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An Enhanced Linear Kalman Filter (EnLKF) algorithm for parameter estimation of 
nonlinear rational models 
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3 Department of Chemical Industrial Equipment and Control Engineering, College of Chemical Engineering, 
China University of Petroleum, Qingdao, 266580, China, Email: dyzhao@upc.edu.cn 
 
* Corresponding author 
 
Abstract: In this study an enhanced Kalman Filter formulation for linear in the parameters models with inherent 
correlated errors is proposed to build up a new framework for nonlinear rational model parameter estimation. 
The mechanism of Linear Kalman Filter (LKF) with point data processing is adopted to develop a new recursive 
algorithm. The novelty of the Enhanced Linear Kalman Filter (EnLKF in short and distinguished from Extended 
Kalman Filter (EKF)) is that it is not formulated from the routes of extended Kalman Filters (to approximate 
nonlinear models by linear approximation around operating points through Taylor expansion) and also it 
includes LKF as its subset while linear models have no correlated errors in regressor terms. No matter linear or 
nonlinear models in representing a system from measured data, it is very common to have correlated errors 
between measurement noise and regression terms, the EnLKF provides a general solution for unbiased model 
parameter estimation without extra cost to convert model structure. The associated convergence is analysed to 
provide a quantitative indicator for applications and reference for further research. Three simulated examples are 
selected to bench-test the performance of the algorithm. In addition, the style of conducting numerical simulation 
studies provides a user-friendly step by step procedure for the readers/users with interest in their ad hoc 
applications. It should be noted that this approach is fundamentally different from those using linearization to 
approximate nonlinear models and then conduct state/parameter estimate. 
 
Keywords: Nonlinear rational models, NARMAX models, parameter estimation, Kalman Filter, recursive 
algorithms, data driven modelling, simulations. 
 
1 Introduction 
Most research and experiments in the fields of science, engineering and social studies have 
spent significant efforts to find rules from various complicated phenomena by observations, 
recorded data, logical derivations, and so on. The rules are normally summarised as concise 
and quantitative expressions or "models". In regarding to modelling of man-made systems and 
natural systems, there are two major routes, one from principles such as Newton’s second law 
for building up mass-spring-damper models, the other is measured data based model fitting 
such as well-known least squares algorithms. 
 
The first background of the study is about modelling (parameter estimation) from data. For 
researching rules and/or principles while no clear mathematical expressions between 
variables/factors are existed, many experiments in many different fields have taken a similar 
formality of collecting data from tests and then trying to fit the data into proper mathematical 
equations/models, therefore giving references for finding the relevant rules/principles. The 
identified models are normally presented in much condensed expressions (a few of parameters 
and variables). The models which represent the data can be used for predictions, design of 
control systems, interpolations of data, and so on. One more favourable point for using 
models rather than data is that parsimonious models are easily understood and stored. 
However it should be noted that most of the models only approximate external relationships 
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without proper physical and/or meaningful explanations (except numerical relationship) of the 
variables and parameters of the system internals. With ever-increased computing power, the 
way to model complex and nonlinear systems is changing. However fast and efficient 
computational algorithms in principle of parsimony are always encouraged in research and 
applications. In the procedure of modelling from data, for a given model structure, “parameter 
estimation” is the next paramount important task to extract the parameters embedded in the 
model from measured data sequences. 
 
The second background of the study is about the model structure --- nonlinear rational 
model. A critical issue associated with rational model identification (including model 
structure detection and parameter estimation) using least squares approaches is the inherent 
correlation error between dependent variable and some regression terms while the 
denominator polynomial of the rational model is multiplied with output to expand into a linear 
regression expression. 
 
Accordingly the aim of the study is to take the critical issue into consideration to derive 
solutions while using LKF for recursive parameter estimation of the rational model set. The 
aim is justified by the following analyses. 

1) Although rational model parameter estimation has achieved certain level of results in 
format of batch data processing, there has been no enough study on recursive 
algorithms except the sole paper (Zhu and Billings 1991). It is an acceptable and 
reasonable claim for this study that the other well-known recursive computational 
algorithms such as Kalman Filters, Bayesian estimation mechanism, and so on could 
be applicable after properly revised/extended from their standard formulations. It is 
generally accepted that recursive algorithms are particularly important for real time 
adaptive control and other real time systems (Chen and Zhao 2014). 

2) To support justification 1, Kalman Filter is selected. It should be noted that the 
classical formulation must be revised to accommodate the correlated error problems in 
the parameter estimation, which is an inherent phenomenon in applying linear 
regression algorithms to such nonlinear models. The novelty of the proposed 
algorithm comes from the facts that it is not formulated following the routes of 
extended Kalman Filters (for nonlinear models) and also it enhances classical linear 
Kalman Filters (for linear models) to directly deal with nonlinear rational models 
parameter estimation. The new formulation is concise and meaningful with those 
involved variables. 

3) It is the author’s believe, that many other researchers are reluctant to study the 
identification and control of rational model is because rational model has a 
denominator polynomial to make it a total nonlinear in both parameters (model 
identification) and inputs (control system design), which the analysis and design are 
much more challenging than polynomial models (Narendra and Parthasapathy 1990, 
Zhu, Wang, Zhao, Li, and Billings 2015). However rational model has the four basic 
algebra operations (addition, subtraction, multiplication, and division) to cover almost 
all types of model as its subsets. The justification for using the rational model is that it 
provides a very concise and parsimonious representation for complex non-linear 
systems and has excellent extrapolation properties. Hopefully this study provides 
another encouragement/stimulation in the research areas besides its technical 
contribution. 

 
The rest of the study is organised into the following sections. In section 2, rational model, its 
linear in parameters model, and inherent correlated errors in regression terms are explained to 
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lay a foundation for the following development. In section 3, a new Enhanced Linear Kalman 
Filter (EnLKF) algorithm is developed and its convergence analysis is delivered as well. A 
few of remarks are presented to intemperate the characteristics of the EnLKF. In section 4, 
model validity test --- higher order correlation functions are explained for testing the 
following case studies. In section 5, three bench tests are conducted to demonstrate the 
EnLKF efficiency and effectiveness. In section 6, a brief conclusion is drawn to summarise 
the results and to invite colleagues to provide counter examples and comments on the 
weakness of EnLKF to improve the new algorithm. 
 
Throughout this study, operators  *E  and * denote expectation and Euclidian norm 

respectively. I denotes an identify matrix of appropriate dimensions. 
 
2 Rational model and parameter estimation 
 
2.1 Rational model 
Mathematically a general discrete time non-linear dynamic rational model is defined as 
 

( 1),... ( ), ( 1),... ( ), ( 1),... ( )( )
ˆ( ) ( ) ( ) ( ) ( )

( ) ( 1),... ( ), ( 1),... ( ), ( 1),... ( )

nu ny ne

du dy de

a u t u t n y t y t n e t e t na t
y t y t e t e t e t

b t b u t u t n y t y t n e t e t n

            
       

(1) 
 
where ( )y t R  and ˆ( )y t R are the measured and model output respectively, ( )u t R is the 
input, ( )e t R  is a noise sequence to represent the model error, which is defined as 
unobservable independent and identically distributed (iid) with zero mean and finite variance 

2
e , and t (= 1, 2, …) is the discrete time index. Generally the numerator a(t) and denominator 

b(t) ( ( ) 0b t  ) are smooth (continuously differentiable) linear or non-linear functions of past 
inputs, outputs, and errors, and can be expressed in terms of polynomials 
 

1

1

( ) ( )

( ) ( )

num

nj nj
j

den

dj dj
j

a t p t

b t p t
















 (2) 

 
The regression terms ( )njp t  and ( )djp t  are the products of past inputs, outputs, and errors, 

such as ( 1) ( 3)u t y t  , ( 1) ( 2)u t e t  , 2 ( 1)y t  , and nj  and dj  are the associated 

parameters. The task of the estimation, for a given model structure, is to estimate the 
associated parameters from the measured inputs and outputs. 
 
Several remarks relating to the characteristics and identification of the rational model of (1) 
are noted below: 
 
1) The polynomial NARMAX (Non-linear AutoRegressive Moving Average with eXogenous 
input) models is a special case of model (1) by setting denominator polynomial b(t) = 1 
(billings 2013). 
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2) The model is non-linear in both the parameters and the regression terms. This is induced by 
the denominator polynomial. Such nonlinear model has been referred as total nonlinear model 
recently (Zhu, Wang, Zhao, Li, and Billings 2015). 
 
3) The model can be much more concise than a polynomial expansion, for example 
 

2 4
2

( 1)
( ) ( 1) 1 ( 1) ( 1)

1 ( 1)

u t
y t u t y t y t

y t

          
  (3) 

 
4) The model can produce large deviations in the output, for example 
 

1
( )

1 ( 1)
y t

u t


 
 (4) 

 
When u(t-1) approaches –1, the model output response will be extremely large. Hence the 
power to capture quick and large changes is gained by introducing the denominator 
polynomial. 
 
5) Rational models have been gradually adopted in various applications of non-linear system 
modelling and control (Ford, Titterington, and Kitsos 1989, Ponton 1993, Correay and 
Aguirre 2000, Knežević-stevanović et al 2014, Gómez-Salas, Wang, and Zhu 2015), 
particularly the importance of modelling of chemical kinetics has increased sharply as a 
consequence of the applicability of modelling of catalytic reactions (Dimitrov and Kamenski 
1991, Kamenski and Dimitrov1993). Rational models are not only alternative expressions in 
approximating a wide range of data set in chemical engineering, but also are class mechanistic 
models, which most previous experience or theoretical considerations had not put forwarded 
(Dimitrov and Kamenski 1991). 
 
6) Many neuro-fuzzy systems have been expressed as non-linear rational models (Wang 
1994). For example fuzzy systems with centre defuzzifier, product inference rule, singleton 
fuzzifier, and Gaussian membership function. The normalised radial basis function network is 
also a type of rational model. When the centres and widths are estimated this becomes a 
typical rational model parameter estimation problem (Zhu 2005). 
 
7) Additionally the non-linear rational model can be described in a neural network structure 
(Zhu 2003). Here the rational model neural network is structured with an input layer of 
regression terms ( )njp t  and )(tpdj , a hidden layer of a(t) and b(t) with linear activation 

functions, an output layer of y(t) with a ratio activation function. The activation function at the 
output layer is the division operation of the numerator polynomial divided by the denominator 
polynomial. It has been observed that Leung and Haykin (1993) presented a rational function 
neural network. The shortcomings compared with Zhu’s results (2003) are that Leung and 
Haykin's network does not have a generalised rational model structure and correlated errors 
are not accommodated. Hence Leung and Haykin's parameter estimation algorithm cannot 
provide unbiased estimates with noise corrupted data, and is essentially a special 
implementation of the procedure of Zhu (2003) in the case of noise free data. 
 
8) Identification including model structure detection and parameter estimation is challenging 
due to correlated errors in regression variables, which has been the main stream of research 
between 1990 and 2000. For the related research work on rational model identification, 
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5

recently a work (Zhu, Wang, Zhao, Li, and Billings 2015) has contributed a review paper on 
rational (total) nonlinear dynamic system modelling, identification and control. 
 
9) In regarding to control system design, so far there is no analytical approach to design 
rational model based control systems, even though rational models have been used as 
complex nonlinear plants in neural control systems (Narendra and Parthasapathy 1990) which 
are treated as black boxes, that is, the model structure and parameters are not referred for 
control system design analytically. 
 
2.2 Parameter estimation with correlated errors in regression terms 
For estimating rational model parameters, Billings and Zhu (1991) has proposed an extended 
least squares algorithm. In the two step procedure, 1) expand rational model into a linear in 
parameters expression and 2) then extend standard least squares algorithms with 
accommodating the estimate bias induced by correlated errors in regression variables, which 
are appeared from the model expression conversion. In the other word, the linear in the 
parameter expression is achieved at the expenses of inducing correlated errors. 
 
Step 1: To obtain its linear in the parameters expression (Billings and Zhu 1991), multiplying 
numerator polynomial b(t) of rational model on both sides of (1) in conjunction with (2), then 
moving all the terms except 1 1( ) ( ) ( )d dY t y t p t  to the right hand side, it gives 

 

2

1 2

1
1 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( )

den

dj dj
j

num den

nj nj dj dj
j j

num den

nj nj dj dj d
j j

Y t a t y t p t b t e t

p t y t p t b t e t

a t
p t p t p t e t

b t



 

 



 

 

  

  

  



 

 

 (5) 

 
It should be noted that the second line of (5) represents from measured data and the third line 

of (5) is an analytical expression as 
( )

( )

a t

b t
is not measureable. The linear in the parameter 

expression of (5) can be further expressed in terms of vector with measurable data. 
 

( ) ( ) ( )TY t t t    (6) 
 
where 

   
   

1 2

1 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )
T T

n d n nnum d dden

T T

n d n nnum d dden

t t p t p t y t p t y t p t

t b

t

t e t

 

   



   





   



 

   (7) 

 
Regarding to this study, assume 1 1d  , therefore 

 

11 1 1 1

( )
( ) ( ) ( ) | ( ) ( ) ( )

( )dd d d

a t
Y t y t p t p t p t e t

b t     (8) 
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And 
 

       ( ) ( ) ( ) ( ) e( )E t E b t e t E b t E t    (9) 

 
Provided e(t) has been reduced to an uncorrelated sequence as defined in (1). 
 
Inspection of the regression model of (5), it has been studied (Billings and Zhu 1991) that all 
the denominator terms ( ) ( )djy t p t  implicitly include a current noise e(t) which is highly 

correlated with ( )t , the model error, in (5). Accordingly this is the course of the bias using 
classical least squares algorithms for parameter estimation. 
 
Step 2: A general rational model least square algorithm has been developed (Billings and Zhu 
1991) 
 

12 2ˆ T T
e eY  


            


 (10) 

 
where 2

e  is the noise variance of rational model (1), which must be estimated in advance. 

Billings and Zhu (1991) and Zhu (2003, 2005) have proposed some iterative algorithms to 
estimate the variance while estimative the model parameters. The other notations in above 
estimator are explained below. 
 
Parameter estimate vector 

1 2
ˆ ˆ ˆ ˆˆ ˆ ˆ

TT

n d n nnum d dden               (11) 

 
Regressor matrix 

 
(1) (1) (1)

( ) ( ) ( )

T T T
n d

n d
T T T

n dN N N

  

  

   
           
      

    (12) 

 
Dependant vector 
 

 (1) ( )
T

Y Y Y N


  (13) 

 
Denominator (without 1( )dp t ) regressor matrix and cross product vector of denominator 

(without 1( )dp t ) and 1( )dp t  

 

1

00 0

0 TT
dp


 
  

     
   

  

 

2

2

(1) (1)

( ) ( )

d dden

d dden

p p

p N p N


 
   
  


  


 (14) 
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where N is the data length and 1( )dp t  data vector is defined as 

 

 1 1 1(1) ( )
T

d d dp p p N   (15) 

 
The estimator has been proved to have the following statistics (Billing and Zhu 1991). The 
estimate bias, in term of the 1st order statistical average, is 
 

ˆ( ) 0Bias    (16) 
 
And the estimate co-variance, in terms of the 2nd order statistical average, is 
 

1 12 2 2 2 2ˆcov( ) T T
e b e e b    

                      
  (17) 

 
where 2

b is the variance of denominator polynomial b(t). 

 
3. Linear Kalman Filter (LKF) for parameter estimation 
In this section classical Linear Kalman Filter (LKF) is briefly explained to lay a foundation 
for the development of Enhanced Linear Kalman Filter (EnLKF) algorithm. Then based on 
the error analysis of the rational model parameter estimation, EnLFK is derived to obtained 
unbiased estimates. Subsequently the EnLKF convergence conditions are analysed and 
remarks are given to explain the EnLKF characteristics. 
 
3.1 Classical Linear Kalman Filter (LKF) for model parameter estimation 
This section is referred from a well-known and widely used book (Ljung 1999), which the 
relevant algorithms have been included as standard tools in Matlab System Identification 
Toolbox. 
 
For building up Kalman Filter based recursive parameter estimation framework, first consider 
a general linear in the parameter regression model of 
 

( ) ( ) ( )TY t t e t   (18) 
 
where 1( )Y t R is the measured output, ( ) nt R  is the regression vector, which the specific 

form of ( )t depends on the structure of the polynomial model. nR  represents the true 

parameter vector, and 1( )e t R is the measurement noise subject to iid. 

In this study, Kalman filter is used to obtain ̂ (the estimate of  ) from measured data. A 
pair of Kalman equations is generally given in the following form of 
 

( ) ( 1) ( 1) (update model)

( ) ( ) ( ) ( ) (observation model)

n

T

t I t w t

Y t t t e t

     

  
(19) 

 
where ( ) nw t R  is the process noise vector and 1( )e t R is the measurement noise. Both 
noises are zero mean, white, uncorrelated and have assumed covariance matrix Q  and 
variance R  respectively. Inspection of (19), it should be noted that the first equation is the 
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linear in the parameter recursive representation from rational model expansion (5) and the 
second equation is the original rational model (1). 
 

Accordingly the recursive parameter estimation vector ˆ ( )t can be formulated as 
 

 

1

ˆ( ) ( ) ( ) ( 1) (measurement residual)

S( ) ( ) ( 1) ( ) (residualcovaraince)

( ) ( 1) ( ) ( ) (optimal Kalman gain)

ˆ ˆ( ) ( 1) ( ) ( ) (updated  parameter estimate)

( ) ( ) ( ) ( 1)

T

T

T

t Y t t t

t R t P t t

K t P t t S t

t t K t t

P t I K t t P t

 

 









   

  

 

    

   (updated  covaraince  estimate)Q

(20) 

 
3.2 Enhanced Linear Kalman Filter (EnLKF) for nonlinear rational model parameter 
estimation 
From previous results (Billing and Zhu 1991) and the brief in Section 2, the correlated errors 
are exist in formation of ( ) ( )Tt t  , ( ) ( )T t t  , and ( ) ( )t Y t . Therefore, the first step in 
deriving the EnLKF is to condense the above five equations in (20) into two equations, that is 
parameter update equation and covariance update equation by eliminating ( )t , K(t) and S(t) 
to make the three error contaminated terms explicitly expressed in the following equations. 

  
 

 

1

1

ˆ ˆ( ) ( 1) ( ) ( )

ˆ ( 1) ( 1) ( ) ( ) ( )

ˆ ˆ( 1) ( 1) ( ) ( ) ( ) ( ) ( 1)

ˆ( 1) ( ) ( ) ( ) ( ) ( 1)
ˆ ( 1)

( ) ( 1) ( )

( ) ( ) ( ) ( 1)

( 1) ( )( ) ( ) (
( 1)

T

T

T

T

T

t t K t t

t P t t S t t

t P t t S t Y t t t

P t t Y t t t t
t

R t P t t

P t I K t t P t

P t t t t P
P t



 

 

  

 



 





    

    

       

   
   

 

  


  

1)

( )

( 1) ( )( ) ( ) ( 1)
( 1)

( ) ( 1) ( )

T

T

t

S t

P t t t t P t
P t Q

R t P t t

 
 

 
 
 
  

      

(21) 

 
The expressions of (21) builds up a platform for EnLKF expansion. 
 
Consequently in the second step of the derivation, the extended Kalman Filter algorithm is 
developed with removing the three induced error terms. 
 

 2 2
1

2

2

ˆ( 1) ( ( ) ( ) ( ) ( )) ( ( ) ( ) ( ) ( )) ( 1))
ˆ ˆ( ) ( 1)

( ( ) ( 1) ( ) ) ( ( ) ( 1) ( ))

( ( 1) ( )( ) ( ) ( 1)) ( ( 1) ( )( ) ( ) ( 1))
( ) ( 1)

( ( ) ( 1)

T T
e d e

T T
e

T T
e

T

P t t Y t t p t t t t t t
t t

t P t t R t P t t

P t t t t P t P t t t t P t
P t P t Q

t P t

       

    

    
 

     
    

   

    
   

 2( ) ) ( ( ) ( 1) ( ))T
et R t P t t  

 
    

(22) 
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9

 
where  
 

1,

2( ) 0 0 ( ) ( )

Tn nnum

d ddent p t p t
 
 
  


   (23) 

 
The other associated updates are summarised below. 
 

 
 1

2 2 2

2 2 2

ˆˆ( ) ( ) ( 1)

ˆ ˆ( ) ( ) ( ) ( 1)

ˆ( )
ˆ( ) ( )

ˆ( )

1
ˆ ˆ ˆ( ) ( 1) ( )

1 ˆˆ ˆ( ) ( 1) ( )

T

n n

T

d d d

e e

b b

a t t t

b t p t t t

a t
e t y t

b t

t
t t e t

t
t

t t b t
t





 

 

 

   

 




  



  

 (24) 

 
where notation x̂  for the estimate of x . 
 
Remark 1: ENLKF (22) can be further meaningfully expressed as 
 

  





ˆ( 1) ( ) ( ) ( ) ( ) ( 1))
ˆ ˆ( ) ( 1)

( ) ( 1) ( )

( 1) ( ) ( ) ( 1)
( ) ( 1)

( ) ( 1) ( )

T

T

T

T

P t t Y t t t t
t t

t P t t R

P t t t P t
P t P t Q

t P t t R

  

 

 

 

   
    

 

      
   

(25) 

 
where 
 








2
1

2

2

2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( 1) ( ) ( ) ( 1) ( ) ( ) ( 1) ( )

( 1) ( ) ( ) ( 1) ( 1) ( ) ( ) ( 1) ( 1) ( ) ( ) ( 1)

e d

T T T
e

T T T
e

T T T
e

t Y t t Y t t p t

t t t t t t

t P t t t P t t t P t t

P t t t P t P t t t P t P t t t P t

   

      

      

      

 

 

    

       

 

(26) 
 
and 
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







( ) ( )

( ) ( )

( ) ( 1) ( )

( 1) ( )( ) ( ) ( 1)

T

T

T

E t Y t

E t t

E t P t t

E P t t t t P t



 

 

 

 
 
 
  
   
    

(27) 

are the unbiased estimates, that is, the correlated error terms embedded have been removed. 
This property has been proved in batch least square algorithms for rational model parameter 
estimation (Billing and Zhu 1991). For comprehensive understanding of the properties it can 
be referred to a survey paper (Zhu, Wang, Zhao, Li, and Billings 2015). 
 
Remark 2: Comparison with Extended Kalman Filter (EKF) and Linear Kalman Filter 
(LKF). The EnLKF is not formulated following the routes of EKF (for nonlinear models) and 
also it generalises classical linear Kalman Filters (for linear models) to directly deal with 
nonlinear rational models parameter estimation. The insight is explained below. 
 
EKF 
In principle, Kalman Filter is the optimal estimate for linear system models with additive 
independent white noise in both the transition and the measurement systems. In engineering, 
most systems are nonlinear, consequently EKF has been proposed for such nonlinear systems. 
The EKF adopts techniques from calculus, namely multivariate Taylor Series expansions, to 
linearize a model about a working point (Reif, Gunther, Yaz, and Unbehauen 1999). There 
has been some caution in using EKF, for example, optimal estimation, convergence, 
sensitivity to covariance matrix estimation. In general, EKF is highly computationally 
demanded due to the partial differentiation (Jacobian matrices) around approximation points. 
Although EKF can be used for rational model parameter estimation, it is at the expenses of the 
above mentioned problems (Extended Kalman Filter 2015). 
 
LKF 
Simply parameter estimates of rational model (while is converted into linear in the parameter 
expression, otherwise LKF cannot be applied to rational model parameter estimation directly) 
obtained using LKF do not converge to the true parameters due to the correlated errors 
between measured noise and those denominator regression terms. That is LKF is a biased 
estimator for nonlinear rational ration model parameters. As EnLKF is a general expression of 
LKF, it should be noted that EnLKF is also sensitive to the measured noise variance as the 
many other Kalman filters. EnLKF has not improved this critical property currently. In 
general, EnLKF shares similar convergent properties like LKF, an equivalent theorem on the 
convergence is proved in next subsection 3.3. The other equivalent properties between LKF 
and EnLKF should be properly addressed in the future studies. 
 
Remark 3: Comparison with Recursive Least Squares RM Parameter Estimator (RLSRMPE) 
and the other recursive parameter estimation algorithms. Compared with the formulations of 
RLSRMPE derived directly from batch least squares algorithm (Zhu and Billings 1991), 
EnLKF has simple and meaningful expression for each formulation. In the contrast, 
RLSRMPE uses twice of matrix lemma to derive the inverse of normal matrix, selection of 
forgetting factor is subjective or request experience from users. Compared with the other 
recursive parameter estimation algorithms, such as standard least squares (Soderstrom and 
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Stoica 1989, Ljung 1999), recently developed (Ding et al 2015, 2016), and neuro-fuzzy (Shi 
et al, 2015, Ganesh and Thanushkodi 2015, Li et al 2015), the algorithms mainly deal with the 
issues of linear in the parameter estimation no matter of the model regression variables linear 
or nonlinear. However, they have weak requests on the knowledge of covariance matrices Q 
and R, but many Kalman filter based algorithms are sensitive to the measurement noise 
variance, no exception for the EnLKF. It is possible for further research work to expand the 
EnLKF with more robustness to the variance variation. 
 
3.3 Convergence analysis of EnLKF 
In regarding to convergence analysis, this study takes an online convergence theorem (Rhudy 
and Gu 2013), which is proved with a modified well-known stochastic stability lemma (Reif, 
Gunther, Yaz, and, Unbehauen 1999), as a basis to extend for the EnLKF convergence 
analysis. 
 
Linear Kalman filter convergence theorem (Rhudy and Gu 2013): Consider a linear 
stochastic systems of the following standard form 
 

( ) ( ) ( 1) ( 1) (update model)

( ) ( ) ( ) ( ) (observation model)

x t F t x t w t

y t H t x t v t

   
 

 (28) 

 
Where ( ) nx t R  is the state vector, ( ) my t R  is the output vector, *( ) n nF t R  and 

*( ) m nH t R  are system matrices, ( 1) nw t R   and ( ) mv t R  are the process and measurement 
noise vectors that are zero mean, white, independent and have assumed covariance matrices 

( 1)Q t   and ( )R t  respectively. For this system, the corresponding classical Kalman Filter 
algorithm for the state estimate ˆ( )x t is formulated with standard set of equations (Rhudy and 
Gu 2013) Denote the estimation state estimation error as 
 

ˆ ˆ( ) ( ) ( ) (0) (0) (0)e ex t x t x t x x x     (29) 

 
Let the following assumptions hold. 
 

1) The system matrix ( )F t is non-singular (invertible) for all t. 
2) The assumed initial covariance is bounded. 

 
21(0) (0) (0) (0) (0)T

e e ex P x v x   (30) 

 
where (0)v is a constant 
 

3) The state error covariance matrix is bounded by the following inequality for all t. 
 

21( ) ( ) ( ) ( ) ( )T
e e ex t P t x t b t x t   (31) 

 
4) The assumed process and measurement noise covariance matrices are conservative, 

that is, 
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( 1) ( 1) ( 1)

( ) ( ) ( )

T

T

Q t E w t w t

R t E v t v t

     
   

 (32) 

 
Then the expected value of the estimation error is bounded in mean square with probability 
one by 
 

 
1 1

2 2

00 1

(0) 1
( ) (0) 1 ( ) ( i 1) (1 ( )

( ) ( )

t it

e e
ii j

v
E x t E x i t t j

b t b t
  

 

 

                
   (33) 

 
where the time varying parameters ( 1)t  , ( 1)t  and ( )b t are given by 
 

min

1
min

( 1) ( ( ))

( 1) ( ( ))

( ) ( ( ))

t C t

t Tr C t

b t P t

 


 

 
 


 (34) 

 
where operators min ( )P and ( )Tr P denote the minimum eigenvalue and trace of matrix P 

respectively, and 
 

   11 1( ) ( 1) ( 1) ( ) ( ) ( ) ( 1) ( 1) ( 1) ( ) ( ) ( ) ( 1)T TC t P t P t t R t t P t Q t P t t R t t P t   
           

 (35) 
 
Enhanced Linear Kalman filter convergence theorem: Consider a nonlinear stochastic 
systems represented by a rational model of (1) in conjunction with (2) and its Kalman filter 
equations of (19) in conjunction with (18), all the assumptions and conclusions for state 
estimation given in LKF (Rhudy and Gu 2013) are parallel equivalent with probability one for 
the parameter estimation of nonlinear rational models through EnLKF. 
 
Proof: This includes proving both notation equivalency and formulation equivalency. 

1) For notation equivalency, consider the following table to compare the notations used 
in LFF and EnLKF 

Model (28) for LKF Relationship = Model (19) for EnLKF 
( )x t   ( )t  
( 1)w t    ( 1)w t   
( )y t   ( )Y t  
( )v t   ( )e t  

( )ex t   ( )e t  

( )F t   
nI  

( )H t   ( )t  
 

Table 1 Notation equivalency between LKF and EnLKF 
 

2) For formulation equivalency, consider the following table to compare the formulations 
used in LFF and EnLKF 

 

Page 14 of 22

URL: http://mc.manuscriptcentral.com/tsys E-mail: ijss@sheffield.ac.uk

International Journal of Systems Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 
 

13

Formulation of (25) for LKF Relationship: = in 
terms of E[*] 

Formulation of (21) for EnLKF 

 ˆ( 1) ( ) ( ) ( ) ( ) ( 1)
ˆ ˆ( ) ( 1)

( ) ( 1) ( )

( 1) ( )( ) ( ) ( 1)
( ) ( 1)

( ) ( 1) ( )

T

T

T

T

P t t Y t t t t
t t

R t P t t

P t t t t P t
P t P t Q

R t P t t

  

 

 
 

   
   

 

  
      

 
   






ˆ( 1) ( ) ( ) ( ) ( ) ( 1))
ˆ ˆ( ) ( 1)

( ) ( 1) ( )

( 1) ( )( ) ( ) ( 1)
( ) ( 1)

( ) ( 1) ( )

T

T

T

T

P t t Y t t t t
t t

t P t t R

P t t t t P t
P t P t Q

t P t t R

  

 

 

 

   
   

 

      
   

 

 
Table 2 Formulation equivalency between LKF and EnLKF 

 
4 Model validation 
There have been two correlation function based model validity tests, one is higher order 
correlation functions (Billings and Zhu 1994, 1995) and the other is the omni-directional 
correlation functions (Zhu, Zhang, and Longden 2007). It should be noticed that all validation 
methods developed based on nonlinear models have included all linear model validation as 
their simplified cases. However, the linear model based validation test methods can and often 
do fail when applied to nonlinear model validation. 
 
In this study, to verify whether a model has been properly estimated, the higher order 
correlation function based tests are used as a terminating criterion. The two correlation 
functions are described below: 
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  (36) 

 
where  is the delay, N is data length, and 
 

1

___ ___
2 2 2 2

1 1

1
( ) ( ) ( ) ( )

1 1
( ) ( )

N

t

N N

t k

t y t t t
N

u u t t
N N

   

 



 

 

 



 
 (37) 

 
Where ( )y t  and ( )u t are the measured output and input sequences respectively, and 

ˆ( ) ( ) ( )t y t y t    is the residual, that is, the difference between measure output and model 
predicted output. When the higher order correlation functions )(2  e

 and )(2  u
 satisfy 
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 (38) 

 
the estimated parameters are considered to be unbiased. In practice the 95% confidence limits, 
about  N/96.1 , are used as the confidence intervals. 
 
Upon the parameters associated with the polynomials a(t) and b(t) having been estimated, the 
explicit output estimate y(t) can be determined and hence the residual ( )t . Therefore, the 
model validation procedure is still applicable to the developed algorithm. 
 
5 Simulation studies 
First of all, two simulated nonlinear rational model examples were selected to conduct bench 
tests of the EnLKF and compare with LKF. To generate the data for model parameter 
estimation, selected input ( ) ( 1,1)u t unif  , a uniformly distributed random sequence with 

zero mean and variance of 0.33 (equivalently with an amplitude range of 1) and noise 
(0) (0,0.01)e N , an uncorrelated Gaussian sequence with zero mean and variance of 0.01, 

which the input u(t) and the error e(t) were mutually independent in all cases. For each tested 
model, N = 1000 output data were generated with input and error stimulation through the 
model. The other initial setups included covariance matrix (0) 10000*P I , parameter vector 

(0) ( 1,1)unif   randomly selected without priori information, and 2 (0) 0e  for the 

simulations required to estimate the measurement noise variance. 
 
The first example was a simple noise free non-linear rational model. The purpose of testing 
this simple example is to investigate whether the parameter estimates are unbiased in the 
noise free case by both LKF and EnLKF. Further this demonstrates the feasibility to convert 
rational model into linear regression expression for parameter estimation. 
 
The second example was designed for the test of estimating model parameters from noise 
corrupted data. This demonstrates the necessity to revise classical linear approaches to 
accommodate the expenses or extra problems induced at converting nonlinear in parameter 
models into linear regression expressions. 
 
Finally, to demonstrate practical application of the theoretic results presented in the study, the 
third example, a propylene catalytic oxidation process model is selected, which is frequently 
operated in chemical engineering. 
 
Example one: A simple noise free non-linear rational model was considered as below 
 

2 2

0.3 ( 1) ( 2) 0.7 ( 1)
( )

1 ( 1) ( 1)

y t y t u t
y t

y t u t

   


   
 (39) 

 
For estimating the model parameters by Kalman Filters, expand model of (39) of its linear in 
the parameters expression below. 
 

2 2( ) 0.3 ( 1) ( 2) 0.7 ( 1) ( ) ( 1) ( ) ( 1)Y t y t y t u t y t y t y t u t          (40) 
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where ( ) ( )Y t y t  
 
Table 3 shows the estimates obtained by both LKF and EnLKF against true model 
parameters. Both filters generate unbiased estimates in noise free case. 
 
Associated regression 
terms 

LKF estimates EnLKF estimates True parameters 

1( ) ( 1) ( 2)np t y t y t    0.3 0.3 0.3 
)1()(2  tutpn  0.7 0.7 0.7 

1)(1 tpd  1.0 1.0 1.0 
)1()( 2

2  tytpd  1.0 1.0 1.0 

)1()( 2
3  tutpd  1.0 1.0 1.0 

 
Table 3 Estimates for Example 1 

 
Example two: A non-linear rational model with uncorrelated noise 
 

2 2

0.3 ( 1) ( 2) 0.7 ( 1)
( ) ( )

1 ( 1) ( 1)

y t y t u t
y t e t

y t u t

   
 

   
 (41) 

 
For estimating the model parameters by Kalman Filters, expand model of (41) of its linear in 
the parameters expression below. 
 

2 2

2 2

( ) 0.3 ( 1) ( 2) 0.7 ( 1) ( ) ( 1) ( ) ( 1) ( ) ( )

0.3 ( 1)* ( 2) 0.7 ( 1) ( ) ( 1) ( ) ( 1) ( )

Y t y t y t u t y t y t y t u t b t e t

y t y t u t y t y t y t u t t

         

         
 (42) 

 
where ( ) ( )Y t y t  
 
NB: y(t) included in the denominator regression terms, which induces correlated errors with 
measured noise. 
 
The test of the example was designed with two separate experiments 

1) With estimate error covariance matrix 810Q I  and measurement noise variance 
0.01R  . 

2) With 810Q I and guessed R. 
 
Table 4 shows the estimates obtained by both LKF and EnLKF with pre-known Q and R 
against true model parameters.  
 
The model validation tests of EnLKF are shown in Fig. 1. 
 
Associated regression 
terms 

LKF estimates EnLKF estimates True parameters 

1( ) ( 1) ( 2)np t y t y t    0.1637 0.3198 0.3 
)1()(2  tutpn  0.2923 0.7250 0.7 

1)(1 tpd  1.0 1.0 1.0 
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)1()( 2
2  tytpd  -2.0516 1.1413 1.0 

)1()( 2
3  tutpd  -0.3137 1.0866 1.0 

 
Table 4 Estimates with known R=0.01 for Example 2 

 
It can be observed that classical linear Kalman filter cannot be used for rational model 
parameter estimation with noise contaminated measurements even though it work for noise 
free cases as shown in example one. 
 
Table 5 shows the estimates obtained by EnLKF with two guessed R= 0.005 and 0.02 against 
true model parameters. Obviously none of them has acceptable estimates, which indicates the 
estimator, like the other Kalman filters, is very sensitive to the measured noise variance. 
Accordingly, users should be careful in applications. 
 
Associated regression 
terms 

EnLKF estimates, 
R=0.005 

EnLKF estimates 
R=0.02 

True parameters 

1( ) ( 1) ( 2)np t y t y t    0.1739 -0.3792 0.3 
)1()(2  tutpn  0.4061 -1.1198 0.7 

1)(1 tpd  1.0 1.0 1.0 
)1()( 2

2  tytpd  -1.2781 -11.0901 1.0 

)1()( 2
3  tutpd  0.0486 -5.0865 1.0 

 
Table 5 Estimates with guessed R for Example 2 

 
Example three: To illustrate application of the EnLKF algorithm for practical problems, a 
propylene catalytic oxidation process is selected, which is frequently operated in chemical 
engineering. The chemical model (Dimitrov and Kamenski 1991) is given as below. 
 

0.5
1

0.5
2

( ) ( )
( ) ( )

( ) ( )
o P

o P

k C t C t
r t e t

C t k C t
 


  (43) 

 
where two inputs )(tCO  and )(tCP  are the oxygen and propylene concentrations in mmol 1-1 at 
time instant t respectively, output r(t) is the rate of disappearance of propylene in mmol 

1(g,s) , and measurement noise ( )e t  is normally distributed subject to iid. k1 and k2 are the 
associated weights. 
 
To use the EnLKF algorithm, the original model of (43) was normalised as 
 

1

2 0.5

( )
( ) ( )

( )
1

( )

P

P

o

k C t
r t e t

C t
k

C t

 


  (44) 

 
To prepare the simulation studies, the parameters were setup with k1 = 0.5 and k2 = 0.231, the 
two inputs were setup with independently uniformly distributed sequences, 

( ), ( ) (1,3)o pC t C t unif  which has mean of 2 and variance of 0.33, and the measurement 

noise was setup with ( ) (0,0.01)e t N . Further the estimate error covariance matrix was setup 
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with 810Q I  and the measurement noise variance 0.01R  . The same as the first two 
examples, data length was fixed with 1000 points. 
 
Table 6 shows the estimates obtained by both LKF and EnLKF against true model 
parameters. Obviously LKF is not applicable even for such simple practical case. 
 
 
 
Associated regression 
terms 

LKF estimates EnLKF estimates True parameters 

( )oC t  0.3678 0.4981 1 0.5k 

( ) / ( )p oC t C t  0.0088 0.2286 2 0.231k   

 
Table 6 Estimates for Example 3 

 
In brief summary, this simple case study has illustrated a procedure to deal with practical 
problems. Especially model normalisation could be frequently used to transform various 
practical rational systems into proper formulisation for the application of the EnLKF 
algorithm. This study also indicates again that ordinary LKF is not applicable for the 
parameter estimation of nonlinear rational models. 
 
6. Conclusions 
This study represents a further advancement on nonlinear rational model identification. More 
importantly the study confirms again the author’s research hypothesis that many efficient 
methodologies/algorithms developed from linear models can be efficiently applied to deal 
with nonlinear model based analysis and design after properly changing the model 
expressions (NB, this is not linear approximation, the expression change has nothing in 
change of the model properties/characteristics. A generally parsimonious three step procedure 
developed from the author’s work is 1) convert underlying nonlinear model into a proper 
prototype to enable linear approaches basically applicable in structure, 2) identify the 
problems induced from the model conversion, and 3) then modify the linear ones to 
accommodate the problems induced from the model conversion. As another testimony of the 
research methodology, this study follows the procedure of 1) express nonlinear rational model 
into linear in parameters expression, 2) identify the inherent correlation errors between 
measurement noise variable and regressor terms, 3) revise LKF to accommodate the 
accumulated estimation errors. It should be noted that linear approximation is popular and 
widely used, but it gives approximation errors and creates largely computational complexity 
and demand due to the partial differentiation (Jacobian matrix, maybe plus Hessian matrix) 
around approximation points. This study is fundamentally different in treating nonlinear 
models for parameter estimation. Hopefully it can promote the less attended research 
methodology in dealing nonlinear system identification and control with linear approaches. 
 
Last, but not least, it should be pointed out that the EnLKF has the same problem as many 
others, that is, sensitive to the measured noise variance. It is hoped to receive counter 
examples and comments on the weakness of the EnLKF, therefore to strengthen the 
applicability of the EnLKF tool box. 
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Fig. 1 Model validation with 95% confidence limits for case 1 of example 2 using higher 
order correlation tests 
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