamic method invocation objects.

public class MMonitorlnstrument extends Synchronouslnstrument {

public method method = null;
public Object returnVal = null;
public Object 1) params = null;

boolean mode = true;

209

public MMonitorInstrument(boolean mode) {
super(;
this. mode = mode;

}
public class DynamicMethodInvocationObject ectends

public String clientAddress;
public object server;
public Object client;
public object[] params;
public object returnVal;

}

DynamicObject {

public DynamicMethodlnvocationObject invocationObject = null;

public Object getDynamicMethodInvocationObject() {
return invocationObject;

}
public void monitor() {

if (mode) {
invocationObject =

new DynamicMethodlnvocationObject();
invocationObject. clientAddress = obj. getClientHost();
invocationObject. server = obj;
invocationObject. params = params;
invocationObject. returnVal = returnVal;

}
else

start();
}

}
public void runInstrument() {

while (true) {
invocationObject =

new DynamicMethodlnvocationObject();
invocationObject. clientAddress = obj. getClientHost();
invocationObject. server = obj;
invocationObject. params = params;
invocationObject. returnVal = returnVal;

}
}

public object invoke(Obj{ct proxy, Method meth, Object[] arge)
throws Throwable

System. out. printin(meth. getName());
try {

method = meth;
params = arge;
returnVal - meth. invoke(obj, arge);
return returnVal;

} catch (InvocationTargetException e) {

setRemoteException(e. getTargetException());

}
}

210

}

The MMonitorlnstrument class, shown below, implements a method invocation

monitor. This class simply sets the fields of a DynamicMethodlnvocationobject

using the method object (inherited from the Methodinstrument class) and the object,

obj, on which the method was invoked (inherited from the DProxy class). Similar to the

previous static instruments, MMonitorlnstrument may be run in single pass mode, or

in thread mode. In thread mode the runinstrument method is used to repackage a

series of method invocations while the thread remains active.

The previous instantiable instrumentation services may be used by management agents

to measure and monitor the runtime behaviour of application services. However, a need

may arise to perform more specific logging or monitoring activities. One example of

such an activity occurs when a programmer has already primed the classes of an

application's code using the log4j package. Another example occurs when more

specific information is required of the devices attached to a network. The architecture

does provide some limited support for such activities through its support for the use of

third-party applications.

8.3 Third-party Software Support
The final part of the implementation description concerns the provision of interfaces

through which the functionality provided by third-party software may be utilized. It

would prove extremely difficult, if not impossible to provide support for all third-party

logging or monitoring software. With this in mind, we focus attention on two important

software applications, namely the Jakarta log4j logging package [82]and the AdventNet

SNMP package [102]. The intention is not to directly introduce new functionality into

the architecture, but to demonstrate the relative ease of providing interfaces to external

third-party software, which can be used to gather information relating to more specific

aspects of an application.

The main entry point for third-party software is the ThirdPartyApplnterface

interface shown below. The use of this interface essentially separates any third-party

applications from the instrumentation architecture, but allows any management agent,

211

which is using the architecture's API, to invoke the third-party applications. Of course

as each new third-party application is added, the interface needs to be changed and any

implementation classes associated with each new entry must also be coded.

public interface ThirdPartyApplnterface {

public interface SnmpApplnterface {

public void runSnmpApp(String app, String[] paramR ;
}
public interface Log4JApplnterface

public void log(int mode);

}
}

{

The interface defines two inner interfaces, which each specify methods that facilitate

the execution of SNMP and log4j applications. The classes that implement these

interfaces are considered in the sections below.

8.3.1 SNMP Support
The Simple Network Management Protocol (SNMP) is considered more thoroughly in

[103,104]. This section provides a brief overview of SNMP and considers how the

AdventNet SNMP package [102] may be incorporated within the instrumentation

architecture.

SNMP is a network management protocol based on the manager/agent model. SNMP

facilitates communication between an SNMP agent (a managed device, e. g. a computer

or a router), and an SNMP manager (a human) or management application (a network

management software application) as shown in Figure 8.4. Communication is via

SNMP Protocol Data Units (PDUs). The manager and agent use a Management

Information Base (MIB) and a relatively small set of commands to exchange

information. The MIB is organized in a tree structure with individual variables, such as

point status or description, being represented as leaves on the MIB branches. A long

numeric tag or object identifier (OID) is used to distinguish each variable uniquely in

the MIB and in SNMP messages.

212

Human Network
Manager

rmmt System

Manager

frIIB

I.
Network Managerneu

Software
Apphcahon

Network Protocol
Messages

Figure 8.4: overview of SNMP

Managed Device

Agent

MIB Managed
oe-t_

SNMP uses five basic command messages: get, get-next, get-response, set, and trap to

communicate between the manager and the agent. The small number of commands used
is one of the reasons why SNMP is regarded as "simple". There are essentially four

kinds of operations, which are permitted between managers and agents (managed

device).

" The manager can perform a get (or read) to obtain information from the

agent about an attribute of a managed object.

" The manager can perform a get-next to do the same for the next object in the

tree of objects on the managed node.

" The manager can perform a set (or write) to set the value of an attribute of a

managed object.

" The agent can send a trap, or asynchronous notification, to the manager

telling it about some event on the managed device.

The AdventNet Java SNMP package [102] provides an API for the development of

SNMP managers as Java management applets or Java management applications. The

package provides a series of SNMP beans, which implement the five basic commands

and provide additional utilities, such as polling an agent. These beans and utilities may

be incorporated into Java applets or applications to provide Java-based network

management capabilities. Several examples are provided in the AdventNet SNMP API

tutorials and the code for two of these examples is repeated below. The first example

213

demonstrates the use of the get-next command and the functionality and usage is

described in the header comments.

* SnmpGetNext. java
* Copyright (c) 1996-2003 AdventNet, Inc. All Rights Reserved.
* Please read the associated COPYRIGHTS file for more details.

*ý

* This is a tutorial example program to explain how to write an
* application to do the basic SNMP operation GET NEXT using
* com. adventnet. snmp. beans package of AdventNetSNMP api.

* The user could run this application by giving the following
* usage.

* java SnmpGetNext hostname OID [OID)
A

* where
* hostname is the RemoteHost (agent). The Format is string
* without doubleqoutes/IpAddress.
* OID is the Object Identifier.
* Multiple OIDs can also be given. The entire OID can be
* given or it can be given in the form of 1.1.0. If the oid
* is not starting with a dot (.) it will be prefixed by
* . 1.3.6.1.2.1 . So the entire OID of 1.1.0 will become

* . 1.3.6.1.2.1.1.1.0 .
*
* Example usage:

* java SnmpGetNext adventnet 1.1.0 1.2.0 1.3.0 1.4.0

*

import com. adventnet. snmp. beans. *;

public class SnmpGetNext

public static void main(String args[]) {

if(args. length < 2)
{

System. out. println(
"Usage : java SnmpGetNext hostname OID ");

System. exit (0);

}
// Take care of getting the hostname and the OID

String remoteHost = args[0];
String OID = args(1];

// Instantiate the SnmpTarget bean
SnmpTarget target = new SnmpTarget();

214

//set host and other parameters
target. setTargetHost(remoteHost);

String oids [] = new String [args. length - 11;
for (int i=1; i<args. length; i++) oids[i-1] = args[i];

// multiple OID's can be processed
target. setObjectlDList(oids);

// do the SNMP GET NEXT operation
String result[] = target. snmpGetNextList 0;

// print the results
for (int i=O; i<oids. length; i++) {

System. out. println("OBJECT ID: " +
target. getObjectlD(i));

System. out. println("Response: "+ result [ii);

}
System. exit(O);

}
}

The second example demonstrates the polling of a remote host to any remote events

traps that it may generate. Again, the functionality and usage is described in the header

comments.

/* SnmpPolling. java
* copyright (c) 1996-2003 AdventNet, Inc. All Rights Reserved.
* Please read the associated COPYRIGHTS file for more details.

*ý

/**This
is a tutorial example program to explain how to write an

* application to do the polling operations using
* com. adventnet. snmp. beans package of AdventNetSNMP api.

* The user could run this application by giving the following
* usage.
*

java SnmpPolling hostname OID

* where
*
* hostname is the RemoteHost (agent). The Format is string
* without double qoutes/IpAddress.
* OID is the Object Identifier.
* The entire OID can be given or it can be given in the form
* of 1.1.0. if the oid is not starting with a dot (.) it will
* be prefixed by . 1.3.6.1.2.1 . So the entire OID of 1.1.0

* will become . 1.3.6.1.2.1.1.1.0
*
* Example usage:

215

* java SnmpPolling adventnet 1.1.0
*

*ý

import com. adventnet. snmp. beans. *;

public class SnmpPolling implements ResultListener

SnmpPoller poller = new SnmpPoller(;

public static void main(String args[]) {

if(args. length < 2)
{

}

}

{

System. out. println(
"Usage : java SnmpPolling hostname OID ");

System. exit(0);

// Take care of getting the hostname and the OID
String remoteHost = args[O];
String OID = args [1] ;

SnmpPolling polling = new SnmpPolling();

//set host and other parameters
polling. poller. setTargetHost(remoteHost);
polling. poller. setObjectlD(OID);
polling. poller. setPolllnterval(1);
polling. poller. addResultListener(polling);

public void setNumericResult(long 1){
}

public void setResult(ResultEvent result){
try {

System. out. println(result. getStringVali());
} catch (DataException de) {

System. out. println("Error in getting agent data: "+
d+ result. getErrorString());

}
}

public void setStringResult(String s){
}

3

Either of these SNMP applications may be run in its own NM through the class

SnmpApp, which implements the runsnmpApp method specified in the

SNMPApplnterface. The runsnmpApp method starts a new NM using the

216

Runt ime. getRuntime(). exec (cmd) command, which creates a new JVM

environment for the Java command line specified in cmd.

public class SnmpApp implements
ThirdPartyAppInterface. SnmpApplnterface

public SnmpApp()
}

}

}

{

public void runSnmpApp(String app, String[] params) {
try {

String cmd = "java -cp "+ app + params;
Process p= Runtime. getRuntime(). exec(cmd);
try {

int exitCode = p. waitFor();
if (exitCode != 0)
System. out. println("Exec: failed to launch SmtpApp"

+ app);
}
catch(InterruptedException e) {

System. err. println("Error launching SnmpAppI'
+ app);

e. printStackTrace();
}

catch(Exception el) {
System. err. println("Failed to launch SnmpApp" + app);
ei. printStackTrace();

}
}

For example, a management agent may create an instance of SnmpApp and run the

command to poll a remote host, as below.

ThirdPartyApplnterface. SnmpApplnterface sai = new SnmpApp(;

sai. runSnmpApp("SnmpPolling", "150.204.48.41", "1.0.1");

8.3.2 Iog4j Support
log4j is an open source logging tool developed under the Jakarta Apache project [82].

log4j provides a set of APIs that allows programmers to write log statements in their

code and configure them externally, using property files. There are three aspects of
log4j: logger, appender, and layout. A logger logs to an appender in accordance with a

particular layout (or style). Each class in an application may have an individual logger

or may use a common logger. log4j provides a root logger that all loggers inherit from

and if a class does not have access to a logger, it may use the root logger by calling

Logger. getRootLogger (), although this is not recommended.

217

The preferred way to create a logger and use it for logging a group classes, is to use the

static method of the Logger class. This may be called as Logger. getLogger(clazz),

which retrieves a logger by using the name of the class cl. azz, within the group. If the

particular logger has not already been created it will be created afresh, and there will

always be one instance of this logger in the JVM associated with the class. The loggers

for a group of classes are arranged hierarchically in accordance with the class hierarchy

associated with the group.

Loggers need to know where to send requests for logging and this is where the

appenders feature. log4j supports writing to files (FileAppender), to the console

(consoleAppender), to databases (JDBCAppender), to NT event logs

(NTEventLogAppender), to SMTP servers (SMTPAppender), to remote servers

(SocketAppender), and others. An appender defines the properties of the logging target

to log4j.

log4j provides five levels of logging: DEBUG, INFO, WARN, ERROR and FATAL. Each

logger in log4j is assigned a level. If a level is not initially assigned to a logger, log4j

automatically assigns the level of the logger to that of the parent logger, which may be

another logger or the root logger. The root logger always has a default level assigned,

which is DEBUG so that all loggers are guaranteed to have this level. A log request made

from within an application, using a particular logger, will be sent to a corresponding

appender only if the level of the log request is greater than or equal to the level of the

logger itself. This is a very important rule, which lies at the core of log4j 's capabilities.

Logging code could be added to the Myclass example considered previously, as shown

below. The revised Myclass includes the code to create a logger and two log

statements. The first statement is at the DEBUG level to log the parameters used in the

larger method. The second log statement is at the ERROR level to check for null valued

strings in the tostring method.

// import log4j Logger package
import org. apache. log4j. Logger;

public class Myclass (

public string firstName null;
public string lastName null;

218

public int idNumber = 0;
public int[] array = new int[]{5,6,7};
public Logger log = null;

}

public MyClass(String fname, String lname, int id)
this. firstName = fname;
this. lastName = lname;
this. idNumber = id;
log = Logger. getLogger(MyClass. class);

}
public MyClass() {

this("Denis", "Reilly", 12345);
log = Logger. getLogger(MyClass. class);

}
public boolean larger(int a, int b) {

log. debug("a: "+a+"b: "+ b);
if (a > b)

return true;
else

return false;
}

public String toString() {
if (lastName =- null firstName == null)

log. error("Null value");
return (lastName + ", "+ firstName +" [" +

idNumber + 11] ")

}

{

To incorporate log4j functionality within the instrumentation architecture we use a

similar approach to that of the SNMP application. log4j functionality is provided

through the Log4JApp class, which implements the log method specified in the

Log4JAppInterface. The log method will get a logger for the specified class,

Myclass and set the logging level according to the mode parameter.

Of course, this approach assumes that Myclass is associated with an individual logger.

Assuming it is, then any inner-classes or subclasses of Myclass may also be logged as

they will inherit the logger of Myclass. One drawback to this approach of using log4j is

that the Log4JApp object must run in the same JVM as the Myclass object (typically it

must be on the same computer) that is being logged.

public class Log4JApp implements
ThirdPartyApplnterface. Log4JApplnterface

static final int DEBUG = 0;

static final int INFO = 1;

static final int WARN = 2;

{

219

static final int ERROR = 3;
static final int FATAL = 4;
Class clazz = null;

public Log4JApp(Class clazz) {
this. clazz = clazz;

}
public void log(int mode) {

Logger log = Logger. getLogger(clazz);
switch (mode) {
case DEBUG:

log. debug(;
break;

case INFO:
log. info();
break;

case WARN:
log. warn();
break;

case ERROR:
log. error();
break;

case FATAL:
log. fatal();
break;

default:
System. err. println("Invalid logging level");
break;

} ý
}

A management agent may create an instance of Log4JApp and set the logging level of

MyClass to INFO as Shown below.

ThirdPartyApplnterface. Log4JApplnterface 14jai =
new Log4JApp(MyClass. class);

14jai. log(INFO);

log4j is mostly configured using an external configuration file although the API

provides classes for configuring the log4j system through code as well. For this

relatively simple log4j interface configuration files are used, which requires that an

appropriate configuration file is in place. A simple configuration file that may be used

to log information for MyC1ass to the system. out stream is shown below.

Set root category priority to DEBUG and its only appender to Al.
log4j. rootCategory=DEBUG, Al
Al is set to be a FileAppender which outputs to System out.
log4j. appender. Al=org. log4j. FileAppender
log4j. appender. Al. File=System. out
Al uses PatternLayout.
log4j. appender. Al. layout=org. log4j. PatternLayout

220

log4j. appender. Al. layout. ConversionPattern=%-4r [%t] %-5p %c %x -
%m%n

The log4j. appender. Al . File line specifies that all logging information is sent to

system. out. The final line of the configuration file specifies the format used for the
logger output. The resulting output according to this format is shown below. The output

shows: the date and time, the line number in the class file, the method, the logging

level, the class being logged and the result of any specific logging code added by the

programmer.

2003-09-02 14: 07: 41,24 [larger] DEBUG MyClass - a: 2 b: 1.
2003-09-02 14: 07: 41,33 [toString] ERROR MyClass - Null value.

Another configuration file that may also be used to log information for MyClass to the

System. out stream is shown below. This file uses multiple appenders: the first

appender, which logs information to system. out and a second appender, which directs

output to the example. log file. The final appender statements specify that

example. log will be rolled over when it reaches 100 KB. When rollover occurs, the

old version of example. log is automatically moved to example. log. 1.

log4j. rootCategory=debug, stdout, R
log4j. appender. stdout=org. log4j. FileAppender
log4j. appender. stdout. File=System. out
log4j. appender. stdout. layout=org. log4j. PatternLayout
Pattern to output the caller's file name and line number.
log4j. appender. stdout. layout. ConversionPattern=%5p [%t] (%F: %L)

%m%n
log4j. appender. R=org. log4j. RollingFileAppender
log4j. appender. R. File=example. log
log4j. appender. R. MaxFileSize=100KB
Keep one backup file
log4j. appender. R. MaxBackupIndex=l
log4j. appender. R. layout=org. log4j. PatternLayout
log4j. appender. R. layout. ConversionPattern=gyp %t %c - %m%n

Note that to obtain those different logging behaviours, it is not necessary to recompile

the code that is being logged. Other logging options include logging information to a
Unix/Linux syslog daemon or redirection of all logging output to an NT Event logger.

Logging messages may even be forwarded to a remote log4j server, which would log

according to local server policy.

221

8.4 Chapter Summary
This chapter has described the implementation of the instrumentation architecture using

a combination of Java and Jini middleware technology. The chapter has considered: the

implementation of the basic instrument operations; the main programming constructs

used within the implementation; the implementation of instantiable instrumentation

services. Management agents may instantiate any of these instrumentation services and

use their API to measure/monitor application services.

The architecture has applied several programming constructs in a novel fashion to

develop instrumentation services that can measure and monitor application components

unobtrusively. In particular, Java's reflection API was used to acquire structural class

information and runtime (behavioural) information relating to an object; Java's

dynamic proxy class was used to facilitate the attachment of instrumentation services;

Jini's Administrable interface was used to help expose component bindings from which

an applications dependencies may be determined.

The chapter has also considered how third-party software applications may be used

from within the architecture to perform more specific logging (log4j) and monitoring

(SNMP) tasks. The chapter concludes the second part and main contribution of the

thesis. The final part of the thesis (chapters 9 and 10) consider the application of the

instrumentation architecture, for measuring and monitoring applications (chapter 9) and

drawing of overall conclusions (chapter 10).

222

Chapter 9

Instrumenting Distributed Applications

Having considered the analysis (chapter 6), modelling (chapter 7) and implementation

(chapter 8) of dynamic instrumentation services we are now in a position to put theory

into practice. This chapter intends to do so by demonstrating how the instrumentation

services may be used to measure and monitor several distributed applications. The

chapter begins by introducing the graphics-based test harnesses that are used to

demonstrate the instrumentation architecture and its services. The chapter then

describes four instrumentation case-studies, which are intended to demonstrate how the

architecture may be used.

In particular, the following case studies are considered:

" Basic logging and method invocation monitoring for a simple distributed

application.

" The determination of dynamic dependencies for a multi-service application.

" Analysis of a non-trivial distributed application to determine client-server

access patterns

" The use of instrumentation to assist the design of a distributed application.

The chapter concludes with a qualitative assessment of the performance overhead

introduced by the instrumentation services.

9.1 Instrumentation Test Harnesses
The instrumentation architecture is intended to be used by a management agent, which
is responsible for the management and control of a distributed application. This thesis is

not so much concerned with the management and control aspects of, but more so with

how they may use the instrumentation architecture to gather information that may then

serve as the basis for management and control strategies. The use of the architecture is

223

demonstrated through two Graphical User Interface (GUIs), which were developed to

both demonstrate the architecture and assess its effectiveness. The GUIs were

developed using Java's AWT and Swing APIs and allow the creation of

instrumentation services to demand and the recording of distributed application

parameters. Note that the GUIs are not part of the instrumentation architecture, they

serve only as demonstration aids.

f_
His IlGIP

as a

Loppar Gaups

DeMS8eMce. c1..
EIIaSernce class
NapwaSeMce. c...
TalabBeMte. Cl
MarkSeMce. cla..

, nSA".

Anahm Monitor

-1131X1

MMooRor

ti" ,. v r tnnlnýi

Register: DenisService with crosdreil
i» Register: EllaService with cmsdreil
» Register: NagwaService with cmsdreil
i» Invocation: of getLocation() by EllaClient on DenisService

Invocation: of setLocation(20,30) by EIIaClient on DenisServit
RemoteEvent: DenisService fire event seq number 8

RaplatK DenisCbeM. class'EllaClient.
class

NaywaClientcl...
TalebClientclass ,

» MarkCbent. class

<-C
ýº Lookup: of DenisService by DenisClient

>" Lookup. of EllaService by EllaClient

» Invocation: of setLOCation(20,30) by EllaClient on DenisSeMl
RemoteEveni EIIaClient receive event from DenisSeMce sed

4

Figure 9.1 (a): basic instrumentation services test harness

Figure 9.1 (a) shows the main GUI used to test the logger, gauge, analyzer and monitor

instruments. The top half of the GUI contains buttons, which can be used to create

instrumentation services as required. The left half of the GUI contains groups of clients

and application services. The Register button is used to register any application service

with a lookup service and the Lookup button is used to allow any client to find a

registered service. The "»" and "«" buttons may be used to add new roles to services

or clients, by transferring either from one list to the other. So for example, if

Denisservice is currently selected and the "»" button is clicked then Denisservice

may also play the role of a client. The right half of the GUI provides a record of. the

operations performed on clients and servers, interactions between clients and services

and instrumentation applied to clients and/or services.

224

I- ,. ý, ý Fin IMj

Qo d

. ri VI, 11

9npda Probe

DsNSSanrce
Cl

EIaSsMcs class

iNaqwaSSMCS c

TalapBaMCa. d.

, rsf1dSMCS Cl.

Figure 9.1 (b): probe instrumentation services test harness

Figure 9.1(b) shows the GUI used to test dependency probes. The top half of the GUI

contains the Probe buttons, which can be used to create probes, which either provide a

single snapshot or run within threads to determine dynamic dependencies. The left half

of the GUI is similar to that of Figure 9.1 (a), except that there is a single dialog box to

record client/service operations and interactions. The right half of the GUI contains a
2D graphics pane, which is used for drawing the dependency digraph.

9.2 Instrumentation Case Studies
Four instrumentation case-studies were conducted to demonstrate and assess different

functional aspects of the instrumentation architecture. The first two case-studies were

conducted on simple distributed applications, which serve no useful purpose other than

to generate information, which can be monitored. The third case study is more realistic
in that it uses a simple distributed mobile phone billing application to assess client-

server access patterns. The fourth case-study considers a simple distributed application

with respect to how instrumentation may be used for the realistic appraisal of
implemnation alternatives.

ý

Oc

loaw

Thread Probe

DenlsCllentclass

E llaChent class
NawwaCllentcl

TalebChentclass
MarkChentclass

EllaSerwke class

» ReyrsMr DenrsSerwc" wM crosdred
» Reprsfer EUaseMU All crosdreM

» serMceToCaent ElbSamca

-Lookup of EIIaSarwcs by EYaCUant
» Loolorp of Denrsserwc" by ENaSarMCa
» Snapshot Probe DeUrmrM Dependency Snapshol

4. oI

225

9.2.1 Simple Logging and Monitoring
The first case-study is based on a federation of simple Ani services and clients, which

are named according to the students and staff members who are colleagues of the

author and the code for one such service is shown below. The services and clients were
spread across two computers with each computer running a single lookup service. Each

service simply sets the name of the person it represents and generates a random location

coordinate (x, y) in a similar fashion to the Explorer example of chapter 8. Clients of
these services may interrogate their current location by invoking a get Location

method and set a rendezvous point using a setLocation method. When any service

reaches a rendezvous point, it sends a remote event to notify the client of its arrival.

public class DenisService extends UnicastRemoteObject
implenents DenisServicelnterface {

Thread thread = null;
int x, y=0;
int count, diff_x, diff_y, segnum = 0;
public Dictionary listeners = new Hashtable();

class Location (
int x, y;

}
Location location, rendezvous = null;

public DenisService () {

register();
finit(; ;

}
void register() {

// register with a lookup service

}
public void init() {

Runnable task = new Runnable()
public void run() {

; roam o;

};
}

{

thread = new Thread(task, "DenisService");
thread. start (;

}
void roam() t

226

location = new Location();
while (rendezvous == null) {

location. x = (int)(Math. random() * 50);
location. y = (int)(Math. random() * 50);
System. out. println("Location "+ location. x +

+ location. y);
if (count > 90) {

setLocation(20,30);
count = 0;

}

count++;

}

11 If

diff_x = rendezvous. x - location. x;
diff_y = rendezvous. y - location. y;
while (Math. abs(diff_x) >0 && Math. abs(diff_y) > 0) {

if (diff_x > 0) {
location. x++;
diff_x--;

else {
location. x--;
diff x++;

}
if (diff_y > 0) {

location. y++;
diff_y--;

}
else {

location. y--;
diff_y++;

}
System. out. println("Location "+ location. x

location. y);
+ to of +

}
system. out. println("Redezvous at "+ location. x

location-y);
fireRemoteEvent(0);
rendezvous = null;

}
public Location getLocation() {

return location;

?
public void setLocation(int x, int y) {

rendezvous = new Location();
rendezvous. x - x;
rendezvous. y - y;

}
void fireRemoteEvent(long id) {

Enumeration enum = listeners. keys();

while (enum. hasMoreElenents())
RemoteEventListener listener =

(RemoteEventListener)enum. nextElement();
RemoteEvent event = new RemoteEvent(this, id, seQ num,

227

(Marshal ledObject)listeners. get(listener));
try

l
}

}

listener. notify(event);
catch(UnknownEventException e)

e. printStackTrace();
catch(RemoteException el) {

el. printStackTrace();

{

}
seq_num++ ;

}
public static void main(String[] arge) {

DenisService ds = new DenisService();

}
}

The instrumentation case study uses logger instrumentation services to track the

coordinates of each application service. Event and method invocation monitor services

were also attached to each application service to acknowledge events generated by, and

method invocations made on the application services respectively. The overall case

study was conducted through two separate studies: first the instrumentation services

were attached during startup (i. e. when each application service was registered) and

second, the instrumentation services were attached/detached at the discretion of the

controller using the Logging and Monitoring GUI (i. e. the author). The test conditions

were as follows:

" Each application service was registered with one of two lookup services

running on two separate computers (cmsdreil and crosegris).

" Both computers were of the same specification, namely a Pentium III

computer with 256 MB RAM Running Windows 2000.

" Each application service was run in its own JVM (i. e. each application

service contained a main method).

" Each instrumentation service was run on the same JVM as the application

service to which it was attached.

" Virtual memory gauges were used to measure the virtual memory available
in each NM in a single computer and these values were averaged over the

228

JVMs to give a single measure of virtual memory for each computer in each
of the studies.

" No other applications were run on the computers and several non-essential
Windows services were halted.

The transcript below shows the output for a typical study, which involves a lookup

service running on the computer cmadrei1.

DenisService: register with cmsdreil
Logger: register with cmsdreil
Logger: attach to DenisService
Logger: start logging
Logger: coordinates 28,
Logger: coordinates 11,
Logger: coordinates 28,

coordinates
coordinates
coordinates
coordinates
coordinates
coordinates
coordinates

EMonitor: register with crosdreil
MMonitor: register with cmsdreil
EMonitor: attach to DenisService
MMonitor: attach to DenisService
EllaClient: found DenisService
MMonitor: getLocation
MMonitor: setLocation
Logger:
Logger:
Logger:
Logger:
Logger:
Logger:
Logger:
Logger:

57
32
30

invoked on DenisService
invoked

13,
14,
15,
16,
17,
18,
19,

24
25
26
27
28
29
30
30 coordinates 20,

EMonitor: DenisService fire

on DenisService
returns 12,23
params 20,30

event - seq. number 8

The transcript shows how logger and event and method invocation monitors are

attached to log data and monitor the behaviour of Denisservice. The invocation

monitor acknowledges the method invocations made by Ellaclient and the event

monitor acknowledges the event fired by DenisService when it reaches the

rendezvous destination.

The virtual memory gauge simply checks the initial total amount of memory available

in each JVM. The gauge then starts a java. swing. Timer (int delay,

ActionListener listener) with delay set to lms. Each time that the delay expires,

the listener callback calls the j ava. lang. Runtime .f reeMemory method to check the

amount of free memory available within the applications JVM.

229

Figures 9.2, represent the amount of memory used for the two logging and monitoring

studies. Figure 9.2 (a) shows the memory usage when no instrumentation services are

used (the placebo). Figure 9.2 (b) shows the memory usage when instrumentation

services are attached at startup. Figure 9.2 (c) shows the memory usage when

instrumentation services were attached/detached at the discretion of the controller (the

author in this case).

230

i

I1

N
ý
ý
ý

I

ý

ý

0

ä
E
m
E
f-

(*+u6) RA

The vertical scale of each graph represents the amount of virtual memory available in

the NM and the horizontal scale represents time in milliseconds. Each graph has a

saw-tooth profile, which represents how the virtual memory falls as the thread runs and

rises when the garbage collector is invoked.

If we examine Figure 9.2 (a), we see two noticeable falls in VM, occurring at 40 and

415 milliseconds. The first fall occurs when DenisService registers with lookup

service crosdrei i. The second fall occurs when a client uses Jini's lookup protocol to

locate and download a copy of the DenisService Proxy. There are also two further

very small falls, which are barely noticeable for the placebo case. These very small

falls, at 717,1000 and milliseconds, occur when a client invokes the getLocation and

setLocation methods of DenisService respectively.

232

/

4 _N ý

ý
ý

IIII

ýý
(s"lft) MA

ý

ý
ý
F

0

If we examine Figure 9.2 (b), we see the same noticeable VM falls as for Figure 9.2 (a).

However, the first fall occurs later at 216 milliseconds and is now slightly larger. The

increase in this fall and its delay (216 as opposed to 40 milliseconds) are a consequence

of the registration and attachment of the monitor services. The invocation falls

occurring at 717 and 1000 milliseconds are also slightly larger to those of the placebo

case. This is so due to the extra overhead incurred when the monitor service intervene

the getLocation and set Location methods invocations made on DenisService.

If we examine Figure 9.2 (c) we see that the first fall is not as large of that of Figure 9.2

(b) and the delay somewhat reduced - 128 as opposed to 216 milliseconds. This is so
because the monitor services are only registered and not attached when the application

starts. The monitor service is actually attached just before the client lookup, occurring

at 415 milliseconds, and this results in only a marginal increase in the fall at 415

milliseconds in comparison to that of Figure 9.2 (b). Figure 9.2 (c) also contains the

same two small falls, which represent the monitor service's intervention on method
invocations.

Overall, there is no great difference between the VM falls of the two instrumentation

studies and the uninstrumented placebo case. So, we may conclude that the VM

overhead of instrumentation service registration/attachment is relatively small.
However, although the VM overhead is small, the register and attach (and join)

operations can introduce significant time delays. These time delays and a more

thorough assessment of instrumentation service performance are considered in section
9.3.4. The time delay is even more significant when instrumentation services register

with lookup services running on different computers to themselves. The time delay is

also significant when instrumentation services lookup other instrumentation services,

on remote computers, with whom they wish to join.

9.2.2 Determining Dynamic Dependencies
The second case-study considers the determination of the dynamic dependencies

amongst a small federation of application services and their clients running on a single

computer. The services serve no useful purpose other than to print messages to

235

acknowledge the invocation of their methods. The case-study makes use of the
Dependencies GUI considered previously. The federation consists of five services
(AService, BService, CService, DService, EService) and a single lookup service,

cmadreil. The case-study also used five clients (AClient, BClient, CClient,

DClient, EClient), which may each use any of the five services. Each service was

coded in accordance with the compromise of chapter 8 in that each service and client
implement the Jini Administrable interface and contains a ServiceAdmin object.

Again, the overall case study was conducted through two separate studies: first the
instantaneous (snapshot) dependencies were determined for a group of application

services and second, the initial dependency snapshot was altered by changing the

group's configuration using the Dependencies GUI. For both studies, the target

application client component (for which dependencies were determined) was BClient

and a single probe service was attached to this client. For the first study, the probe did

not register to receive event notifications of changes in bindings and was immediately

detached after the dependencies were determined. In the second study the probe did

register to receive such notifications from the lookup service cmadreil and remained

attached to BClient throughout the duration of the study. The test conditions were

similar to those of Section 9.2.1, except that only a single computer was used.

Figures 9.3, represent the dependencies for each study. Figure 9.3 (a) the dependency

snapshot when the service bindings have been established. Figure 9.3 (b) shows how

the initial digraph is redrawn after the initial dependencies have altered.

236

fý ..
FYB Help

Zo rS

tifýNI PG

A8sMce.
class

eSermco class

CSeMC.. class
IDSsMa class
IES. Mce class

snapsnor Probe

RadsUr

44

Lookyi

Thread Probe

ýImiu.

ACMenlclass

BCllenl. class
CCllentclass

DClientclass

ECIieM class
B$e1Vlce. class

» Register AService wrtt crosoreu
» Register BServrCe with crosttreh

» SeMC. ToChent BSemce

--Lookup of BSemce by BCMent

--Lookup ofASer tce byAChent

» Lookup of ASennce by BSeMCe

» Probe Determine Depeendency Snapshot

Figure 9.3 (a): dependency case study - initial dependencies

ý
R. li. p

a0d

',. 4, A, . -S

J18snlce. class
BSernce class
CSeMC" class
OS. MCS class
ESsMCe class

snapctKA Probe

wamw

Oc

Thread Probe

LookoD

AChentclass

BClient class
CCllentclass
DCIlentclass

ECllent. class
BSennce class
ASerrnce. class

-ZyV14ry. - -nu. e v1 -m,

-Lookup of ASeMCe by BSeMte

Probe DeMrmtne Depeendency Snapshot

SeMCeTOChent ASernce

» Register. CSesrrce wits crosdreQ
Lookup of CSeMCe Dy ASeMCe

"" Probe Debrmsne Depeendency Snapshot

Figure 9.3 (b): dependency case study - final dependencies

s. 1J
_x.

i

t
_. __J

.= xJ

237

The two previous studies demonstrated how an initial dependency snapshot can be

determined and how true dynamic dependencies can be determined by attaching a

probe to an application service or client throughout its lifetime. However, there is also a
third alternative, which may be used to determine pseudo-dynamic dependencies. This

approach involves determining instantaneous dependencies at regular intervals, perhaps

using a Java timer. The term pseudo is used because the approach does not determine

true dynamic dependencies in the strict sense as something may be missed in between

each instantaneous dependency snapshot. However, where large applications are

concerned, it is likely to be more conservative in terms of time delays.

9.2.3 Client-Server Access Patterns
The third case-study considers the use of analyzer and invocation monitor services to

determine client-server access patterns. The case-study is performed on a mobile phone
billing simulation. A single server process is used to represent a mobile-phone billing

server and clients may access this server to enquire remaining talk-time available, top-

up talk-time, enquire the outstanding bill, make payments or listen to an information

line. The billing server was registered with a lookup service located on one computer

and the five clients were spread across two further computers. The code for the billing

server is shown below.

public interface BillingServerlnterface extends Remote {

public String topUpTalkTime(int time)
throws java. rmi. RemoteException;

public String view TalkTimeRemaining()
throws java. rmi. RemoteException;

public String payBill(int payment)
throws java. rmi. RemoteException;

public String viewBill() throws java. rmi. RemoteException;
public String listenTolnformationLine()

throws java. rmi. RemoteException;
}

public class BillingServer extends UnicastRemoteObject implements
BillingServerlnterface {

class Account {
long code;
int talkTime - 60;
int bill - 600;

}

238

Account[] accounts = new Account [5];
Account theAccount = null;

public BillingService() throws RemoteException {
super () ;

}

void register() {
// register with a lookup service

}
void init() (

accounts[0]. code = 12345;
accounts[1]. code = 23451;
accounts[2]. code = 34521;

accounts[3]. code = 45321;
accounts[4]. code = 54321;

}
void validate(long code) throws java. rmi. RemoteException {

for (int i=0; i< accounts. length; i++)

if (accounts[i). code = code) theAccount = accounts[];
else theAccount = null;

}
public String topUpTalkTime(int time)

throws java. rmi. RemoteException {

theAccount. talkTime += time;
theAccount. bill += time*10;
return "Talk time available "+ theAccount. talkTime +

11 mina. ";

}

public String viewTalkTimeRemaining()
throws java. rmi. RemoteException {

return "Talk time available "+ theAccount. talkTime +
11 mina. ";

}
public String payBill(int payment)

throws java. rmi. RemoteException {
if (payment > theAccount. bill) {

theAccount. talkTime +_ (payment - theAccount. bill) /10;
theAccount. bill = 0;

}

else
theAccount. bill -= payment;

return "Outstanding bill "+ theAccount. bill;

}
public String viewBill() throws java. rmi. RemoteException {

return "Outstanding bill "+ theAccount. bill;

}
public String listenToInformationLine()

239

throws java. rmi. RemoteException {
theAccount. bill += 50;
return "Welcome to the WAP billing server.... ";

}

}
public static void main (String args[)){

BillingServer be = new BillingServer(;
bs. init ();
bs. register();

}

A method invocation monitor service was attached to the billing server and an indirect

analyzer service was attached to the invocation monitor. The invocation monitor was

responsible for acknowledging method invocations made on the billing server by clients

and writing the resultant invocation objects to the indirect analyzer. The analyzer was

used to determine the frequency of access of each of the billing server's methods, via
its compute method (section 8.2.6).

The test conditions were similar to those of sections 9.2.1 and 9.2.2 and five clients

were used to access five accounts on the billing server over a period of 2.8 hours to

simulate a one-week period. A one-week period involves 7 days of 24 hours, so a 2.8

hour simulation means that 1 day is represented as 24 minutes. Each client used random

number generators to randomly select a period of time to the next invocation and

randomly select a method to invoke. The frequency of the random invocations was

increased for the last 48 minutes to simulate increased weekend activity.

The analyzer was coded to produce intermediate access frequency reports every 24

minutes (i. e. every day) and an overall access frequency report at the end of the

simulation. Excerpts of the final report for the five clients accessing their respective

accounts is shown below.

00: 04: 23 - Client2 (23451): Talk time available 120 mina.
00: 07: 45 - Clientl (12345): Talk time available 180 mina.
00: 09: 06 - Client3 (34521): Talk time available 90 mina.
00: 12: 21 - Client2 (23451): Welcome to the WAP billing server.
00: 15: 03 - Client5 (54321): Talk time available 120 mine.
00: 18: 23 - Clientl (12345): Talk for 10 mina.
00: 20: 54 - Client4 (45321): Talk time available 90 mina.
00: 23: 41 - Client3 (34521): Outstanding bill 800.
00: 27: 23 - Client5 (54321): Talk for 10 mina.
00: 29: 53 - Client4 (45321): Talk for 20 mina.

240

02: 43: 52 - Client3 (34521): Talk for 15 mins.
02: 44: 49 - Clientl (12345): Welcome to the WAP billing server....
02: 45: 41 - Client4 (54321): Talk for 10 mins.
02: 46: 23 - Clients (54321): Outstanding bill 300.
02: 47: 14 - Clientl (12345): Talk time available 30 mins.
02: 48: 00 - Client3 (34521): Talk time available 60 minx.

This case-study demonstrates how basic or primitive instrumentation services may be

combined to perform more complex instrumentation tasks. The study also demonstrates

how indirect instrumentation services may be used in conjunction with direct

instrumentation services. As a general rule, indirect instruments are more conservative

in terms of their use of resources since they do not use the more costly Java reflection

to acquire information.

9.2.4 Use of Regular or Activatable Jini Services?
The final case-study uses the virtual memory gauges (considered previously) in

conjunction with indirect loggers and method invocation monitors to demonstrate how

the combination may be used to provide a qualitative assessment of the implementation

of a distributed application. In the previous case-studies virtual memory gauges were

used to print memory values to the screen (i. e. to Java's System. out stream). For this

case-study, indirect loggers were used to read the memory values from the gauges and

store them to a file. The gauges are used to gauge virtual memory usage for each

individual JVM used within the application. The virtual memory readings together with

the number of active JVMs are recorded by indirect loggers and stored in logfiles from

which performance comparisons can be made.

The simple example application services in the previous case-studies used RMI proxies

as the main mechanism for actually providing the service to a client. These services

subclass Unicast Remoteobject, and live within a server whose principal task is to

keep the service alive and registered with a lookup service. If the server fails to renew a
lease then the lookup service will eventually discard the service and if the server fails to

keep itself and its service alive then the service will not be available when a client

wants to use it.

241

The unicast Remoteobject approach results in a server and a service which most of

the time will be idle, probably swapped out to disk but still using virtual memory. From

JDK 1.2 and upwards, there is an extension to RMI called activation [105], which

allows an idle object to sleep, and be recalled to life when needed. In this way, it does

not occupy virtual memory while idle. Of course, a process needs to be alive to restore

such objects, and RMI supplies a daemon rmid to manage this. In effect, rmid acts as a

virtual memory manager as it stores information about dormant Java objects in its own
files and restores them from there as needed.

In this case-study, we are concerned with assessing the performance of a simple

application implemented using the two Jini service implementation alternatives. The

alternatives are: unicastRemoteObject services and activatable services, where

unicastRemoteObject services subclass RMI's unicasteRemoteobject class and

activatable services subclass RMI'S Activatable class.

1. Active Objects and Activation

According to the Activation Tutorial in the Java RMI specification [105] "an `active'

object is a remote object that is instantiated and exported in a JVM on some system....

A 'passive' object is one that is not yet instantiated (or exported) in a JVM, but which

can be brought into an active state. " The transformation of a passive object into an

active object is a process referred to as activation.

UnicastRemoteObject services exist within a server, where they are kept alive,

consuming memory, even when idle, until they are eventually discarded. A simple

Unicast Remoteobject service may combine the server and the service within a single

Java class file. Alternatively, more complex UnicastRemoteObj ect services may

consist of a server within one Java class file and the service (or backend server) within

a second Java class file. In the case of the latter, the server will call the service's

constructor to create an instance of the service, which it wishes to register and maintain

a remote reference to the remote object that implements the service. By using the

Unicast RemoteObject approach, both the server and its associated service are hosted

by the same JVM. The service is essentially kept alive within the JVM so that clients

may invoke its methods as and when desired.

242

An activatable service, considered further in [98], is registered by a server, but then the

server is allowed to "die" thereby freeing up its JVM. The activatable object, which
implements the activatable service, may then sleep until it is accessed by a client when
it is resurrected, within a separate JVM, by the Activation System. The Activation

System is essentially Java's RMI daemon, rmid, which maintains references to the

dormant service so that they can be resurrected when needed by clients. The Activation

System essentially guarantees that RMI calls on this service will not fail, even when the

service is sleeping. This approach allows resources (primarily virtual memory) to be

conserved, but the price to pay is that a new JVM "may" need to be started whenever a

client needs to access an activatable service.

However, the need to introduce a new JVM for each activatable service may be avoided

by arranging a group of activatable service within an Activation Group, so that all the

services within the Activation Group may share the same JVM whenever their methods

are invoked by clients. On first impression, activatable services seem like an attractive

option. However, their efficiency is a function of the number of JVMs that need to be

started whenever an activatable service is accessed. If the number of JVMs is high, then

activatable services may in fact introduce greater performance overheads above that of

Uni cast Remot eObj ect services. Conversely, if the number can be kept moderately

low, then performance savings may be had from using activatable services.

2. The Case-Study

The case-study uses the same five simple services (Aservice to EService) and clients

(AClient to EClient) considered in Section 9.2.2 to assess the performance of

UnicastRemoteObject service against activatable service implementations. As for

Section 9.2.2, the five services and clients were hosted on the same computer. Three

separate studies were performed according to the following arrangements:

" The vnicast Remoteobject services were all run within the same JVM.

" The activatable services were split into two groups and each group was run
in a separate JVM.

" The unicastRemoteobject services were run within five separate JVMs

243

For each of the three studies a separate JVM was used to run the lookup service
cmsdreil.

The first study measures the performance of a UnicastRemoteObject service

implementation with the five services run in a single shared JVM. Virtual memory

gauges were attached to each Unicast Remoteobject service and indirect loggers were

used to record the gauge readings. Figure 9.4 shows a typical VM usage graph for

AService. The noticeable features on this graph are the falls in virtual memory

occurring at 402 milliseconds (initial lookup service discovery and registration) and

1242 and 2098 when a method of Aservice is invoked by a client. We can also see a

slow gradual fall in virtual memory, which is incurred in keeping AService alive. For

the first study nine method invocations were made and these invocations were spread

across the five services (Aservice to EService).

244

MID

6J
Cd

_u TW
id

C5 dO
v-

ýv ýi Hý
E

ý ý ca

OL

6J
L

bD
uw

(say(q) WA

The second study measures the performance of an activatable service implementation

for which the activatable services were organized into two activation groups. Two

server components were used to register the activatable services for the two groups.

The code below shows the server (Act ivatableserverl) that was used to register the

activatable versions of Aservice, BService and CService. The code for the

activatable service Aservice is also shown below. A similar server

(Act ivatableServer2) was used to register DService and EService within a second

activatable group.

public class ActivatableServerl {

private ServiceTemplate template = null;
private LookupLocator lookup = null;
private Lease lease = null;
private ServiceRegistration reg = null;
private ServiceRegistrar registrar = null;
public Serviceltem item = null;

static final protected String SECURITY
-
POLICY-FILE

"C: \\jinil_l\\policy\\policy. all";
static final protected String CODEBASE _

"http: //crosdreil. 8081/";

protected AServiceInterface aStub;
protected BServiceinterface bStub;

protected CServicelnterface cStub;

public static void main(String argv[]) {

new Act ivatableServerl();
// stick around while lookup services are found
try {

Thread. sleep(10000L);
} catch(InterruptedException e) {

// do nothing

}
// the server doesn't need to exist anymore
System. exit(0);

}
public ActivatableServerl() {

If install suitable security manager
System. setSecurityManager(new RMISecurityManager());

// set the properties for the JVM
System. setProperty("java. rmi. server. codebase",

CODEBASE);
System. setProperty("java. security. policy",

SECURITY-POLICY-FILE);

246

If Install an activation group
Properties props = new Properties();
props. put("java. security. policy",

SECURITY
-

POLICY-FILE);
ActivationGroupDesc. CommandEnvironment ace = roll;

ActivationGroupDesc group = new ActivationGroupDesc(props,
ace);

ActivationGrouplD grouplD = null;
try {

grouplD =
ActivationGroup. getSystem(). registerGroup(group)

} catch(RemoteException e) (

e. printStackTrace(;
System. exit(1);

} catch(ActivationException e) {

e. printStackTrace();
System. exit(l);

}
try {

ActivationGroup. createGroup(grouplD, group, 0);
} catch(ActivationException e) {

e. printStackTrace();
System. exit(1);

MarshalledObject data = null;
ActivationDesc desc = null;
System. out. println("Group ID "+

ActivationGroup. currentGrouplD(). toString());
try {

aStub = (AServiceInterface) Activatable. register(desc);
System. out. println("Activatable aStub +

aStub. toString());
bStub - (BServiceInterface) Activatable. register(desc);

System. out. println("Activatable bStub "+
bStub. toString());

cStub = (CServiceInterface) Activatable. register(desc);
System. out. println("Activatable cStub "+

cStub. toString());
} catch(UnknownGroupException e) {

e. printStackTrace(;
System. exit(1);

} catch(ActivationException e) {

e. printStackTrace();
System. exit(1);

} catch(RemoteException e) {

e. printStackTrace();
System. exit(1);

}
try {

lookup = new LookupLocator("jini: //crosdreil");
} catch (java. net. MalformedURtException e) {

System. err. println("Lookup failed: "+e. toString());
System. exit(1);

}
cry {

247

registrar = lookup. getRegistrar();
} catch (java. io. IOException e) {

System. err. println("Registrar search failed: "+
e. toString());

System. exit(1);
} catch (java. lang. ClassNotFoundException e) {

System. err. println("Registrar search failed: "+
e. toString());

System. exit(l);

}

}
// register ourselves
item = new Serviceltem(null, stub, null);
try {

reg = registrar. register(item, Lease. FOREVER);
lease = reg. getLease();
new LeaseRenewalManager(lease, Lease. FOREVER, null);
System. out. println("ActivatableServerl registered... "

+ reg);
} catch(java. rmi. RemoteException e) {

System. err. println("Register exception: "+
e. toString());

}
} // ActivatableServerl

public class AService extends Activatable
implements AServiceInterface {

public AService(ActivationlD id, MarshalledObject data)
throws java. rmi. RemoteException {

super(id, 0);
System. out. println("AService registration object "+

this);

}
public String sayHello() throws RemoteException {

System. out. println("Hello from AService... ");
return "Hello from AService... ";

}
} // AService

In a similar fashion to the first case-study, virtual memory gauges and indirect loggers

were used to record virtual memory usage for the servers. Figure 9.5 shows the VM

usage graph for ActivatableServerl, for which we see a larger fall in virtual memory

when the activation group is registered with the Activation System. The fall and also

the time delay are larger than those incurred by the UnicastRemoteObject service
implementation during the initial lookup service discovery and registration process

(Figure 9.5). However, once the activation group has been registered, the server may

then die, as it has done its job, thereby freeing up a NM.

248

IIII

8 00

8 N-

ý

ý

ý

1ý

0

1--

(set(q) WA

The Activation System allows activatable objects, such as AService, to begin

execution on an as needed basis. When an activatable remote object is accessed (via

method invocation), if that remote object is not currently executing, the Activation

System initiates the object's execution inside an "appropriate" JVM. An appropriate
JVM may be a JVM already active within the activation group, or else a new JVM.

Such method invocations incur minimal virtual memory, so we are not so much

concerned with falls in virtual memory, but the number of JVMs that are initiated for an

application implemented by activatable services.

Direct method invocation monitors were attached to each activatable object (e. g.

AService) so that client access could be recorded. For each client access, the

invocation monitors also recorded the unique hashcode for the JVM in which the

activatable object was running when the invocation was made. For the second case-

study, recordings revealed that four separate JVMs were necessary to accommodate the

same nine method invocations made on the five services (i. e. same nine invocations as

the first study). We may assume that the amount of virtual memory used in each

invocation and indeed for all nine invocations is negligible. However, this second case-

study still required three more JVMs than the first study (recall that the JVM for the

server was freed up once the server has registered the activatable services and died). So

at this stage, one could raise questions regarding the benefits of activatable services.

However, the benefits of activatable services are highlighted when we consider the

third study.

The third study is essentially a repeat of the first study, but this time, each

Unicast Remote0bject service is run in its own JVM. The approach to recording data

was the same as that of the first study. Figure 9.6 shows a typical VM usage graph for

AService, which has similar noticeable features to that of Figure 9.4. However, this

time, the load on the JVM is much lighter since it is only running one of the five

services. Although the load is relatively light, this and four other JVMs are completely

tied up and cannot be used to run any other Unicast Remote0bj ect services. It is at this

stage, on comparing studies two and three, that we see the advantage of using

250

activatable services. Essentially study two uses four JVMs with hardly any load,

whereas study three uses five JVMs with relatively light loads.

251

O
ý

N

C)
8 N

8
0 ý

ýO
N

H
E
a)
E
1-

(sau(g) WA

We may summarize the three studies as:

" Study 1: uses one heavily loaded JVM

" Study 2: uses four JVMs with hardly any load.

" Study 3: uses five JVMs with relatively light loads.

From this qualitative case-study we may conclude that the activatable implementation

seems the more conservative for this simple five service example. In this simple

example two activation groups were used although all five services could easily have

been accommodated in a single activation group. When implementing an application
based on activatable services, we need to pay attention to how many JVMs are likely to

be required and this in turn is a function of the activation group organization and the

frequency of service access. Activatable services have the advantage that they do not tie

up a JVM in the same way as unicastRemoteObject services. As we have

demonstrated through this case study, combinations of instrumentation services can be

used to help us qualitatively assess the performance of different application

implementations/organizations.

9.2.5 Summary of Case Studies
The case studies were conducted to demonstrate how the architecture may be used and,

more generally, to evaluate the instrumentation architecture. Each case study is

summarized below in terms of what was achieved and what was learned.

1. Simple logging and monitoring
The simple logging and monitoring case study used logger instrumentation services to

track and log simple activities performed by application services. Event and method
invocation monitor services were also attached to each application service to

acknowledge events generated by and method invocations made on the application

services respectively. The case study demonstrated how these instrumentation services

could be used without any additional application-level service code - i. e. unobtrusively.

The case study considered two different strategies for applying the instrumentation:

attachment when each application service was registered, and delayed attachment at the

253

discretion of a controller (i. e. the author). It was concluded that overall the

instrumentation had little affect on the amount of VM used by the application as a

whole. However, the instrumentation registration and attachment operations can
introduce significant time delays. Furthermore, the second application strategy may

prove more favourable as it does not introduce the cumulative delay of simultaneous
instrumentation registration/attachment.

2. Determining dynamic dependencies

The dynamic dependencies case-study considers the determination of the dynamic

dependencies amongst a small federation of application services and their clients

running on a single computer. The case-study first considered the instantaneous

(snapshot) dependencies and then went on to demonstrate how dependencies may be re-
determined after changes in the application's configuration. The case study considered
how the probe needs some way of knowing when component bindings have altered.
The approach that was demonstrated was to have the probe register to receive

notifications from the lookup service in order to be aware of changes in bindings.

Unlike the other case studies, some additional code was needed in the application

components in order to expose the bindings that the probe could then use. The

attachment of a probe to an application service is required to determine the true

dependencies emanating from a specific application component. Several such probes

would be needed to build up a complete dependency snapshot. An alternative approach

was mentioned, although not demonstrated, to determine pseudo-dynamic
dependencies. This alternative approach involves determining instantaneous

dependencies at regular intervals, perhaps using a Java timer. This approach alleviates

the need for probes having to register to receive notification of changes in bindings

although it does not provide a true dependency picture.

3. Client-Server access patterns
The client-server access patterns case-study made use of analyzer and invocation

monitor services to determine client-server access patterns. The case-study was

performed on a mobile phone billing simulation. The invocation monitors were used to

acknowledge method invocations make on a billing server by clients. Results from

254

monitors were forwarded to an indirect analyzer, which was used to determine the

frequency of access of each of the billing server's methods.

The general aim of this case-study was to use the instrumentation architecture for a

realistic simulation run over a period of time with pseudo-random behaviour. More

specifically, the case study aimed to show how basic or primitive instrumentation

services may be combined to perform more complex instrumentation tasks. The study

also demonstrated the use of indirect instrumentation services in conjunction with direct

instrumentation services.

4. Regular and activatable Jini services
The final case-study demonstrated how instrumentation can be used to provide a

qualitative assessment of the implementation alternatives for a distributed application.

Again, a combination of virtual memory gauges, indirect loggers and method
invocation monitors were used to demonstrate how instrumentation services may be

combined to carry out complex measurement/monitoring tasks.

The study considered three separate realistic Jini service implementation arrangements:

" Several regular (uni cast Remoteobj ect) services run within the same JVM.

" Several activatable services split into two groups with each group run in a

separate JVM.

" Several regular services were run within five separate JVMs.

From the instrumentation results it was possible to conclude that the activatable service
implementation was more conservative for a study based on application five services.
Furthermore, the load results from the instrumentation revealed that a single activation

group would suffice.

9.3 Discussion and Qualitative Performance Assessment
This section discusses several novel approaches to the use of the instrumentation

architecture. Guidelines are provided that may appeal to application developers or other

researchers to assist the measurement, monitor and overall management of distributed

applications. The section goes on to provide a qualitative assessment of the

255

performance overhead incurred by the instrumentation architecture. The assessment
highlights where performance may be affected and why and to what extent.

9.3.1 Centralized vs. Decentralized Instrumentation Control
The previous case studies considered the use of instrumentation services for the

measurement and monitoring of several relatively simple distributed applications. For

these case-studies the number of application services and instrumentation services were

relatively small so it was possible to use a centralized regime of control. A centralized

control regime means that all the instrumentation services were created, coordinated

and controlled by a single program. Through such a form of control the instrumentation

services may still be distributed over several computers, but they are controlled by a

single program running on a single computer.

When distributed applications consist of a large number of application and
instrumentation services, a decentralized regime of control may prove more favourable.

With decentralized control the instrumentation services are created, coordinated and

controlled by several programs. The control programs may communicate with each

other, or communication may remain autonomous in which case communication is

achieved via the instrumentation services.

The decentralized approach may organize instrumentation services according to

function. For example, a distributed application may contain application services

responsible for: backend database access, user interface presentation, resource sharing

and access and control of hardware (printers, cameras etc.). Figure 9.7 shows a series of
Input/Output devices that may be organized hierarchically using an arrangement of
lookup services, which may be spread over several computers. Alternatively,

instrumentation services may be organized according to location.

256

A hierarchical arrangement of Lookup services (running on
separate computers) which provide access to a variety of
Input/Output devices

Figure 9.7: lookup service chaining

There are no hard and fast rules governing the choice between centralized and
decentralized approaches. However, as a general qualitative guideline, larger

applications of fifty or more application services with five or more lookup services may
benefit a decentralized instrumentation approach.

9.3.2 Using Instrumentation Services to Detect Failures
In distributed systems there are several types of failure, which may affect the

application components or the communication channels through which they

communicate. The main types of failure, as classified by [106], are: omission failures,

timing failures and Byzantine (arbitrary) failures. Omission failures refer to cases when

a component or communication channel fails to perform actions that it is supposed to

do. Typically, a component omission failure occurs when a component crashes or fails

to respond (fail-stop) and a channel omission failure may occur when a message is sent,
but never received.

Timing failures may occur in synchronous communications when components fail to

execute steps within time-limits or when messages arrive too early or too late due to

problems in components or their communication channels. Byzantine failures represent

the worst-case failure semantics in which any type of error may occur. Typically, a
Byzantine component failure is one in which the component arbitrarily omits to send a

257

message(s) or sends an unintended message(s). Along similar lines, Byzantine channel
failures may occur when messages become corrupted, or arbitrary messages are sent or
arbitrary results received. Such failures are rare as software techniques may be used to
detect them (e. g. checksums), however, they cannot be discounted.

These different types of failure and their scopes are illustrated below in Figure 9.8.

1

Omission

Receive Chnumon

Send Omission

ý Fail-stop

Crash
1

J

I'--

Incorrect
Computation

Timing

-J
Byzantine

Figure 9.8: failure types and scopes

A large body of research has been conducted on understanding the problems facing the

reliable detection of failure, typified by [107-110]. In this section we briefly describe

how instrumentation monitor services may be used to detect the simplest of failures,

namely component crash type failures.

Figure 9.9 illustrates an arrangement in which two instrumentation services have been

located in the circuit that RMI calls traverse. One instrumentation service is located on
the server's host and the other on the client's host. Through this arrangement we may
detect component crash type failures by coordinating the client/service instrumentation

services to exchange send/acknowledge events between each other. We cannot
guarantee the detection of such failures, particularly when they are masked by other
failures, such as send/receive omission type failures, which may occur when a
communication link fails. If the communication link does fail, it is highly unlikely that

the client/service instrumentation services will be able to communicate

send/acknowledge events unless they follow a different path within the network. A

258

further shortcoming of this approach occurs when either host fails or experiences a

problem, in which case either instrumentation service would also fail.

AttechmeM e umed w
per Figtns 8.3 ID +

ý

Lookup Service
DProxy

2. lookup

, , , , : /l. register
. , ,

1

rr ý
4. RMI

... .; ceºuresp-;

ýý
f lnstnmmntqnon beivye L-----Send ntwcetion event

ý

_
Send invocation acknowledgýnezd

moult

-event
C.. A .. nlf Arkt wMdement ý Y___ýýýýýý_

__ýýý ýiC________ýJ

ýý ý ~\ \
Instrumentation Sirvice

J

Figure 9.9: failure detection through instrumentation

Crash type failures are detected by checking the event sequences on both the client-side

and the service-side, as shown in Figure 9.9. When a client invokes a method on its

copy of the proxy, the client-side instrumentation service sends an event to the service-

side instrumentation service. The service side instrumentation service then sends an

acknowledgement event. At this stage, the service will execute the method and as was

considered in chapter 8, the service-side instrumentation service intervenes on this

invocation using the dynamic proxy construct.

If the method execution succeeds, the service-side instrumentation service sends a

result event to the client-side instrumentation service. However, if the client-side
instrumentation service does not receive such an event, it assumes that the service has

suffered a fail-stop type failure. Assuming that the method was executed successfully,

259

the client-side instrumentation service concludes the dialogue by sending a result

acknowledgement event. If the service-side instrumentation service does not receive

this final event, it assumes that the client has suffered a fail-stop type failure.

The above approach describes a simple approach to using instrumentation services to

detect the simplest of component failures. The approach is by no means fool-proof

(crash failures may well be masked by other failures) and it has not been tested during

the current research. However, the simple approach could be extended to develop more

specialized failure detection instrumentation services. For example, such
instrumentation services may maintain a heartbeat with their respective client and

service components, or they may attempt several retries to check if a component really
has crashed, or its is just temporarily busy or slow in responding. The development of

such failure detection instrumentation services exceeds the scope of the current research

and for this reason, it is mentioned in the "Future Work" section of chapter 10.

9.3.3 Extending the Architecture - Customized Instrumentation
Services

The instrumentation architecture provides a set of instrumentation services, which
developers may use to measure/monitor certain parameters of an application. The five

main instrumentation services provided (logger, gauge, analyzer, probe and monitor)

are basic or primitive services that may be used in the construction of more complex

compound instrumentation services. The way in which the architecture has been

designed and implemented was such to allow programmers to use its functionality in a

way that meets their own specific needs. As was the case with the previous case-

studies, specific instrumentation tasks may require a certain group of primitive
instrumentation services. When this is so, programmers may use the API to define their

own instrumentation classes, which combine several primitive instrumentation services.

For example, indirect loggers are often used in conjunction with other instrumentation

services to log or record the information provided by the other instrumentation services.
When programmers choose to design their own personal instrumentation services they

do not have to use the Join operation. The Join operation is provided to allow

instrumentation services to dynamically organize into groups at runtime (i. e. Join is a

260

dynamic operation). The Join operation also allows instrumentation services on
different computers to group together. As considered further below, the Join operation
does carry a performance overhead, which results in a time-delay, so it should only be

used when it is absolutely necessary. If a programmer has identified a particular group

of instrumentation services that serves some useful purpose and the group is to reside

on the same single computer, then the API may be used to create a new instrumentation

service class. This class may contain within it the necessary primitive instrumentation

services that together perform the desired task, without having to use the Join operation
(i. e. the group is statically joined).

Taking things a stage further, programmers may decide to develop their own
instrumentation factories, which produce their own instrumentation service using

software factories. A factory, in this context, is a piece of software that implements one

of the factory design patterns considered in [53]. In general, a factory implementation is

used when it is necessary to use one object to control the creation of and/or access to

other objects. Software factories use the same principles as factory patterns that feature

in everyday life.

In a similar fashion, an instrumentation factory may receive instructions from an

application control program to create a particular instrumentation service. If this
instrumentation service is a compound service, constructed of several primitive
instrumentation services then the factory will create the necessary objects that make up
the compound service and hand-back a reference to the control program through which
it may access the compound service. The main advantage of using factories is that a

consistent product is produced each time that the factory is called into use.

9.3.4 Instrumentation Performance Overhead
As far as possible, the approach has aimed to deliver instrumentation that is simple to

use and is transparent from the point of view of the applications programmer. The

approach has also aimed to provide instrumentation services, which are dynamic in the

sense that they may be added and removed as required. To a large extent, these aims
have been achieved, with the small exception regarding the compromise used to

determine dynamic dependencies. However, the approach has given little consideration

261

to optimizing or tuning the performance of the instrumentation services in order to limit

their overhead.

Essentially, the performance overhead of the instrumentation services is spread over

three main areas:

1. The ten basic instrumentation service operations.
2. Jini's discovery and lookup protocols.

3. The use of Java refection.

The case studies (described previously in this chapter) revealed that the basic

operations introduce minimal VM overhead, but several operations introduce

significant timing delays. Jini's discovery and lookup protocols and RMI calls
introduce timing delays due to the marshalling of remote objects over a network.
Reflection introduces additional timing delays, which may affect the overall speed of a

computation when used excessively. Each of these areas is assessed qualitatively
below.

1. Performance Overhead of Instrumentation Services Operations

The most costly operations are Register and Invoke. The Register operation relies on
lini's discovery and lookup protocols and the Invoke operation relies on the RMI call

mechanism and Java reflection. As a consequence, both the Register and Invoke

operations rely heavily on objects being marshalled/unmarshalled across the network.

For the Register operation objects are marsahlled/unmarshalled from a Jini lookup

service to/from an instrumentation service. For the Invoke operation objects are

marshalled between three entities: the application service, the instrumentation service

and the client.

The marshalling of objects and parameters introduces significant time delay to their

transportation across the network irrespective of middleware technology (Java RMI,

CORBA, Web Services, or Jini). The speed at which objects may be marshalled
depends on the response time of the sending-receiving object pair and the speed of the

network link. For the instrumentation framework the marshalling/unmarshalling delay

is incurred for the application services that make up the application itself and for the

instrumentation services. Consequently the delay will be more significant as an

262

application scales and the instrumentation used to measure and monitor the application

also scales.

From the author's own experience, discovery may take between 0.1 - 0.2 second and
lookup between 0.2 - 0.3 seconds on a small office-based LAN. Jini's discovery and
lookup protocols are dependent on the computers operating system and the networks
DNS server and some limited benchmarks and analysis are available to assess lookup

service performance and marshalling/unmarshalling delays [111,112]. The discovery

delay occurs typically for each instrumentation service, deployed to measure/monitor

an application, although the delay is only incurred once, during the registration of the

instrument. In addition to the delay caused by marshalling/unmarshalling the Invoke

operation suffers an additional delay due to its use of Java's reflection API, which is

considered further below.

2. Performance Overhead of Java Reflection

Reflection is used by certain instrumentation services to introspect classes to access

application service parameters that are to be measured/monitored. Reflection is used

extensively by the Invoke method for intervening on method invocations. To appreciate

the extra time taken for reflective code to execute, we may consider the simple

benchmarks provided in [113]. Table 9.1. The table compares the different method
invocation strategies of: direct method invocation, invocation via an interface and

invocation using the invoke method of Java's reflection API. The latter invocation

mechanism is used in the Invoke instrumentation service operation for intervening

application service method invocations.

JDK Direct Test Interface 'rest Reflection Test

Sun 1.4 52 ms 54 ms 543 ms

Sun 14 -server 26 ms 56 ms 279 ms

Sun 1.3 124 ms 128 ms 2168 ms

Sun 1.3 -server 41 ms 58 ms 2012 ms

IBM 13 75 ms 78 ms 2134 ms

Table 9.1: reflection benchmark results

263

9.4 Chapter Summary
This chapter has described several relatively simple yet realistic case-studies, which

demonstrate how the instrumentation architecture may be used for the

measurement/monitoring of distributed applications. The chapter began with a

description of the test-harness that was used for the studies. The execution of each case-

study was then described and an assessment of the instrumentation overhead was also

provided.

The chapter has also discussed some ideas regarding the different ways in which the

architecture may be used and the ways in which the architecture may be extended to

allow programmers to develop their own customized instrumentation services. It is

important at this stage to point out two significant strengths of the architecture. The first

is the ability to unobtrusively measure/monitor application components by way of

dynamic attachment. The second is the ability to combine basic or primitive

instrumentation services into instrumentation units that can carry out complex

measurement/monitoring tasks.

The final part of the chapter provided a brief qualitative assessment of the performance

overheads from using the instrumentation services in terms of time-delays and resource

usage. Although no attempt was made to reduce these overheads, several guidelines

were provided that may help to limit their effect. By reaching this stage, we have

travelled quite some distance on our journey of dynamic instrumentation.

The thesis has described a long journey of which the milestones have been:

requirements analysis, formal specification, functional modelling, architectural design,

implementation and the use of dynamic instrumentation architecture. All that remains is

to conclude the journey by appraising the unique contribution of the research and

highlighting areas where future work could take place.

264

Chapter 10

Conclusions and Future Work

This thesis has described an instrumentation framework that can be used to assist the

understanding of distributed applications and the framework has been applied to

applications developed using Jini middleware technology. All that remains is to bring

the thesis to a close by concluding the work done to date and the results achieved to

date. This chapter does so by first summarizing the research and the main contributions

of the thesis. The chapter then goes on to consider the novel contributions of the

research. The chapter concludes by highlighting possible future research directions for

follow up work to that described in the thesis.

10.1 Summary
The thesis has described a dynamic software instrumentation framework. The

framework consisted of a series of related models and an architecture. The main
framework models were: a requirements model, a classification model, formal and

semi-formal analysis models and instrumentation programming and communication

models. The requirements analysis established what instrumentation needs to

measure/monitor and the classification model classified different categories of
instrumentation. The formal model specified the basic operations of an abstract
instrument. The semi-formal model used UML to describe the functional aspects

relating to measurement and monitoring. The programming and communication models

considered how instrumentation services interact with one another and the application

components that they are required to measure/monitor.

The architecture consisted of the infrastructure components and a small number of
instrumentation services that can be used to measure/monitor distributed application

components. The architecture was implemented using a combination of the Java

programming language (J2SE v1.4) and Jini middleware technology. Several

instrumentation case-studies have been described, which demonstrate the use of the

265

architecture for the measuring and monitoring of distributed applications. A qualitative

assessment is also presented to assess the performance overhead of the instrumentation.

As mentioned at the outset, the framework is applicable to the class of distributed

systems developed using a distributed object-based middleware. Other classes of

middleware do exist, namely Event-based middleware and Message-oriented

middleware for which the framework is not directly applicable. These middlewares

mainly use one-way communications rather than the request-reply communication
found in object-based middleware. Event based middleware has potentially better

scaling properties than object based middleware. Message-oriented middleware is

favoured for applications in which messages need to be persistently stored and queued.

Many of the ideas of the not directly applicable although some generic ideas such as
dynamic attachment and message interception could be applied to assist the

understanding of event-based or message-oriented middleware applications.

The framework may be used directly for distributed systems developed using Jini

middleware and it has been demonstrated by way of several Jini applications. The

overall approach may be used with other object-based middleware technologies such as

Java RMI, CORBA although there are limitations. The approach may also be used with

Web Services, which are not object-based, although again there are limitations to this

applicability. For example the instrumentation Join operation relies upon features in

Jini's own Join protocol. Alternative means would be required in order to implement

the Join operation for Java RMI, CORBA and Web Services.

The architecture has only been demonstrated for LAN-based distributed systems

involving a relatively modest number of application services. Issues of wide-area

communication and scale have not been considered. Such issues are likely to prove

significant for applications based on Web Services. An obvious issue relating to scale is

that as an application scales it is likely that instrumentation will also scale and this in

turn will impact on performance. To alleviate this it is important to provide facilities for

instrumentation reuse and the instrumentation Join operation, although Jini specific,

goes some way to providing reuse. The Join operation allows general purpose
instruments to join other compound instrumentation units. The Unjoin operation frees

266

up the general purpose instruments so that they may be reused for other instrumentation

tasks thereby removing the need to create additional general purpose instruments.

10.2 Research Contributions
This section concludes what has been achieved from the research and highlights the

novel contributions that the thesis makes towards the field of distributed systems

understanding and management. The section also compares the research against other

recent related efforts studied in the literature.

10.2.1 Requirements Analysis
The consideration of requirements distinguished between functional and operational

requirements. The functional requirements were concerned with what the
instrumentation services must measure and monitor and the different types of
instrumentation. The operational requirements were concerned with the incorporation

of instrumentation within a distributed system and more specifically, their attachment.

This separation of concerns simplified the instrumentation architecture - by separating
functional and operational requirements. The separation also reduced the coupling
between what instrumentation should measure and monitor and what facilities are

needed to allow this measurement and monitoring to take place. This in turn leads to

openness in the sense that it would be possible to re-implement either the functional or

operational aspects. The separation also led to different modelling approaches that were

chosen to satisfy the specific characteristics of the functional and operational aspects in

order to develop appropriate design models. A separation of concerns is also applied in

[6] to decompose the monitoring system into separate tiers. However, the separation

used in this thesis is applied at a much finer-grain, namely instrumentation services
themselves.

The requirements analysis also provided a classification of instrumentation services

according to the roles they play and the functionality they provide. In particular, the

classification differentiated between:

" Direct vs. indirect instrumentation services.

" Static vs. dynamic instrumentation services.

267

" Synchronous vs. asynchronous instrumentation services.

e Event-handling vs. method-handling instrumentation services.

Undoubtedly this is not the only classification of instrumentation services, but it is the

one proposed by the author, which served the rest of the thesis. The classification also

provided an informal starting point for the instrumentation hierarchy underlying

architecture.

The requirements analysis also attached names to the actual instruments used in the
hierarchy. The instruments were named as: logger, analyzer, gauge, probe and monitor.
The names were chosen to reflect similarities with instrumentation used in conventional

engineering or the physical sciences. Overall, the requirements analysis provides a

useful contribution by considering basic requirements of instrumentation from first

principles. Such consideration is not so abundant in research related to distributed

instrumentation systems.

10.2.2 Formal Modelling
There is little in the way of use of formal methods for specifying middleware systems

and for considering interactions in distributed object based systems - [39,114] are two

of the few substantial formal specifications relating to middleware technology. It is

hoped that the use of formal methods in this thesis may go some way towards

promoting their use in the future. Typical applications may include protocol

specification, storage schemes, specification of core services and concurrent object
interactions.

MOTEL [16,39] applies linear-time temporal logic to model an object-oriented
distributed system. The emphasis of MOTEL is that of using formal models to assist the

development of distributed systems. The contributions of MOTEL are a formal model

and a property language. The efforts of MOTEL are to be applauded as they raise the

awareness of the use of formal models in conjunction with distributed systems.
However, the formal modelling used in this thesis differs in that it is concerned with an

abstract representation of instrumentation.

268

The main aim of the formal modelling was the development of a series of state models
that encapsulate the behaviour and interactions of instruments within the broader

context of an application. It is the author's belief that the formal model allows
instrumentation to be specified succinctly in this broader context. It is felt that a semi-
formal approach would have led to a much larger unwieldy model in order to express
the same concepts.

The formal model was developed using Object-Z, which is an extension to the Z formal

modelling language to accommodate object-orientation. Object-Z was chosen because

of its support for object-orientation and ability to write specification which contain

precise state models, strong typing and precise axioms. In addition to Object-Z some
Timed CSP (TCSP) was used to specify asynchronous events and concurrent
behaviour.

Taken together Object-Z and TCSP constitute Timed Communicating Object-Z

(TCOZ), which integrates the two separate modelling languages. TCSP primitive

operations may be used in Object-Z classes to produce complete specifications. It is the

author's belief that the combination could be used in the future to formally specify the

structure and behaviour of middleware systems and their associated services.

Overall the formal modelling stage delivered a formal specification of an abstract
instrument. This provided a useful research contribution and also strengthened the case
for the use of formal methods for specifying interactions in distributed object based

systems. The real strength stemmed from the fact that the formal model was actually

used directly within the implementation to specify operational behaviour. All too often,
formal models seem only to be used for expression and often do not directly feature

within the actual target system's design/implementation.

10.2.3 Instrumentation Architecture
The architecture was based on the classification of instrumentation services that

resulted from the requirements analysis. The architecture was developed to satisfy the
functional requirements, namely. the measurement and monitoring functionality and
incorporate the operational requirements. The activities of measuring and monitoring

269

were considered both for the computing platforms and the application components that

execute on the platforms.

The architecture consisted of a series of classes organized to provide an infrastructure

that sits between standard middleware services and application components. The focal

point of the architecture was a small number of instrumentation services that can be

instantiated to measure and monitor specific runtime parameters and behaviour

information. These instrumentation services were chosen specifically to measure

parameters of interest to the author, based on some fifteen years previous experience

working with distributed systems. However, this is not to say that the instrumentation

services constitute a definitive set that may be used with all applications.

It is anticipated that other researchers/developers may well have different views

regarding appropriate instrumentation services. For example, no attention has been

given to instrumentation services capable of measuring quality of service (QoS) in

distributed multimedia applications. However, the architecture is, to a certain extent,

extendable so that other instrumentation services may be incorporated. Furthermore, the

small number of instrumentation services were intended to be general purpose and may
be further specialized to suit specific needs.

As an example, an early version of the instrumentation architecture contained a

SynchronousTimedlnstrument class. This was originally intended to allow Timed

Monitor instruments to be instantiated. However, this early version was evaluated and
disregarded to avoid additional complexity and to limit the number of general purpose
instrumentation services to a manageable size for the purpose of the research.

Overall the architecture provides a useful research contribution by proving the point

that operational aspects such as instrumentation attachment and joining can be treated

separately to functional aspects such as logging, gauging and probing. This also
improves the architecture's openness by allowing either the operational or measurement
functionality to be re-implemented.

270

10.2.4 Dependency Analysis
Dependencies have been mentioned on several occasions in the thesis as an important

pre-requisite to furthering an understanding of a distributed system. Dependencies tell

us how components rely on one another, or more particularly, how components depend

on the services provided by other components.

The thesis has described how service dependencies may be derived from bindings

between components. The bindings may then be used to build a graph of nodes and
directed edges to reflect the dependencies at that particular instant. It is relatively

straightforward to produce a static dependency snapshot, but extra effort is required to

deduce dependencies dynamically as a consequence of changes in bindings.

The approach to determine dependencies relied upon an Administrable interface and

an admin. object, which was used to represent the bindings for an application

component. A visitor design pattern was also used so that a complete dependency

picture could be built by iterating over the dependencies of successeive dependent

components.

A Probe was chosen as the instrumentation service to determine dependencies. The

analogy used was that of space probes, which are dispatched to gather information

about a planet or deep space. Through this analogy the instrumentation probes may be

dispatched to gather information about the services that a particular component depends

on.

In order to deal with dynamic dependencies probes need to register to receive event

notifications of changes in component bindings. The notifications from a lookup

service are interpreted by a probe and the probe may then proceed to re-determine the

application's dependencies. It was also mentioned how dependency analysis introduced

a small compromise to instrumentation being unobtrusive. This compromise was the

need for application programmers to implement the Administrable interface and

return an admin. object in order to expose component bindings.

Overall, the dependency probes provide a useful research contribution by

demonstrating how dynamic dependencies may be determined through a single

instrumentation service. The approach to determine dependencies was based on the

271

work of [7]. However, the approach described in the thesis extends on this work by its

ability to respond dynamically to changes in dependency, via notification of changes in

bindings.

10.2.5 Comparison with Related Research
In order to "frame" the research contributions it is necessary to compare and contrast

what has been achieved against other related research efforts. To this end, the research
is appraised in relation to JMX, the DASADA projects and MODOCC.

1. JMX

The JMX specification [24] describes an architecture split into the three layers of
instrumentation, agents and distributed services. The specification or supporting

literature provides little in the way of justification for this layering. The instrumentation

layer is of greatest interest to this thesis and the main instrumentation component at this

layer is the Managed Bean (MBean). JMX provides four types of MBean: Standard,

Dynamic, Open and Model MBeans. The JMX specification described a notification

model used in conjunction with MBeans. However, JMX provides little in the way of

specific detail relating to what MBeans are intended to measure/monitor.

This thesis considered the basic requirements of instrumentation from first principles

(operational and functional) and used these requirements as the basis for the eventual

development of the architecture. One shortcoming of current instrumentation literature,

such as JMX, (with the exception of MODOCC) is the lack of fundamental

requirements issues relating to what is to be measured/monitored. This is an essential

step before one proceeds to consider how measurement/monitoring is to be performed.
It is felt that the thesis goes some way to address this shortcoming.

2. DASADA

DASADA is a group of projects concerned with the assembly and management of
distributed component-based systems. Several DASADA projects have investigated,

which use software gauges and probes to dynamically deduce component

configurations. The DASADA projects reviewed in the thesis were: Software Surveyor,

FIRM, En-Gauging and ABLE. These projects used gauges and probes in a variety of

272

different styles and forms to assist the understanding of component-based distributed

systems.

A significant issue is the lack of clarity relating to what a constitutes a gauge and what

constitutes a sensor or a probe. This thesis has made this distinction and assigned

specific functionality to each of the different types of instrumentation considered

(logger, gauge, analyzer, probe and monitor). The different types of instrumentation

were based on similarities with instrumentation used in conventional engineering or the

physical sciences.

The DASADA projects set out to determine an application's architecture and use this as

the basis for subsequent adaptation. However, they do not consider the issue of

dynamic dependencies, as considered in this thesis. The determination of such

dependencies is crucial to understanding an application's structure. The thesis has

considered the concept of dynamic dependencies and developed a specific

instrumentation service (i. e. dependency probe) that can be used to determine and

monitor dynamic dependencies.

3. MODOCC
Of all the literature reviewed the MODOCC system [6] bears the closest resemblance to

the approach described in the thesis, although MODOCC follows a different approach

to achieve a similar end. MODOCC describes a design approach for building

monitoring systems. MODOCC starts out by considering the design of Generic

Monitoring Systems (GMS) and considers fundamental questions relating to the design

of a monitoring system and usage requirements.

The requirements are later refined to build the MODOCC system itself. In particular,
MODOCC considers the design of sensors and the placement of sensors. MODOCC is

to be applauded for the design approach for a Generic Monitoring System, and it does

clarify exactly what the instrumentation is intended to monitor. However, it does not

consider the operational aspects of instrumentation in quite the same light as the thesis.

In particular, MODOCC does not consider issues such as the attachment of
instrumentation to the components to be measured/monitored, as considerd in this

thesis

273

10.3 Future Work
This section indicates several areas in which the work could be expanded. The areas

sprang to mind as the research work progressed and also during discussions with the

author's supervisor and researchers in the author's own academic school.

10.3.1 Security
Throughout the thesis the issue of security has been overlooked - simply because the

extra effort to develop secure instrumentation would far exceed the scope of the thesis.

However, secure instrumentation is a major issue particularly when instrumentation

may be provided from a third-party. Many developers will be reluctant to adopt the use

of instrumentation if it is not deemed secure.

The nature of instrumentation is to measure and monitor a distributed application and

generally further an understanding of a distributed application. These tasks suggest that

in the wrong hands instrumentation could be used maliciously. Furthermore, specific

activities like intervening method invocations and wrapping application component

proxies in instrumentation proxies would not be acceptable in secure environments

without additional security measures.

Existing technologies do exist that could be applied directly to the instrumentation

services described in this thesis. For example the use of a secure socket layer (SSL) and
data encryption would go some ways to making the current instrumentation more

secure. However, the author would advise a more thorough examination that dealt with
issues such as trust and exactly what is meant by trusted instrumentation. Such work

may even straddle the ideas of policy-based instrumentation described in the next

section.

Once the issues of secure instrumentation have been dealt with then instrumentation

itself may be applied to assist in security issues. For example instrumentation could be

used to assist intrusion detection and assist in determining vulnerabilities that may arise

out of interoperability. The latter issue is already under consideration at the author's

own academic school. Work is currently ongoing that uses probe instrumentation as

part of a prototype framework to improve security in interoperable environments [115].

274

10.3.2 Policy-based Instrumentation
Policy-based management has received recent interest as a means to manage distributed

systems [116-119]. Policies are rules governing the choices of behaviour of a system.
Policy rules may be triggered dynamically to reserve resources, balance load or

reconfigure the system in some way. Policies may be specified in a markup language

and XML is a popular choice at present. Policies may be used in conjunction with Role-

Based Access Control (RBAC) to control access to resources in a distributed system and

provide a pragmatic security model.

It is the authors belief that policies could be used to better organize and deploy

instrumentation services. In particular policy-based instrumentation is likely to be

beneficial for large-scale distributed systems that may require significant

instrumentation organized into several instrumentation domains. An instrumentation

policy language could be developed to specify the rules governing the behaviour of the

instrumentation.

Policies could be used to provide the necessary control functionality via triggers that

call the instrumentation services' basic operations (register/unregister, attach/detach,
join/unjoin, read/write, notify/invoke). Policies may be centralized or may themselves

be distributed with responsibilities for managing specific instrumentation domains. The

issue of trust was mentioned previously in section 10.2.1 and policies may also be used

to provide a trust model to specify access rules for instrumentation services in relation

to the distributed resources that they may/may not access.

10.3.3 Autonomic computing
Instrumentation is only intended to gather information and monitor the behaviour of a

target application - it does not go so far as to providing any management or adaptation

capabilities. However instrumentation can be combined with additional management or

adaptation services to provide a management tier that is capable of reasoning about the
behaviour of a target system and adapting the behaviour accordingly. Indeed this is the

philosophy underlying reflective middleware which reflects on a system's behaviour

and adapts this behaviour accordingly.

275

One approach to management/adaptation which is currently gaining momentum is that

of autonomic computing. The term autonomic computing was "coined" by IBM to draw

an analogy with the autonomic nervous system [120]. As pointed out in [120]: "the

autonomic nervous system frees our conscious brain from having to deal with vital, but

lower-level functions ". The concept of an autonomic computing system is one that

"knows itself' to such an extent that it is capable of self-diagnosis and self-healing

whenever internal problems and/or external disturbances are encountered.

A crucial aspect of a system that "knows itself' is the ability to gather information

relating to its own execution environment. Indeed this is what the human autonomic

nervous system through the bodies own sensors. Instrumentation may be used to gather

information and present it to an autonomic manager in order to adapt/reconfigure a

target system in the presence of disturbance/perturbation.

Projects are already underway in the author's own academic school to investigate the

combination of autonomy and governance [121,122]. The ability of self-adaptation and

governance at runtime is attractive and would go some way towards managing today's

large-scale complex system. It is the author's belief that one factor in their relative

success will be the successful integration of instrumentation (although there are also

many other factors). Autonomic, self-governing systems need unobtrusive, highly

dynamic instrumentation capabilities in much the same light as those that nature

provided for the human body!

276

References

[1] Kramer, J. and Magee, J. N., Analysing Dynamic Change in Distributed
Software Architectures. IEEE Proceedings - Software, 1998.145: p. 146-154.

[2] Kon, F., et al. Dynamic Resource Management and Automatic Configuration of
Distributed Computer Systems. in 6th USENIX Conference on Object-Oriented
Technologies and Systems 2001.2001.

[3] Dowling, J. and Cahill, V. The K-component Architecture Meta-model for Self-
adaptive Software. in Proceedings of the 3rd International Conference on meta-
level Architectures and Separation of Cross-cutting Concerns (Reflection 2001)
Lecture Notes in Computer Science Springer Verlag. 2001.

[4] Sloman, M. Management Issues for Distributed Systems. in IEEE 2nd
International Workshop on Services in Distributed and Networked
Environments (SDNE'95). 1995. Whistler British Columbia Canada: IEEE
Computer Society Press.

[5] Kramer, J. and Magee, J. N., Dynamic Configuration for Distributed Systems.
IEEE Trans. on Software Engineering, 1985. SE-1 l: p. 424-436.

[6) Diakov, N. K., MOnitoring Distributed Object and Component Communication,
in Telematica Instituut. 2004, Twente University: Enschede, The Netherlands.

[7] Hasselmeyer, P. Managing Dynamic Service Dependencies. in 12th
International Workshop on Distributed Systems: Operations & Management
(DSOM 2001). 2001. Nancy, France.

[8] Diakov, N. K., et al. Monitoring of Distributed Component Interactions. in
Workshop on Reflective middleware RM200 in conjunction with IFIP/ACM
International Conference on Distributed Systems Platforms and open
Distributed Processing. 2000. IBM Palisades Executive Conference Center
New York USA.

[9] Hasselmeyer, P. and VoB, M. Monitoring Component Interactions in Jini
Federations. in The Convergence of Information Technologies and
Communications (ITCom 2001). 2001. Denver, CO: SPIE Proceedings.

[10] Wolf, A. L. and Kean, E., FIRM - Framework for Interoperable Reconfiguration
Measures (Definition, Deployment, and Use of Gauges to Manage
Reconfigurable Component-Based Systems),
http: serl. cs. coloradu. edu -serl dasada, (Accessed: 25 Jabuary 2006).

277

[11] Garlan, D., Schmerl, B., and Chang, J. Using Gauges for Architecture-based
Monitoring and Adaptation. in Working Conference on Dynamic Systems
Architecture. 2001. Brisbane Australia.

(12] Wells, D. and Nagy, J., Software Surveyor - Dynamically Deducing
Componentware Configurations, http: wwv.. ohis. com/DASADA/, (Accessed:
25 January 2006).

[13] Balzer, R. and Liuzzi, R., En gauging Architectures,
httt,: nur. tcknowlcd e. com DASADA. htm, (Accessed: 03 March 2006).

[14] Pazandak, P. and Wells, D. ProbeMeister - Distributed Runtime Software
Instrumentation. in First International Workshop on Unanticipated Software
Evolution (USE2002) held in conjunction with ECOOP2002.2002. Malaga
Spain: Springer Verlag LNCS 2548.

[15] Reilly, D. and Taleb-Bendiab, A. Dynamic Instrumentation for Jini
Applications. in 3rd International Workshop on Software Engineering
Middleware SEM002 (ICSE2002). 2002. Florida USA: Springer Verlag.

[16] Logean, X., Run-time Monitoring and On-line Testing of Middleware Based
Communication Services. 2000, Swiss Federal Institute of Technology:
Lausanne.

[17] Reilly, D., Taleb-Bendiab, A., and Laws, A. An Instrumentation and Control-
based Approach for Distributed Application Management and Adaptation. in
ACM SIGSOFT Workshop on Self-healing Systems (WOSS'02). 2002.
Charleston USA.

[18] Reilly, D. and Taleb-Bendiab, A. A Service-Based Architecture for In- Vehicle
Telematics Systems. in IEEE 22nd International Conference on Distributed
Computing Systems (ICDCS 2002) WORKSHOPS - International Workshop of
Smart Appliance and Wearable Computing (IWSA WC 2002). 2002. Vienna
Austria.

[19] Coulouris, G., Dollimore, J., and Kindberg, T., Distributed Systems - Concepts
and Design. 3rd ed. 2001: Addison Wesley, 0201619180.

[20] Emmerich, W., Engineering Distributed Objects. 2000: John Wiley & Sons
Ltd., 0-471-98657-7.

[21] ANSA, ANSA Reference Manual. 1989, Architecture Projects Management
Ltd.: Cambridge, UK.

[22] Liu, M. L., Distributed Computing - Principles and Applications. 2004: Pearson
Addison-Wesley, 0321218175.

278

[23] Sun-Microsystems, Dynamic code downloading using RMI (using the
java. rmi. server. codebase property),
Mq) Ja\ a. sun. com j2sc 1.3 flocs !, 'uidermi'codebase. html, (Accessed: 12
March 2005).

[24] Sun-Microsystems, Java Management Extensions (JW - Documentation,
hup: ja\ a. sun. conl products , IavaManagement/reference/does/index. html,
(Accessed: 02 February 2006).

[25] Li, S., Professional Jini. 2000: Wrox Press Ltd., 1861003552.

[26] Openwings, Openwings vl. I Reference Implementation Specifications,
Imp: \% %\ (Accessed: 20 May 2005).

[27] Vogels, W., Web Services Are Not Distributed Objects. IEEE Internet
Computing, 2003.7(6): p. 59-66.

[28] Rover, D. T. Performance Evaluation: Integrating techniques and Tools into
Environments and Frameworks. in Roundtable, Supercomputing'94.1994.
Washington DC, US.

[29] Simmons, M. and Koskela, R. Performance Instrumentation and Visualization.
1990: ACM and Addison Wesley.

[30] Waheed, A. and Rover, D. T. A Structured Approach to Instrumentation System
Development and Evaluation. in Proceedings of ACM/IEEE Supercomputing
Conference SC'95.1995. San Diego, California, US.

[31] Heath, M. T. and Etheridge, J. A., Visualizing the Performance of Parallel
Programs. LEE Software, 1991.8(5): p. 29-39.

[32] Hao, M. C., et al. VIZIR: An Integrated Environment for Distributed Program
Visualization. in Proceedings of International Workshop on Modeling, Analysis
and Simulation of Computer and Telecommunications Systems (MASCOTS '95).
1995. Durham, North Carolina.

[33] Satterthwaite, E., Debugging Tools for High Level Languages. Software
Practice and Experience, 1972.2: p. 197-217.

[34] Sommerville, I., Software Engineering. 1990: Addison Wesley, 0201175681.

[35] Fenlason, J. and Stallman, R., GNUgprof. " the GNU Profiler,
hup: www Lnu. on. soli are hinutils manual/gprof-

_2. x). 1 html monogprof. html, (Accessed: 23 June 2004).

[36] IBM, IBM Distributed Debugger and Object Level Trace version 9.1,
http: \ý, -, \, -'ýtih. ihm. com soti\vare ww, chscrvers/appservidoc/v40/aes/inlocenter/,
(Accessed: 12 January 2006).

279

[37] Shaer, E. S. A., A Hierarchical Filtering Based Monitoring Architecture for
Large Scale Distributed Systems. 1998, Old Dominion University: Norfolk.

[38] Logean, X., et al. Runtime Monitoring of Distributed Applications. in
Middleware'98 - IFIP International Conference on Distributed Systems
Platforms and Open Distributed processing. 1998. England.

[39] Dietrich, F., Logean, X., and Hubaux, J. -P., Modeling and Testing Object-
oriented Distributed Systems with Linear-time Temporal Logic. Concurrency
and Computation: Practice and Experience, 2001.13(5): p. 385 - 420.

[40] Rackl, G., et al. MIMO - An infrastructure for Monitoring and Managing
Distributed Middleware Environments. in Middleware 2000 - IFIP/ACM
International Conference on Distributed Systems Platforms. 2000: Springer
Verlag.

[41] Mahoney, B. and Dong, J. S. Overview of the Semantics of TCOZ. in Integrated
Formal Methods (IFM'99). 1999. York UK: Springer Verlag.

[42] Dietrich, F., Modelling Object-oriented Communication Services with Temporal
Logic. 2000, Swiss Federal Institute of technology: Lausanne.

[43] Wedgam, M. and Halteren, A. v. Experiences with CORBA interceptors. in
Workshop on Reflective middleware RM200 in conjunction with IFIP/ACM
International Conference on Distributed Systems Platforms and open
Distributed Processing. 2000. IBM Palisades Executive Conference Center
New York USA.

[44] roducts/xmoi o/index. html, AdventNet, XMOJO Project, liu
(Accessed: 02 February 2006).

1: \\'\\"\\. Sn1ojO. or I/

(45] Garlan, D. and Stratton, R., ABLE - Architecture based Languages and
Environments, http: \v-ww ww,. cs. ciiiu. cdlu --ahlc', (Accessed: 25 January 2006).

[46] Carzaniga, A., et al., Siena - Scalable Internet Event Notification Architectures,
11110: scrl. cs. colorado. cdu - scrl sicna , (Accessed: 25 January 2006).

[47] Hall, R., Heimbigner, D., and Wolf, A. L., Software Dock,
hltL:

__
scrl. c s_Coloraklo. c. lu scrl cni dock. html, (Accessed: 26 January 2006).

[48] Hoek, A. v. d., Hiembigner, D., and Wolf, A. L., Software Architecture,
Configuration and Management and Configurable Distributed Systems: A
Menage a Trois. 1998, Department of Computer Science University of
Colorado: Boulder US.

[49] Garlan, D., et al., The Acme Architectural Description Language,
111 11): ww www . cs. cnnu. cdu -acme, (Accessed: 26 January 2006).

280

[50] Robinson, A. and Lounsbury, D. Measuring and Managing End-to-end Quality
of Service (QoS) Provided by Linked Chains of Application and
Communications Services. in First Workshop on Evaluating and Architecting
System dependabilitY (EASY). 2001. Göteborg Sweden.

[511 Garlan, D., et al., ADLs and Related Languages,
ftup \vw . cs. cmu. cdu -acnie adltk adls. html, (Accessed: 12 December 2005).

[52] Jini. org, Rio Project (version 3.0), http: %irio. jini. org/, (Accessed: 22 January
2006).

[53] Gamma, E., et al., Design Patterns: Elements of Reusable Object-Oriented
Software. Professional Computing Series. 1995: Addison-Wesley, 0201633612.

[54] Java-Community-Process, Java Logging API - JSR 47. Logging API
Specification, huff. \v\%\vjcp. or-, cnjsrdetail? id=047, (Accessed: 22 January
2006).

[55] Fahrimair, M., Salzmann, C., and Schoenmakers, M. A Reflection Based Tool
for Observing u ni Services. in Reflection and Software Engineering. 2000:
Springer Verlag.

[56] Keller, A. and Kar, G. Dynamic Dependencies in Application Service
Management. in 2000 International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA 2000). 2000. Las Vegas NV
US.

[57] Keller, A., Blumenthal, U., and Kar, G. Classification and Computation of
Dependencies for Distributed Management. in 5th IEEE Symposium on
Computers and Communication (ISCC 2000). 2000. Antibes Juan-les-Pins
France.

[58] Coulson, G., What is Reflective Middleware?,
htIll: comihutcrurndsonIII, c mi(IdIcwwarcRMarticIcI. htill, (Accessed: 20
August 2005).

[59] Villagrä, V. A., et at. An Approach to the Transparent Management
Instrumentation of Distributed Applications. in 8th IEEE/IFIP Network
Operations and Management Symposium (NOMS'2002). 2002. Florence Italy.

[60] Asensio, J. I., et al. Experiences with SNMP-based Integrated Management of a
CORBA-based Electronic Commerce Application, in 6th IFIP/IEEE
International Symposium on Integrated Network Management (IM'99). 1999.
Boston Park Plaza Hotel Boston Massachusetts US.

[61] Blair, G., Coulson, G., and Grace, P. Research Directions in Reflective
Middleware: the Lancaster Experience. in 3rd Workshop on Reflective and

281

Adaptive Middleware (RM2004) co-located with Middleware 2004.2004.
Toronto Ontario Canada.

[62] Coulson, G., et al. Towards a Component-based Middleware Framework for
Configurable and Reconfigurable Grid Computing. in Workshop on Emerging
Technologies for Next Generation Grid (ETNGRID-2004), associated with 13th
IEEE International Workshops on Enabling Technologies: Infrastructures for
Collaborative Enterprises (WETICE-2004). 2004. Modena, Italy.

[63] Grace, P., Blair, G. S., and Samuel, S. ReMMoC: A Reflective Middleware to
Support Mobile Client Interoperability. in International Symposium on
Distributed Objects and Applications (DOA). 2003. Catania Sicily Italy:
Springer Berlin / Heidelberg.

[64] Bencomo, N., et al. Towards a Meta-Modelling Approach to Configurable
Middleware. in 2nd ECOOP2005 Workshop on Reflection, AOP and Meta-
Data for Software Evolution. 2005. Glasgow Scotland.

[65] Wang, N., et al., Towards an Adaptive and Reflective Middleware Framework
for QoS-enabled CORBA Component Model Applications,
hair dsonline middIe\yare%RM. htm, (Accessed: 03 March
2006).

[66] Schmidt, D. C., Levine, D. L., and Mungee, S., The Design and Performance of
Real-time Object Request Brokers. Computer Communications, 1998.21: p.
294-324.

[67] Zinky, J. A., Bakken, D. E., and Schantz, R., Architectural Support for Quality of
Service for CORBA Objects. Theory and Practice of Object Systems, 1997.3(1).

[68] Kon, F. and Campbell, R. H. Supporting Automatic Configuration of
Component-Based Distributed Systems. in 5th Conference on Object-Oriented
Technologies and Systems. 1999. San Diego CA USA: USENIX.

[69] Zimmermann, C., Metalevels, MOPs and What the Fuzz is All About. Advances
in Object-Oriented Metalevel Architectures and Reflection (C. Zimmermann
Ed.), ed. C. Zimmermann. 1996,084932663X.

[70] O'Regan, G., Introduction to Aspect-Oriented Programming,
Jill,): vk vk vv . onlak a. com 1Muh a onjav a 2004 011 ' 14! ao',. html, (Accessed: 03
March 2006).

[71] Sun-Microsystems, JVM Tool Interface (JVM TI),
hyp: Java,. un. com ? sc 1.,. U docs, nuidcjvmti index. html, (Accessed: 03
March 2006).

[72] JBoss. org, JBoss Application Server, IT
(Accessed: 03 March 2006).

i: 1abs. jboss. com; 'portal/jbossas,

282

[73] Zhang, C. and Jacobsen, H. A., Aspectizing Middleware Platforms. 2003,
University of Tortonto, Computer Systems Research Group: Toronto.

[74] Eelipse. org, AspectJProject, ht4,: cc Iipsc. rn-7aspcctl, (Accessed: 03
March 2006).

[75] Liu, R. and Coady, Y. Modularization ofJini Services in Pervasive Systems:
Conventional Bottle versus Contemporary Aspect. in Building Software for
Pervasive Computing: OOPSLA '04.2004.

[76] Liu, C. R., Gibbs, C., and Coady, Y. SONAR: System Optimization and
Navigation with Aspects at Runtime. in AOSD'05 International Conference on
Aspect-oriented Software Development Dynamic Aspects Workshop. 2005.
Chicago USA.

[77] Liu, C. R., Gibbs, C., and Coady, Y. SONAR: Customizable, Lightweight Tool
Support to Prevent Drowning in Diagnostics. in RAM-SE'0S, 2nd ECOOP
Workshop on Reflection, AOP and Meta-Data for Software Evolution. 2005.
Glasgow Scotland.

[78] Codehaus. org, Aspect Werkz 2- Plain Java AOP,
htt1i: asj)rct%%rrki. codehaus. cIr, ý , (Accessed: 01 March 2006).

[791 Wikipedia, htt y, ýýv ccutiýýeýlia. com articles' Louis Paul Cailletet,
(Accessed: 23 January 2006).

[80) Sun-Microsystems, Dynamic Proxy Classes,
1. kIOcs 2ui(ie reflcctioniproay. html, (Accessed: 03

January 2006).

[811 Sun-Microsystems, W. C., JSR 9: Federated Management Architecture
Specification, lit in: jctp. orz cn sr detail. 'id=9, (Accessed: 28 January 2006).

[82] Apache-Software-Foundation, Logging Services: log4j Project,
q": --

ký tný. aýýachc. ýji:, (Accessed: 10 January 2006).

[83] Gill, P., Probing for a Continual Validation Prototype. 2001, Worcester
Polytechnic Institute: Worcester MA USA.

[84] Rose, G. A., et al., Object-Z (in Object Orientation in Z -pages 59-77).
Workshops in Computing, ed. C. J. v. Rijsbergen. 1992: Springer Verlag,
3540197788.

[85] Smith, G., The Object-Z Specification Language. Advances in Formal Methods
Series. 2000: Kluwer Academic Publishers, 0792386841.

283

[86] Derrick, J. and Boiten, E., Refinement in Z and Object-Z. " Foundations and
Advanced Applications. Formal Approaches to Computing and Information
Technology (FACIT). 2001: Springer, 185233245X.

[87] Derrick, J. Timed CSP and Object Z. in ZB 2003: Formal Specification and
Development in Z and B. 2003: Springer.

[88] Mahony, B. and Dong, J. S. Blending Object-Z and Timed CSP. " An introduction
to TCOZ. in 20th International Conference on Software Engineering (ICSE'98).
1998. Kyoto Japan: IEEE Computer Society Press.

[89] Ratcliff, B., Introducing Specification Using Z: A Practical Case Study
Approach. 1994: McGraw-Hill, 0077079655.

[90] Monin, F. and Hinchey, M., Understanding Formal Methods. 2003: Springer-
Verlag, 1852332476.

[91] Sheppard, D., An Introduction to Formal Specification with Z and VDM. The
Mcgraw-Hill International Series in Software Engineering, ed. D. Sheppard.
1995: McGraw-Hill, 1852332476.

[92] Jordan, D. T., McDermid, J. A., and Toyn, I. CADIZ - Computer Aided Design in
Z. in Workshops in Computing: Z User Workshop, Oxford 1990.1990. Oxford
UK: Springer-Verlag.

[93] Jia, X., et al., Z Type Checker (ZTC), http: \ enus. cs. depaul. edu/fiii/ztc. html,
(Accessed: 15 February 2005).

[94] Smith, G., Object-Z Frequently Asked Questions,
ImpL \ý_%cýý .

itcý. u . cýiu. au a»ith_faL .I ltllll,
(Accessed: 16 February 2005).

[95] Venners, B., Jiniology: Locate services with the Jini lookup service - Discover
the power and limitations of the ServiceRegistrar interface,
Imp: %% %% orw. com jav avv orki ww -02-2000/jw-02 iiniolo

. html,
(Accessed: 20 April).

[96] Emmerich, W., Encyclopedia of Software Engineering: OMG/CORBA - An
Object-Oriented Middleware, ed. J. J. Marciniak. 2002: John Wiley & Sons,
0471377376.

[97] Maes, P., Computational Reflection. 1987, Vrije Universiteit Brussel: Brussels
Belgium.

[98] Newmarch, J., Jan Newmarch's Guide to Jini Technologies,
htt all. nc(comi). monash. cclu. au a\ a lini; tutoriaI, Jini. xml, (Accessed: 03
March 2006).

284

[991 Sun-Microsystems, Jini Architecture Specification (Version 1.2),
htt ±ýýýý. sun. ccým so i i. ic Jini specs 111111 .

2htniljini-title. html, (Accessed:
12 January 2006).

[100) Sun-Developer-Network, S., Technical Articles and Tips - JDC Tech Tips: May
30.2000, htt lav_a. s1m. com ddeý cloncr Tccli ips%2000/0O 30. html, (Accessed:
03 March 2006).

(101] Forman, I. R. and Forman, N., Java Reflection in Action. In Action. 2004:
Manning Publications, 1932394184.

[102] AdventNet, AdventNet SNMP API 3- SNMP API Overview,
(Accessed: 05 January 2006).

[103] Cohen, Y., SNMP - Simple Network Managment Protocol,
2. raýi. coni nct\v orks 199 snmp_simi Iltm, (Accessed: 10 January

2006).

(104) DPS-Telecom, SNMP Tutorial Series: 5 Quick Steps to Understanding SNMP
and its Role in Network Alarm Monitoring,
1111 1): avers 12 S1111111 tutorials. hU»1 (Accessed: 08 January
2006).

[105] Sun-Microsystems, Java Remote Method Invocation (RMI) - Activation
Tutorials, Imp: jW a. sun. com j2se%I. 4.2%docs/guideh-mi/, (Accessed: 05
February 2006).

[106] Hadzilacos, V. and Toueg, S., A Modular Approach to Fault-tolerant
Broadcasts and Related Problems. 1994, Dept. of Computer Science, University
of Toronto: Toronto.

[1071 Chandra, T. D. and Toueg, S., Unreliable Failure Detectors for Reliable
Distributed Systems. Journal of the ACM, 1996.43(2): p. 225-267.

[108] R Guerraoui, A. S. Consensus Service: a Modular Approach for Building Fault-
tolerant Agreement Protocols in Distributed Systems. in 26th International
Symposium on Fault-Tolerant Computing (FTCS-26). 1996. Sendai, Japan.

[109] Doudou, A., Garbinato, B., and Guerraoui, R. Encapsulating Failure Detection:
from Crash to Byzantine Failure Detection. in Reliable Software Technologies - Ada-Europe 2002,7th Ada-Europe International Conference on Reliable
Software Technologies. 2002. Vienna, Austria: Lecture Notes in Computer
Science, Springer.

[110] Doudou, A., et al. Muteness Failure Detectors: Specification and
Implementation. in European Dependable Computing Conference. 1999: LNCS,
Springer Verlag.

285

[1111 Lee, C. and Helal, A. Context Attributes: An Approach to Enable Context-
awareness for Service Discovery. in 3rd IEEE/IPSJ Symposium on Applications
and the Internet. 2003. Orlando Florida.

[112] Kahn, M. L., The DARPA CoABS Grid Jini Performance Experiments (5th Jini
Community Meeting), hI III:

_N\
w\\ -

uniý. Incs. anJ sý, ý _ikil. nrum jim J('\1. coahs. cxperimcnts. 12 11 00pdt,
(Accessed: 10 February 2006).

[113] Javangelist, Reflection Performance,
litt t , ̀ an rliarý, sE, acc Reflection+Performance, (Accessed: 02
March 2006).

[114] Real, J. C., Object-Z Specification of the CORBA Repository Service. 1997,
Universite Libre de Bruxelles: Brussels.

[115] Llewellyn-Jones, D., et al. Improving Interoperation Security through
Instrumentation and Analysis. in First International Workshop on
Interoperability Solutions to Trust, Security, Policies and QoSfor Enhanced
Enterprise Systems (IS-TSPQ 06). 2006.

[116] Lupu, E., et al. A Policy Based Role Framework for Access Control. in Ist
ACM/NIST Workshop on Role-Based Access Control. 1995. Maryland USA:
ACM.

[117] Lupu, E. and Sloman, M., Conflicts in Policy-based Distributed Systems
Management. IEEE Trans. on Software Engineering, 1999.25(Special Issue on
Inconsistency Management): p. 852-869.

[118] Moffett, J. and Sloman, M., Policy Hierarchies for Distributed Systems
Management. IEEE Journal on Selected Areas in Communications, 1993.11: p.
1404-1414.

[119] Yoshihara, K., Isomura, M., and Horiuchi, H. Distributed Policy-based
Management Enabling Policy Adaptation on Monitoring using Active Network
Technology. in 12th IFIP/IEEE International Workshop on Distributed Systems:
Operations and Management. 2001. Nancy France.

[120] Ganek, A. G. and Corbi, T. A., The Dawning of the Autonomic Computing Era.
IBM Systems Journal, 2003.42(1).

[121] Miseldine, P. and Taleb-Bendiab, A. A Programmatic Approach to Applying
Sympathetic and Parasympathetic Autonomic Systems to Software Design. in
International Conference on Self-Organization and Adaptation of Multi-agent
and Grid Systems (SOAS'2005). 2005. Paisley Scotland UK.

[1221 Miseldine, P. and Taleb-Bendiab, A. CA-SPA: Balancing the Crosscutting
Concerns of Governance Autonomy in Trusted Software. in International

286

Workshop on Trusted and Autonomic Computing Systems (TACS-06), The IEEE
20th International Conference on Advanced Information Networking and
Applications (AINA 2006). 2006. Vienna University of Technology Vienna
Austria.

287

