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Abstract

The stellar halo component of a galaxy contains a wealth of valuable in-

formation on the host galaxy’s formation history. As the diffuse outskirts

of galaxies which have been built up through hierarchical assembly, their

content and structure is directly tied to the material that was accreted onto

them over the course of the galaxy’s life. This thesis presents the results

of a study into the stellar halos of Milky Way (MW) type galaxies in the

EAGLE simulations.

Analysis was primarily carried out on two data sets from the EAGLE

simulations; one set of 352 galaxies (from the ‘Reference’ model) and 9 higher

resolution galaxies (from a ‘recalibrated’ smaller box size model). Galaxies

were selected with criteria of approximately the MW halo mass and a promi-

nent disc component. We find that EAGLE is able to reproduce a number

of observational properties of stellar halos, including the surface brightness

and density profiles. This lends weight to the suitability of cosmological

simulations to accurately model stellar halos, and in particular shows that

EAGLE is a good basis for deeper analysis of MW-mass disc galaxy stellar

halos.
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Negative metallicity gradients are ubiquitous in the galaxy samples anal-

ysed, with gradients in the range -0.002 to -0.02 dex kpc−1, consistent with

recent observations of M31. The gradient was found to be primarily driven

by the transition from high metallicity in situ stars to low metallicity ac-

creted stars with increasing radius, and sensitive to the simulation feedback

efficiency employed in the simulation. The in situ and accreted components

individually, however, do both have negative metallicity gradients. Observa-

tions of some galaxies, including the MW, find flat metallicity profiles, with

one proposed explanation being the tendency to observe along only the mi-

nor axis. Measuring along the minor or major axes in this simulated galaxy

sample does not explain the lack of gradients found in observational data

as we fail to reproduce any flat metallicity profiles. Altering the feedback

efficiency does, however, have an effect on the metallicity gradients, with

weak feedback resulting in shallower gradients.

The results are not strongly sensitive to the AGN subgrid parameters

adopted in the EAGLE simulations. When tested against runs with varied

stellar feedback efficiency, we find that the metallicity is affected by up to a

few tenths of a dex, with the Reference model having higher metallicity out

to around 40 − 50kpc. The density profiles were not altered significantly in

the regions analysed here, with only the central - bulge dominated - region

differing between model runs.

No correlation was found between the mass-metallicity relation of a

galaxy’s z = 0 satellite population and its stellar metallicity gradient, and

testing against two extreme EAGLE models showed that feedback strength

had no effect on the gradient of the z = 0 mass-metallicity relation. While
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strong and weak stellar feedback changed the absolute metallicity of galaxy

satellites, the overall mass-metallicity gradient remained the same.

The outer stellar halo fractions of galaxies in a wider mass range were

measured for comparison with recent observational stellar halo surveys and

found to be generally higher, with no galaxies having an undetectable stellar

halo unlike for certain galaxies recently observed. The stellar halo mass

fraction of EAGLE galaxies was found to be correlated with galaxy stellar

mass, with the mean fraction rising from 1% at M∗ ∼ 5× 109M� to 18% at

M∗ ∼ 5 × 1011M� . The sample has an overall mean halo mass fraction of

3%, ranging from 0.1% to 30%.

vi



Chapter 1

Introduction

Looking past the hundreds of billions of foreground stars contained within

our own Galaxy, the Milky Way (MW), we find that the universe is filled

with a diverse range of galaxies. From dwarf galaxies containing just tens

or hundreds of millions of stars, through to giant elliptical galaxies contain-

ing trillions, we are tasked with the challenge of finding a model that can

accurately describe a huge range of galaxy properties.

The currently favoured cosmological Λ-Cold Dark Matter (ΛCDM) model

explains that this diversity is a result of hierarchical assembly, with galaxies

building up over time through the accretion and merging of smaller galaxies.

A direct consequence of this evolution is the build up of material in a diffuse

and extended region around galaxies. This outer region - the stellar halo -

can aid in understanding the history of a galaxy, by serving in part as an

archaeological record of its merger history.

This chapter summarises the relevant work carried out so far to under-

stand galaxies’ stellar halos in an effort to gain broader understanding of

1



1.1. STELLAR HALOS 2

galaxy formation and evolution.

1.1 Stellar halos

Surrounding the majority of the stars in our Galaxy, which reside in the

disc and bulge components, an extended and diffuse stellar halo contains the

oldest and most metal-poor stars yet observed (Helmi, 2008). Beyond the

MW, stellar halos are now being observed in a range of galaxies of varying

distances, sizes, and types; the best observed of these being our neighbour

M31 (e.g. Ibata et al., 2014), with surveys such as GHOSTS (Radburn-Smith

et al., 2011) looking at other galaxies in the local volume (. 20 Mpc), or

investigating stellar populations in the outskirts of more distant galaxies up

to z ∼ 1 (Trujillo and Bakos, 2013). For distant observations, stellar halo

measurements must sometimes be made through stacking many galaxies due

to their faint brightness (Tal and van Dokkum, 2011; D’Souza et al., 2014).

Stellar halos are thought to be built at least significantly from stars

and gas accreted from external sources over the course of a galaxy’s life,

making the region a useful diagnostic tool for determining and analysing

their formation history. This material is assembled in part through the

accretion of satellite galaxies, which leave some or all of their stars in the

outer halo during a merger, and also through the kinematic heating and

ejection of disc stars to large radii.

As a result of the sparsity of stars in the halo, accreted material re-

mains coherent over long timescales at large radii, remaining detectable as

structures (or streams) long after accretion. Many studies have investigated



1.1. STELLAR HALOS 3

streams in the MW, for example, in order to build a coherent picture of the

Galaxy’s accretion history (Helmi et al., 1999; Bell et al., 2008; Grillmair

and Carlin, 2016)

For those satellite galaxies which have only recently been accreted into

a stellar halo, streams can be highly spatially coherent, able to be detected

clearly through their positions in space. After they have dispersed and

mixed, however, streams can still be detected via coherence in other param-

eter spaces, such as velocity, integrals of motion, and/or metallicity (e.g.

Helmi et al., 1999; Kepley et al., 2007; Klement et al., 2009).

The structure and properties of the stellar halo, including the shape

and stellar characteristics, can provide good evidence of formation scenarios

for the Galaxy (Freeman and Bland-Hawthorn, 2002), allowing a historical

picture to be built of how the Galaxy was formed.

The surface brightness or stellar density profiles of MW type stellar halos

are often characterised by their power law indices, with some best fit by a

single power law (e.g. M31) and others showing a break (e.g. the MW).

Investigating 6 MW-mass disc galaxies, Harmsen et al. (2017) measured

single power law density profiles with slopes between -2 and -3.7 along the

minor axes. With such a wide range of observations of surface brightness and

stellar density profiles, they make a good test for the accuracy of theoretical

models.

In theoretical work, Deason et al. (2013) - using the simulations of Bul-

lock and Johnston (2005) - investigated the density profiles of MW/M31

analogues, finding that simulated stellar halos also often (though not always)

have broken power law profiles. They present evidence that the reason for a
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break is related to the break radii of accreted star particle density profiles;

strong breaks imply that the galaxy’s accretion history is dominated by one

massive satellite, or that accreted satellites have similar radii, whereas no

strong break implies that the accreted stars are spread out in radius. Beers

et al. (2012), on the other hand, have argued that a broken density profile

is a result of a halo with two components (see Section 1.2).

Many stellar halos display a negative metallicity gradient to large radii.

One of the primary causes of such a gradient is thought to be the mass-

metallicity relation of accreted satellites; more massive satellites contain

more metal rich stars, and can sink further into the host galaxy before being

disrupted, while the less massive satellites deposit their lower metallicity

stars in the outer regions of the galaxy (De Lucia and Helmi, 2008; Tissera

et al., 2013). There is also a natural divide between the higher metallicity

stars being formed within a galaxy at generally low radius (in situ), and

the lower metallicity stars being deposited in its outer regions by satellites

(accreted).

Monachesi et al. (2016a) inferred metallicity profiles from color profile

measurements of 6 MW-mass disc galaxies in the GHOSTS (Galaxy Halos,

Outer disks, Substructure, Thick disks, and Star clusters) survey, finding

that half showed a negative gradient in their radial metallicity profile, with

the others approximately flat. In parallel to this finding, the Andromeda

Galaxy (M31) shows a clear negative metallicity gradient (Gilbert et al.,

2014) but there is little to no evidence for a negative gradient in the MW

(see Sections 1.3 and 1.2 respectively). These observations contrast with

the fact that metallicity gradients of Milky-Way type galaxies in recent
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theoretical studies are consistently negative.

While models which only consider accreted stars predict flat metallicity

profiles (Font et al., 2006; De Lucia and Helmi, 2008; Cooper et al., 2010),

cosmological simulations which also model the stellar component formed in

situ overwhelmingly predict negative metallicity gradients. In the cosmo-

logical hydrodynamical GIMIC simulations (Crain et al., 2009), Font et al.

(2011) found that negative gradients were ubiquitous in simulated MW-type

galaxy halos, with decreases of 0.6 − 0.9 dex between the inner (< 10kpc)

and outer (∼ 100 − 200kpc) halo regions. Tissera et al. (2014) simulated 6

Milky-Way mass galaxies, finding that all had negative metallicity gradients

in the range −0.008 < ∆[Fe/H] (dex kpc−1) < −0.002.

Theoretical metallicity profiles are usually measured through a spheri-

cal average, however observational measurements of disc galaxies are often

made along a particular axis (typically the minor axis, to avoid disc con-

tamination, e.g. Tanaka et al. 2010; Sesar et al. 2011; Gilbert et al. 2014).

Monachesi et al. (2016b) propose that this may be a factor in the discrep-

ancy between the ubiquity of metallicity gradients in simulations and the

assortment of profile shapes observed in the real Universe, by showing that

strong differences exist between the major and minor axis [Fe/H] profiles of

galaxies in the Auriga simulations.

Further work is needed to fully understand the cause of metallicity gra-

dients, to uncover what metallicity gradients can tell us about the formation

history of a galaxy, and to investigate the ongoing discrepancy between the

results of observational and theoretical studies. Here we will use the EA-

GLE simulations to investigate the shape and diversity of metallicity pro-
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files, correlation with other properties, and proposed explanations for the

inconsistency in metallicity profile results.

To gain a full understanding of stellar halos requires the use of models or

simulations in order to follow their formation over billions of years, and to

investigate the relative importance of different formation paths and physical

processes across a range of galaxy types. Many theoretical studies analyse

galaxies built up entirely from accretion events as a result of simulating

only dark matter particles, using a particle tagging system to designate

baryonic particles (e.g. Bullock and Johnston, 2005; Font et al., 2008; De

Lucia and Helmi, 2008; Cooper et al., 2010). Such an approach is useful for

investigating the effect of accretion events on a galaxy, but can introduce

a number of systematic errors (Libeskind et al., 2011; Bailin et al., 2014).

To fully investigate the roles played by different stellar halo components

requires the use of simulations that can accurately model baryonic physics

over a large volume of the Universe. Simulations of both individual high

resolution galaxies and larger statistical samples are needed if we are to

understand all aspects of the properties and formation histories of these

galaxies.

Font et al. (2011) showed that the contribution of stars born within a

galaxy (in situ stars) was an important factor when modelling stellar halos,

implying that accretion only models may not be representative. This study

showed that the broad properties of stellar halos can be better reproduced

when in situ stars are considered. The slopes of the density and metallic-

ity profiles were shown to be primarily driven by the change from in situ

dominated (. 30 kpc) to accretion dominated (& 30 kpc) regions.
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There is also ongoing disagreement between the stellar halo fractions of

theoretical models and observations, with models predicting higher stellar

halo fractions as a function of galaxy mass than observed (Harmsen et al.,

2017). Most notably, simulations fail to reproduce any galaxies with negligi-

ble or undetectable stellar halos. While this may indicate issues with either

set of data, there is a confounding issue of halo definitions not being entirely

unified. Observational definitions vary: Harmsen et al. (2017) define the

stellar halo as 3x the mass measured between 10 and 40kpc (the factor of

3 comes from calibration to models), and Merritt et al. (2016) define the

stellar halo as excess mass from a bulge+disk fit beyond 5 half-mass radii.

In simulations, the stellar halo is often defined kinematically, separating the

halo stars by their angular momentum (e.g. Font et al., 2011; McCarthy

et al., 2012; Tissera et al., 2013). Studies such as Cooper et al. (2015) and

Monachesi et al. (2016b) additionally remove the bulge, with a cut of R >

5kpc. Pillepich et al. (2015) opt for a spatial decomposition, defining the

halo as those stars not contained within a cylinder enclosing the galactic

disk. Though variation between some of these definitions are only distinct

in the inner regions, it may be important to consider the exact definitions

used when comparing results.

A large number of outstanding questions remain in the study of stellar

halos: How typical are the MW and M31, and how diverse are the stellar

halos of other galaxies? What is the typical fraction of a galaxy composed by

its stellar halo, and how should it be defined? Does the stellar halo have two

components, and if so how can they be detected? What can observational

measurements of stellar halos tell us about their host galaxy’s history? And
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what is the source of discrepancies between stellar halo observations and

simulations?

In investigating these questions we will primarily be comparing to data

of the MW and M31 galaxies, alongside data of galaxies of similar mass and

type, and so we provide an overview of these two galaxies here.

1.2 The Milky Way

As the galaxy in which we find ourselves, the Milky Way (MW) is a sensible

place to begin when testing theoretical models against observations. In this

work we will be primarily comparing the EAGLE simulations to galaxies

with mass and shape similar to that of the Milky Way.

Recent virial mass estimates for the MW lie in the region (0.8 - 1.3)

×1012M� (Rashkov et al., 2013; Kafle et al., 2014; McMillan, 2017), with a

stellar mass of ∼6 ×1010M� (McMillan, 2011; Licquia and Newman, 2015).

The MW stellar halo extends beyond 100kpc - well over twice the radius

of the galactic disk - and contains less than 1% (4 - 7 ×108M� ) of the

Galaxy’s total stellar mass (Bland-Hawthorn and Gerhard, 2016).

The three-dimensional shape of the MW halo is the subject of ongoing

investigation. Helmi (2008) provides a good overview of the relevant stud-

ies, which are summarised here. The stellar halo density profile is often

described, in a cartesian coordinate system, as:

ρ(x, y, z) = ρ0

(
x2 + y2

p2
+ z2

q2
+ a2

)n

rn0
(1.1)
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where n is the power-law exponent, q is the minor-to-major axis ratio, p is

the intermediate-to-major axis ratio, a is the (often left out) scale radius,

and ρ0 is the stellar halo density at a radius r0 (typically the solar radius).

A number of surveys have attempted to parametrize the MW stellar

halo density profile (Morrison et al., 2000; Robin et al., 2000; Siegel et al.,

2002; Jurić et al., 2008). These surveys find values of −3 < n < −2.4,

and 0.5 < q < 0.7, though it is worth noting that some studies argue for

parameters that change with radius, with different parameters for the inner

and outer halo, and others find asymmetries with respect to the line of sight

(e.g. Newberg and Yanny, 2006). Deason et al. (2011), however, find no

evidence for variation with radius, and caution that evidence for triaxiality

may be a result of streams.

In two dimensions, Deason et al. (2011) measured power law profiles for

the MW’s density profile of 2.3 (inner) and 4.6 (outer), with a break at

∼27kpc, and in the outer halo presented evidence for a steeper power law

index of ∼6 (Deason et al., 2014).

There is some evidence for a negative metallicity gradient across the

thin and thick disk components in the MW (Ivezić et al., 2008; de Jong

et al., 2010), however little to no evidence has been found for a metallicity

gradient in the halo. Xue et al. (2015) find some evidence for a decreasing

metallicity with radius in the outer halo, however Sesar et al. (2011) observed

a consistent [Fe/H] ∼ −1.5 ± 0.1 dex over the radius range 10 − 40kpc.

Evidence points towards the outer (& 20kpc) halo of the MW having

been primarily built via mergers (Newberg et al., 2002; Belokurov et al.,

2006; Bell et al., 2008) and Deason et al. (2015) found - through the anal-
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ysis of stellar population ratios - that the halo was likely built from a few

massive satellites rather than many smaller ones, though there is still some

evidence for a significant contribution by smaller halos (Clementini, 2010;

Frebel et al., 2010). It remains unclear what fraction of the inner (or lo-

cal) stellar halo was built through accretion. Through statistical arguments

based on observations of nearby halo stars, Gould (2003) estimate that there

could be as many as 400 streams in the inner stellar halo.

Observational and theoretical evidence has been presented arguing for

a ’dual halo’ in the MW. In such a model the stellar halo is built up from

two distinct components with different spatial distribution, kinematics, and

metallicities. Carollo et al. (2007) and Beers et al. (2012) claimed that the

MW showed two such components, with the inner halo having a net prograde

rotation and the outer halo a net small (or zero) retrograde rotation, though

this was contested by Schönrich (2011; 2014) who argued that those studies

suffered from selection biases and incorrect treatment of errors. McCarthy

et al. (2012), using GIMIC, presented theoretical motivation for two distinct

components, finding that galaxies in their sample often had an in situ com-

ponent with some prograde rotation, alongside an accreted component with

no net rotation. In recent work, Helmi et al. (2017) showed - using Gaia and

RAVE data - that a significant fraction of local halo stars were travelling

on retrograde orbits. An et al. (2013) found that the two components of

the MW halo (prograde and retrograde) had differing metallicities, with the

retrograde stars having poorer metallicity.

Rapid developments in our mapping and understanding of the MW halo

have taken place with the advent of large scale surveys including SDSS,
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2MASS, and QUEST (Ivezić et al., 2012). Further developments will be

forthcoming with the recent and upcoming Gaia mission data releases. Data

Release 1 has already resulted in a number of studies about, or with impli-

cations for, the MW halo (e.g. Deason et al., 2017; Helmi et al., 2017).

1.3 The Andromeda Galaxy (M31)

Our view of the MW is heavily restricted and obscured by our place within

it. We have a much clearer view, however, of the nearby Andromeda galaxy

(M31), which provides us with the opportunity for detailed study across an

entire galaxy of similar mass and type as our own.

M31 has a virial mass in the range (1 - 2) x1012M� (Tollerud et al.,

2012; Fardal et al., 2013; Peñarrubia et al., 2016) and stellar mass of (1 -

1.5) ×1011M� (Barmby et al., 2006, 2007; Tamm et al., 2012). The total

stellar halo mass is estimated to be 1.5 ±0.5 × 1010 M� (Ibata et al., 2014;

Harmsen et al., 2017)

M31 and the MW share a number of similarities including a similar

morphology and mass (Ibata et al., 2004). They are not, however, identical.

M31 has a higher luminosity, higher rotation speed, and larger size (with a

scale length approximately double that of the MW, Walterbos and Kennicutt

(1988); Ruphy et al. (1996))

The stellar halos of these two galaxies also suggest different formation

and/or growth histories. M31 has a stellar halo mass an order of magnitude

greater than that of the MW (Bell et al., 2008; Ibata et al., 2014), and a

higher mean metallicity of [Fe/H] ∼-0.7 (Gilbert et al., 2014).
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Gilbert et al. (2012) presented a surface brightness profile for M31 with

no break - unlike that found in the MW - with stars following a power law

with index -2.2 ± 0.2 out to ∼175kpc. Ibata et al. (2014) found that M31’s

surface brightness profile was well described by a single power-law fit, but

one which became steeper with increasing metallicity, from -2.3 ± 0.02 in

the range −2.5 < [Fe/H] < −1.7 to -3.72 ± 0.01 in the range −1.1 < [Fe/H]

< 0.

Gilbert et al. (2014) find a continuous metallicity gradient in M31 of

-0.01 dex kpc−1 between 9kpc and 100kpc, decreasing from [Fe/H] ∼ −0.4

within 20kpc to [Fe/H] ∼ −1.4 beyond 90kpc.

1.4 The EAGLE simulations

The EAGLE simulations are a suite of cosmological hydrodynamical sim-

ulations across varying box sizes (from 12Mpc to 100Mpc on a side), res-

olutions, and subgrid models; see Schaye et al. (2015, hereafter S15) for a

full overview. The simulations cover a range of box sizes and subgrid pa-

rameters, from 12cMpc to 100cMpc on a side and 1883 to 15043 particles of

dark matter plus an equal contribution of baryons. Simulations are denoted

as, for example, Ref-L0100N1504, which refers to a box with side length of

100cMpc and a total of 2 x 15043 particles, with the Reference set of subgrid

parameters. Reference (Ref) refers to the suite of simulations which share

a common set of subgrid physics parameters and numerical techniques that

best match the stellar mass function and key galaxy scaling relations. The

Recalibrated (Recal) simulations have had their subgrid stellar and AGN
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feedback parameters calibrated again as a result of resolution changes.

The EAGLE simulations assume cosmological parameters from Planck

Collaboration I (2014) and Planck Collaboration XVI (2014); Ωm = 0.307,

Ωb = 0.04825, h = 0.6777, and σ8 = 0.8288. Initial conditions using these

parameters were adopted (see S15 for full details), and the simulations were

evolved by a modified version of the N -body TreePM smoothed particle

hydrodynamics (SPH) code gadget3 (Springel, 2005). Data was output at

two time resolutions: 29 ’snapshots’ were recorded between redshifts 20 and

0, with a reduced set of data recorded in ’snipshots’ at 400 redshifts over

the same range.

Galaxies and their halos are identified by first using a friends-of-friends

(FoF) algorithm (Davis et al., 1985) on the dark matter particles, with stars,

gas, and black holes (BHs) associated to the FoF group of their nearest

dark matter particle. Subhaloes are then identified, using all particle types,

in these FoF groups using the SUBFIND algorithm (Springel et al., 2001;

Dolag et al., 2009). The central subhalo is defined as that containing the

particle with the minimum gravitational potential. This is typically the

most massive subhalo, and thus can generally be considered as the galaxy,

while non-central subhalos belonging to the FoF group can be considered as

satellite or merging galaxies.

The EAGLE simulations have been successful in reproducing a wide

range of observable galaxy properties, including their colours and bi-modality

(Trayford et al., 2015, 2016), the evolution of both the stellar mass func-

tion (Furlong et al., 2017) and galaxy sizes (Furlong et al., 2015), and the

co-evolution of stellar mass, SFR, and gas (Lagos et al., 2016).
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Table 1.1: Box size, particle number, baryonic and dark matter particle
mass for the EAGLE simulations used in this work.

Simulation L (cMpc) N mg (M� ) mdm (M� )

L0100N1504 100 2 x (1504)3 1.81 x 106 9.70 x 106

L0050N0752 50 2 x (752)3 1.81 x 106 9.70 x 106

L0025N0752 25 2 x (752)3 2.26 x 105 1.21 x 106

L0025N0376 25 2 x (376)3 1.81 x 106 9.70 x 106

Table 1.2: Values of the subgrid parameters that were varied in models used
here. fth controls the feedback efficiency and its dependencies, Cvisc defines
the black hole accretion disc viscosity, and ∆TAGN the AGN feedback energy.

Prefix fth-scaling fth,min fth,max Cvisc/2π ∆TAGN

log10 (K)

FBConst - 1.0 1.0 103 8.5
FBσ σ2DM 3.0 0.3 102 8.5
FBZ Z 3.0 0.3 102 8.5
Reference Z, ρ 0.3 3 100 8.5
AGNdT8 Z, ρ 0.3 3 100 8.0
AGNdT9 Z, ρ 0.3 3 100 9.0
StrongFB Z, ρ 0.6 6 100 8.5
WeakFB Z, ρ 0.15 3 100 8.5

This work primarily investigates the Recal-L0025N0752 and Ref-L0100N1504

runs. Recal-L0025N0752 has double the resolution per side compared to

Ref-L0100N1504, giving approximately 8 times the number of particles per

galaxy, allowing for high-resolution investigation with the caveat of fewer

galaxies due to the smaller box size. Ref-L0100N1504 allows the study of

a broader population of galaxies at the expense of individual detail. In

addition, Recal-L0025N0752 has been shown to produce a galaxy mass-

metallicity relation in better agreement with observational data (S15), par-

ticularly at lower stellar masses (M∗ . 1010M�), as a result of its higher
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feedback efficiency. This makes it the best choice for investigating EAGLE’s

MW-type stellar halos, a large fraction of which are built from low mass

satellites.

Table 1.1 provides details, including particle masses, for the main simu-

lation runs used here.

1.4.1 Subgrid physics

In addition to the reference and recalibrated model variations, simulations

with modified subgrid processes were also run to explore the sensitivity of re-

sults to the variation of these parameters (S15). The key subgrid parameters

involved in the variations analysed here are detailed in Table 1.2.

Star formation feedback efficiency is controlled by the fth parameter;

fth = 1 corresponds to an injected energy of 1.736×1049 erg M−1
� per stellar

mass formed. Hydrodynamical simulations provide an opportunity for this

feedback parameter to be specified based on the conditions local to a star

particle. Four primary feedback calibrated simulations were run for EAGLE,

with the first specifying a constant fth and the other three varying in the

range 0.3 < fth < 3 based on local properties:

• FBconst uses a fixed quantity of energy per unit stellar mass formed

(i.e. fth = 1 for all star particles); while this model reproduces the

observed z = 0.1 Galactic Stellar Mass Function (GSMF), it fails to

reproduce the observed sizes of disc galaxies.

• FBσ scales fth as a function of σ2DM , the velocity dispersion of dark

matter particles near the star particle, a proxy for the characteristic
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virial scale of the particle’s environment. This is motivated by the

corresponding effect of maximising the feedback efficiency in low-mass

galaxies while reducing it in massive galaxies. In order for this model

to fit the z = 0.1 GSMF, a higher subgrid viscosity for BH accretion

was required.

• FBZ provides a physical basis for varying fth, adjusting it with respect

to the local metallicity (Z). The effect is similar to that in FBσ, with

star particles in low mass galaxies having a greater feedback efficiency

due to the galactic mass-metallicity relation.

• Ref (or FBZρ) provides a scaling dependent on both the local metal-

licity and the density of the star’s progenitor gas particle, providing a

scaling relation with a form similar to that of FBZ, but stars formed

from higher (lower) density gas have a greater (lesser) feedback effi-

ciency. This form overcomes numerical losses present in the FBσ and

FBZ models.

Two models with more extreme feedback were also run, varying the

Ref-L0025N0376 model with much weaker and stronger feedback efficiency,

scaling the feedback function by 0.5 and 2. The WeakFB model adopted an

efficiency of 0.15 < fth < 0.6 and StrongFB an efficiency of 1.5 < fth < 6.

The median efficiency of all star particles formed prior to z = 0.1 in the

WeakFB, Ref, and StrongFB models are 0.38, 0.63, and 1.22, respectively.

All EAGLE halos with a mass greater than 1010M� contain a BH, which

is created from the highest density gas particle upon the halo reaching the

mass threshold. The BH accretes material over time through a subgrid
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model of an accretion disc. The viscosity of this accretion disc is set by

the Cvisc parameter, which controls the Bondi-Hoyle (1944) accretion rate;

higher Cvisc corresponds to a lower viscosity, slowing the growth of BHs. The

EAGLE reference model uses Cvisc/2π = 1, and variations of Cvisc/2π = 102

(ViscLo) and Cvisc/2π = 10−2 (ViscHi) were run.

The energy of the subsequent Active Galactic Nuclei (AGN) is deter-

mined primarily by the ∆TAGN parameter. A larger value of ∆TAGN re-

sults in more energetic feedback events but makes the feedback more in-

termittent. The reference model uses ∆TAGN = 108.5K, and variations of

∆TAGN = 108K (AGNdT8) and ∆TAGN = 109K (AGNdT9) were also run;

S15 found that AGNdT9 reproduced more accurately the gas fractions and

luminosities of galaxy groups.



Chapter 2

Stellar halos in EAGLE

In this study the EAGLE simulations are used to investigate the properties

of the stellar halos of galaxies of Milky Way (MW) mass and type.

One of the tests that the EAGLE simulations can be used to reliably

describe the formation history of galaxy stellar halos is to ascertain that the

properties of present day stellar haloes match those of the observed haloes of

galaxies. To investigate whether EAGLE reproduces observable properties

of stellar halos, we start by analysing galaxies with properties similar to the

MW and Andromeda (M31). These are among those galaxies with the best

available data with which to compare to. We will also compare our simulated

halos with those of other galaxies of similar mass and morphology.

2.1 Galaxy selection

The EAGLE simulations were not designed to reproduce the local group

(unlike, e.g., Fattahi et al., 2016), and so no galaxy exactly represents the

18
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MW. We therefore select galaxies with properties similar to those of the

MW. Here we use a selection criteria of total halo mass and circularity. The

primary criterion is a mass cut in the present day total (gas+stars+DM)

mass within r200 (the radius enclosing a mean density of 200 times the critical

density of the universe at z = 0). We use a mass range of 7×1011 < M200 <

3 × 1012M� to encompass the literature mass estimates for the MW and

M31 (Karachentsev and Kashibadze, 2006; Guo et al., 2010; Boylan-Kolchin

et al., 2013; Fardal et al., 2013). We apply this mass range cut to the FoF

mass (which includes the central galaxy and substructure) but do not include

bound substructure in the rest of the analysis presented here when referring

to the galaxy. After the mass cut the L0100N1504 and L0025N0752 samples

contain 1313 and 35 galaxies, respectively.

Unless otherwise noted, galaxies are aligned to have their stellar disc

on the x-y plane, by choosing the z-axis to align with the total angular

momentum of stars within 15% of the galaxy’s virial radius (typically around

35kpc). This cut is used to remove outer structures which may have been

recently accreted, such that the alignment primarily affects the disc and

bulge regions.

To select disc galaxies from our sample, we first follow the approach of

Stinson et al. (2010), which is based on the method of Abadi et al. (2003),

to denote stars as belonging to either the disc or spheroid. With the stellar

disc aligned perpendicular to the z-axis, we calculate the angular momentum

of each star particle perpendicular to the x − y plane, Jz, and compare it

with the angular momentum of a star particle on a corotating circular orbit

at the same radius, Jcirc. Whereas in Abadi et al. (2003) stars can only
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Figure 2.1: The probability distribution of Jz/Jcirc for one galaxy from the
L0025N0752 sample. The dotted line denotes Jz/Jcirc = 0.7, which is used
as our cut for separating disc and spheroid stars.

have Jz/Jcirc ≤ 1, the values here can extend beyond this limit because

this method assumes a simple spherically symmetric potential. We find

that there is no significant difference between this method and the similar

definition used by Sales et al. (2010) where stars are instead categorised by

their circular kinetic energy.

Figure 2.1 shows an example Jz/Jcirc distribution for a galaxy from the

L0025N0752 sample. Disc stars are defined with a cut of Jz/Jcirc > 0.7, and

spheroid with Jz/Jcirc < 0.7. In addition to this, we follow Cooper et al.

(2015) and approximately split the spheroid into halo and bulge components
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through a separation at 5kpc. This decomposition is not perfect - it is

certainly not the case that such hard divides separate the halo and disc or

halo and bulge stars. Overlapping Gaussians are likely to be more accurate.

Nevertheless, this simple decomposition appears to work well visually to

separate the disc and halo.

From these stellar classifications we then use the disc-to-total (where

total is total stellar mass) mass ratio (D/T) to select disc galaxies, using a

criterion of D/T > 0.4 (i.e. composed of greater than 40% disc stars). The

exact D/T cut is largely arbitrary, though Font et al. (2011) - studying the

GIMIC simulations - used cuts of 0.2, 0.3, and 0.4, and found that none of

their results changed substantially. Visually, using D/T > 0.4 for our galaxy

sample worked best to select galaxies with a clear disc, that are generally not

currently undergoing a major merger, and that had been aligned correctly

to the x-y plane (see Figure 2.2). Visually, the vast majority of galaxies are

correctly aligned, with just a few which appear to be mildly off-axis, likely

due to recent accretion events. Following the D/T cut, the samples contain

9 galaxies (26%) in Recal-L0025N0752 and 352 (27%) in Ref-L0100N1504.

Details of the average properties of these galaxies are shown in Table 2.1.

While the MW is not thought to have undergone any recent major merg-

ers, we do not set any constraint on the merger history of the galaxies se-

lected here beyond the side effect of the D/T cut, which tends to exclude

galaxies that have recently undergone a major merger.

Figure 2.3 shows the range of galaxy masses and virial radii for the two

simulation runs before and after applying the morphology cut. The left

column shows the number of galaxies for each simulation in bins of virial
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Figure 2.3: Virial radius (R200, left) and stellar mass (right) distributions
for the two galaxy samples presented here. Dark blue line and shaded region
represent the galaxy sample before and after applying the cut of D/T > 0.4
respectively.

radius (R200), and the right in bins of total stellar mass. The D/T cut does

not substantially alter the distribution of galaxies in terms of their radius

or mass.

2.2 Separating accreted and in situ stars

To investigate stars in stellar halos in detail it is useful to split the population

into two categories: those stars born within the central galaxy (in situ),

and those accreted through mergers. We first generate lists of dark matter
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Table 2.1: Mean stellar mass, virial radius, number of star particles, and
metallicity for systems selected by the mass and morphology cuts.

Simulation M̄∗ (M� ) ¯R200 (kpc) N̄ <[Fe/H]>

L0100N1504-Ref 3.25x1010 227 24585 -0.24
L0025N0752-Recal 2.47x1010 219 155120 -0.35

particles for each galaxy’s FoF group, and use the unique particle IDs to find

the FoF group in the previous output (snapshot or snipshot) that contains

the largest fraction of these particles, defining it as the progenitor. Using

this history of most massive progenitors, we can then go back through the

outputs to define our populations of in situ and accreted star particles. The

birth location of star particles is defined as the location of the gas particle

from which they formed in the last output before they became a star. Stars

born within the most massive subhalo of the FoF group (i.e. the central

galaxy) are defined as in situ, and all other stars are defined as accreted.

We make no further distinctions within these groups, such as splitting

the accreted group into those stars accreted smoothly or through a satellite,

nor whether the accreted star formed inside the satellite pre or post-infall,

but note that such sub-classifications can be informative (e.g. Pillepich et al.,

2015).

While with the L0025N0752 simulation we have the benefit of high time

resolution snipshots (over 400 outputs, see Section 1.4) for defining stellar

birth locations, for the L0100N1504 simulation the snipshots would be pro-

hibitively time consuming to process in this way. As our definition could

be greatly affected by the time resolution of our data, we first verify that

snapshots are able to correctly isolate accreted stars from those born in
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Figure 2.4: Median accretion profiles for the L0025N0752-Recal galaxies,
showing the fraction of stars present at z = 0 that were born outside the
central galaxy in radial bins. The red line shows the profile generated by
using high time resolution snipshots, and the blue line shows the profile
generated using the lower time resolution snapshots. Bottom panel shows
the difference in fraction of accreted particles detected with each data set.

situ by generating accretion profiles for both snipshots and snapshots for

the L0025N0752 simulation. Examining all galaxies in the sample we find

that snipshots and snapshots show mean accreted fractions (the fraction of

stars in the central galaxy at z = 0 which were accreted) of 12% and 13%,

respectively.

Figure 2.4 shows the median accretion profile in radial bins for selected

galaxies in the L0025N0752 simulation for both snapshots and snipshots,
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which can be read as low and high time resolution respectively. While

snapshots show a consistently higher fraction of accreted stars, the difference

is negligible out to around 60kpc. At radii greater than 60kpc the snapshots

misidentify up to around 10-15% of stars as accreted. Given that the overall

increase is low (1%), and that stars misidentified as accreted will be those

formed from gas recently accreted through a merger,1 we do not consider

this to be a hindrance for defining accreted stars in L0100N1504 using only

the snapshots.

2.3 Density and surface brightness profiles

Figure 2.5 shows surface density profiles (with the disc oriented face-on) for

the L0100N1504 galaxy sample along with observational data of MW mass

galaxies M81 (M∗ ∼ 1011M� ), NGC 2403 (M∗ ∼ 1010 M� ), NGC 1087

(M∗ ∼ 1010.4M� ), and NGC 7716 (M∗ ∼ 1010.5M� ). The EAGLE galaxies

agree well with NGC 1087 and NGC 7716 out to large radii, though the

density profile of NGC 2403 drops to lower values compared to the EAGLE

data set beyond ∼ 10kpc. M81 is close to the density profile of the highest

mass galaxies of our sample (grey line), which is to be expected given that

its mass is at the high end of our selected mass range; likewise for NGC

2403 dropping to lower densities and being at lower mass. The median

1It is possible that in one data output a gas particle is in a satellite galaxy which is
being accreted onto a central. Between outputs, this gas is accreted into the central, and
some time before the next output, becomes a star particle. Because of the way accreted
particles are defined here, the last known location of the particle is used; the star is defined
as having been formed in the satellite galaxy rather than the central and is therefore mis-
classified as accreted. Higher time resolution lessens this effect, and thus reduces the
accretion fraction to more accurate levels.
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Figure 2.5: Median face-on surface density profile for the L0100N1504-Ref
galaxy sample, taken along the x-y galaxy plane. Blue shaded region denotes
the 25th and 75th percentiles. The grey line represents the highest mass
galaxy in our sample. Also shown is data from the GIMIC simulation (Font
et al., 2011) and observational data of Milky-Way mass galaxies from Barker
et al. (2009, 2012) and Bakos and Trujillo (2012)

profile has a break at ∼20kpc, with the inner profile following a power law

of α = −2.1 ± 0.5 and the outer α = −4.0 ± 0.8 (Figure 2.6), keeping the

break radius density fixed. These indices are shallower than but consistent

with those measured for the MW by Deason et al. (2011).

Interestingly, the galaxies in the GIMIC simulation have a density profile

of a different shape than found here, with no obvious break and a signifi-
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Figure 2.6: Broken power law fit to the median surface density profile shown
in figure 2.5 with a break radius of 20kpc. Blue shaded region bounds the
power law errors.

cantly higher density at large radius.

Star particles were assigned luminosities by modelling simple stellar pop-

ulations for each star particle based on their mass, age, and metallicity. From

these luminosities, stellar brightness profiles can be derived.

Figure 2.7 shows surface brightness profiles of the L0100N1504 galaxy
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Figure 2.7: Surface brightness profiles in the i band. The red and blue lines
are the surface brightness profile along the major and minor axes respec-
tively. Also shown is surface brightness data of M31 from Gilbert et al.
(2012).

sample, including the spherical average, and along the major and minor

axes. Observational data of M31’s minor axis from Gilbert et al. (2012)

are super-imposed. M31’s minor axis surface brightness data are within the

range of our galaxy sample, and has a similar slope to that measured along

the minor axis of our galaxy sample, though slightly brighter overall.



2.4. METALLICITY DISTRIBUTION 30

2.4 Metallicity distribution

As described in Section 1.1, the stellar halo metallicity profile is a topic of

ongoing research, with some disagreement regarding the ubiquity of negative

metallicity gradients. To analyse this topic in detail, we first compute the

metallicity of each star particle as the logarithm of the ratio of its iron-to-

hydrogen mass fraction to that of the Sun (taken to be 0.00156, Guzik et al.

2005).

The median metallicity distribution of the two MW-mass galaxy samples

are shown in Figure 2.8, along with the distributions split into inner (<

30kpc) and outer (> 30kpc) regions. The outer galaxy regions are clearly

of lower metallicity, with significantly less high metallicity and more low

metallicity stars. The median [Fe/H] for all stars is -0.35 and -0.24 for

the L0025N0752 and L0100N1504 runs respectively, with the inner region

having a median of -0.31 and -0.21 and outer region -0.71 and -0.75. The

lower metallicity of the inner region in the L0025N0752 sample is likely a

result of the higher recalibrated stellar feedback efficiency.

Figure 2.9 shows the median spherically averaged metallicity profile and

scatter about the median for both galaxy samples. The mean of metallicity

in radial bins is computed to generate spherically averaged metallicity pro-

files for each galaxy. The median profiles are then the median of all profiles

in each bin. Also plotted are the measurements for M31 (with tidal debris

removed) by Gilbert et al. (2014).

As in the GIMIC simulation (Font et al., 2011), we find that metallicity

gradients are a universal feature of the simulated galaxy population. The



2.4. METALLICITY DISTRIBUTION 31

−3 −2 −1 0 1
[Fe/H]

10-5

10-4

10-3

10-2

10-1

100

P
 (
N
)

−3 −2 −1 0 1
[Fe/H]

10-5

10-4

10-3

10-2

10-1

P
 (
N
)

r<30 kpc

r>30 kpc

Figure 2.8: Median metallicity distribution functions for the L0025N0752
(top) and L0100N1504 (bottom) galaxy samples. Black line denotes all
stars, red is the inner region of the galaxy (< 30kpc), and blue is the outer
region (>30kpc). The dotted lines note the median for each region.

metallicity of these galaxies decreases continually from [Fe/H] = 0− 0.5 dex

down to nearly -1.5, and agrees well with the observational data of M31. The

metallicity and metallicity gradient of the outer (>30kpc) galaxy regions are

consistent between the two simulated samples, though the inner regions are

of higher metallicity in L0100N1504.
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Figure 2.9: Median spherically averaged stellar metallicity profile for galax-
ies in the L0100N1504 and L0025N0752 simulations. Solid lines denote the
median stellar metallicity profile for all stars, and the shaded region encloses
the 25th and 75th percentiles. Black triangles represent the M31 metallicity
measurements of Gilbert et al. (2014) with tidal debris removed.

The ubiquity of metallicity gradients in the EAGLE simulations is fur-

ther demonstrated in Figure 2.10. This shows the distribution of metallic-

ity gradients for the 352 MW-mass galaxies in the L0100N1504 simulation.

Gradients were measured using a simple linear fit between 10 and 90kpc for

comparison with Gilbert et al. (2014). We find that measuring gradients

out to 200kpc does not change the results substantially. It is clear that all

galaxies in our sample have an overall negative metallicity gradient, ranging

between -0.002 and -0.02 dex kpc−1. The metallicity gradient (between 10
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Figure 2.10: Distribution of metallicity gradients for galaxies in the
L0100N1504 Reference simulation. Gradients are measured with a linear
fit between 10 and 90kpc. Black dashed line is the gradient determined for
M31 from Gilbert et al. (2014).

and 90kpc) in M31 is -0.0101 dex/kpc, as measured by Gilbert et al. (2014).

This is shown in Figure 2.10 by the dashed line, positioned close to the

mean gradient value from EAGLE. In Section 2.6 we show that the metal-

licity gradient is strongly affected by the stellar feedback efficiency used in

the simulations.

While the L0100N1504 simulations can shed light on global properties

of these galaxies, mean and median profiles hide the detailed system-to-

system variation in metallicity profile shapes. Figure 2.11 shows individual
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Figure 2.11: Individual metallicity profiles for galaxies in the L025N0752-
Recal sample. Black line is spherically averaged, red and blue lines are
the profile as measured along a 8kpc wide major and minor axis mask re-
spectively. Sharp peaks or dips at high radius are a result of low number
statistics.

metallicity profiles for the 9 MW-mass disc galaxies in the higher resolution

L0025N0752 run. Here, a large variation in profile shapes can be seen, with

some galaxies declining in metallicity over their entire radial range, and

others with flatter profiles and a sharp drop. Metallicity profiles as measured

along 8kpc wide strips positioned along the major and minor axes of the

galaxy are also shown. While stars along the major axis are consistently

more metal rich than on the minor axis, the difference is small, and does

not lead to a substantial difference in the measured metallicity gradient.
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Figure 2.12: Metallicity ([Fe/H]) map for galaxy 26 from the L0025N0752-
Recal galaxy sample, with the galaxy viewed edge on. Red and blue lines
denote major and minor axes masks respectively, with solid lines bounding
the ’wedges’, comparable to that used by Monachesi et al. (2016b), and
dashed lines bounding the ’blocks’ used for major and minor masks used
in this work. It is clear that the highest metallicity stars are found in the
center, with metal poor stars outside.

Monachesi et al. (2016b), carrying out a similar analysis on the Auriga

simulations, found that measurements along a galaxy’s minor axis gave a

considerably flatter metallicity profile with lower median [Fe/H] values (as

much as 0.4 dex) as compared to a spherically averaged one.

One possible reason for the discrepancy between those results and this

work is the definition used for axes measurements. Here we use a mask 8kpc

wide at all radii for consistency with typical observational studies, whereas
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Figure 2.13: Median spherically averaged stellar metallicity profile for the
L0100N1504 sample, also showing in red and blue the profiles when limited
to stars born in situ and accreted respectively. Shaded regions indicate the
25th and 75th percentiles.

Monachesi et al. (2016b) use wedges widening with increasing radius from

the galactic centre (see Figure 2.12). Using wedges of similar size on the

galaxy sample presented here does further separate the major and minor

axis [Fe/H] values, but still does not result in a flattened metallicity profile

or significantly different metallicities for either.

Splitting all stars (bulge, disc and halo) into accreted and in situ com-

ponents can shed light on the origin of the metallicity gradient. In Figure
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2.13 median spherically averaged metallicity gradients for the in situ and

accreted components are presented. While both components consistently

decrease with radius, the in situ component does so with a larger gradi-

ent. The primary reason is the increasing fraction of stars that are accreted

versus in situ with radius (Figure 2.4), causing the overall profile to move

from the high in situ metallicities within ∼ 30kpc to being dominated by

the low accreted metallicities beyond ∼ 70kpc. While this provides some

explanation for the overall trend, it does not explain why the in situ profile

itself still has a negative gradient.

2.5 Subgrid physics

We conduct much of the same analysis as in the previous sections for the

L0050N0752 subgrid model variations to investigate the stellar halos’ sensi-

tivity to the varied parameters. The AGN temperature and accretion vis-

cosity parameters do not significantly alter the metallicity or density profiles

of the outer regions of these galaxies, implying that AGN feedback strength

is largely unimportant to the structure of the halo.

Figure 2.14 shows the median metallicity and density profiles for the

L0050N0752 FBconst, FBσ, FBZ, and Ref model variations (described in

Section 1.4.1). In the top panel the median spherical metallicity profile is

shown (using the same method as described in Section 2.4) for each feedback

run. The Reference run has the highest metallicity at all radii, most likely as

a result of its low median feedback efficiency (as compared to the other runs),

resulting in more metal-rich gas being retained within galaxies. The bottom
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Figure 2.14: Metallicity and density profiles for the L0050N0752 model vari-
ation galaxy samples. Top: Median spherically averaged [Fe/H] profiles.
Dotted lines denote 25th and 75th percentiles. Bottom: Surface density
profiles.
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panel shows surface density profiles for each model. These are considerably

more similar, except in the inner regions where galaxies in the Reference

model have higher densities.

2.6 Halo dependence on substructure

Figure 2.15 displays the mass-metallicity relation for redshift zero satellites

for both the L0025N0752 and L0100N1504 galaxy samples. Also shown

is observational data in the relevant mass range from SDSS observations

by Gallazzi et al. (2005) and for dwarf galaxies from Kirby et al. (2013).

The metallicity of EAGLE’s satellite galaxies is consistently higher than

the observed samples at all mass ranges (though note that S15 find better

agreement at higher masses than investigated here), though L0025N0752 is

a considerably better match below M∗ = 109.5M� as a result of the higher

feedback efficiency acquired through recalibration.

No correlation was found between the gradient of the mass-metallicity

relation of a galaxy’s z = 0 satellites2 and the strength of its radial metal-

licity gradient, even when limiting measurement of the metallicity gradient

to the accreted population.

We also test for correlation using two extreme models - the L0025N0376

WeakFB and StrongFB runs, which effectively scale the feedback efficiency

of the reference model by 0.5 and 2 respectively (see Section 1.4.1 for de-

tails). While these runs do not form realistic galaxies in the same sense as

2As measured by a simple linear fit, limited to galaxies with more than 5 satellites of
mass >107M�. This mass limit was chosen as satellites/subhalos less massive will only
be composed of a maximum of 10 stars in the L0100N1504 case.
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Figure 2.15: Stellar mass-metallicity relation for the z = 0 satellites of
each galaxy sample. Blue denotes the L0100N1504 sample, and red the
L0025N0752 sample. Also plotted is observational data of galaxies from
Gallazzi et al. (2005) and Kirby et al. (2013)

the other runs analysed here, in particular because they do not form disc

galaxies selectable by the criteria used for L0100N1504 and L0025N0752 (we

instead take all galaxies in the mass range), they are useful for clearly un-

covering the feedback dependency of broad galaxy properties. Figure 2.16
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Figure 2.16: Median stellar mass-metallicity relation for the z = 0 satellites
of the two extreme feedback runs. Green denotes the WeakFB sample, and
purple StrongFB. The shaded region encloses the 25th and 75th percentiles.

shows the mass-metallicity relation of galaxy satellites in these samples. It

is clear that the stellar feedback strength has a strong effect on the absolute

metallicity of halos in the sample, but the gradient of the mass metallicity

relation is largely unchanged. Figure 2.17 shows the slope of the stellar mass

metallicity relation of galaxy satellites in these samples plotted against the

central galaxy’s metallicity gradient. It is clear that the simulation’s stel-

lar feedback efficiency has a strong effect on galaxy metallicity gradients,

but little to no strong effect on the mass-metallicity gradient of their satel-

lites, only changing their absolute metallicity. By limiting the sample to the
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Figure 2.17: Galaxy radial metallicity gradient (y-axis) against the mass-
metallicity relation of that galaxy’s z = 0 satellites (x-axis). Green points
represent the WeakFB model, purple the StrongFB model.

same halos detected in both simulations, it is evident that while the feed-

back changes the mass-metallicity relation of a galaxy’s satellites, it does

not consistently make the gradient stronger or weaker for one run over the

other, with some galaxies having a stronger gradient in the stronger feedback

model, and an approximately equal number a weaker gradient.

While this is somewhat surprising, it would likely be more informative to

investigate correlation with the maximum stellar mass-metallicity relation

of the satellites from which a galaxy’s accreted population were deposited,
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rather than the z = 0 population (e.g. De Lucia and Helmi, 2008).

The simulation with weaker feedback efficiency does, however, predict

significantly shallower metallicity gradients compared to the strong feed-

back model. The likely cause is explained in more detail in S15, who found

that the WeakFB (StrongFB) model was able to retain more (less) metal-

rich gas owing to the weaker (stronger) outflows, with the effect being most

prominent at lower galaxy masses. In Section 2.4 we have shown that one

main cause of metallicity gradients is the transition from the in situ domi-

nated to accretion dominated regions. The in situ component of the overall

metallicity profile is likely relatively similar in the WeakFB and StrongFB

models, however the accreted component (built up primarily from lower

mass halos) will be more strongly affected, resulting in an altered overall

metallicity profile.

2.7 Outer stellar halo fractions

Recent observational studies have investigated the mass fraction of galaxies

contained in their stellar halo (Harmsen et al., 2017). Merritt et al. (2016)

measured the stellar halo fraction of 8 spiral galaxies in the Dragonfly Nearby

Galaxies Survey, finding a wide variety of outer halo fractions with a mean

value of 0.009 ± 0.005.

To investigate the stellar halo fractions for the galaxies in the EAGLE

simulations, we first widen the galaxy selection to include galaxies with

stellar masses of 5× 109 < M∗ (M� ) < 5× 1011, but keep the disc selection

criterion of D/T > 0.4. This widens the Ref-L0100N1504 sample to a total of
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Figure 2.18: Stellar halo mass fraction for a wider range of galaxy masses.
The stellar halo is defined as all stars beyond 5 half-light radii. The grey
dots are individual galaxies, and green region represents the median and
25th and 75th percentiles. Black dots are observational data from Merritt
et al. (2016). Values for NGC 1042, NGC 3351, and M101 are upper limits,
with mass fractions consistent with zero.

684 disc galaxies. For the purposes of this analysis we define the stellar halo

as stars beyond 5 half-light radii. The half-light radius (Rh) was measured

for each galaxy by recording the 2 dimensional radius containing half the

galaxy’s total luminosity.

Figure 2.18 shows the stellar halo mass fraction of this expanded sample

as a function of their total stellar mass. The sample has an overall mean halo

mass fraction of 3%, with the lowest fraction being 0.1% and the highest
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30%. The stellar halo mass fraction is correlated with total galaxy stellar

mass, rising from a mean fraction of 1% at M∗ ∼ 5 × 109M� to 18% at

M∗ ∼ 5 × 1011M� . These values, per our analysis in Section 2.2, are likely

to be somewhat higher than the true value as a result of the time resolution.

Also shown on this figure are 8 MW-mass galaxies from the Dragonfly

Nearby Galaxies Survey (DNGS, Merritt et al., 2016), whose stellar halo is

defined as excess mass from a disk+bulge fit. Only one of these (NGC 1084)

is consistent with the EAGLE data set, with two (NGC 2903 and NGC 4220)

on the lower edge of the simulated sample. EAGLE fails to reproduce any

galaxies with extremely low (. 10−3) outer halo fractions. It is worth noting

that the stellar halo definitions used are slightly different. Though both sets

of data define the halo beyond 5 half-light radii, DNGS additionally remove

mass assigned to the disk and bulge, which could explain the lower fractions

observed.



Chapter 3

Conclusions

This study has presented a study of stellar halos in the EAGLE simulation,

focusing on the properties of the halos belonging to Milky Way (MW) type

galaxies. A number of galaxy samples were analysed, focusing on a set

of 9 high resolution galaxies from the Recal-L0025N0752 simulation and

352 lower resolution galaxies from the Ref-L0100N1504 simulation, selecting

MW-mass disc galaxies.

EAGLE was found to reproduce a number of observable properties of

MW type galaxy stellar halos, including the density and surface brightness

profiles. When compared to a range of MW type galaxies, the median

surface density profile of EAGLE galaxies broadly covered the observations.

The profile had a break at ∼20kpc, and power law indices of αinner =

−2.1 ± 0.5 and αouter = −4.0 ± 0.8, consistent with those measured for the

MW by Deason et al. (2011). The median surface brightness profile was

also consistent with recent observations of M31, though more in line with

observations along the minor axis of EAGLE galaxies.
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Negative metallicity gradients were found to be present across our entire

galaxy sample, ranging from -0.002 to -0.02 dex kpc−1. These values are

consistent with both recent observations of M31 (Gilbert et al., 2014) and

previous hydrodynamical simulations (e.g. Font et al., 2011), but the ubiq-

uity is not consistent with observations (e.g. Monachesi et al., 2016a). By

splitting galaxy particles into accreted and in situ components, the negative

gradient was found to primarily be driven by the move from high-metallicity

stars born in situ to low-metallicity stars accreted through mergers. This

does not explain the gradients entirely, as both components also show nega-

tive gradients individually, but does appear to be a key piece of information

in understanding their cause.

In an effort to understand the origin of flat metallicity profiles observed in

some studies, simulation runs with extreme feedback models were also anal-

ysed. In these galaxy samples metallicity gradients correlated with feedback

strength; stronger feedback led to steeper gradients. This is thought to be

a result of the altered feedback efficiency affecting low mass halos primarily.

This demonstrates the importance of investigating the sensitivity of results

to the chosen subgrid parameters. As observations of stellar halos are often

taken along the minor axis, metallicity profiles along major and minor axes

were also analysed - no significant differences were found.

The results were tested against simulation runs with mildly varied sub-

grid physics (primarily AGN and feedback strength). No significant differ-

ence in the metallicity or density profiles was found through varying the

AGN feedback strength, which is not surprising given their lack of impor-

tance at this mass range. The metallicity is affected by up to a few tenths of
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a dex, however, with the Reference model having higher metallicity within ∼

40 - 50kpc as compared to models with less realistic feedback dependencies.

The relation between the mass-metallicity relation of a galaxy’s satel-

lites and its radial metallicity gradient was investigated, with no correlation

found between the z=0 mass-metallicity relation and radial metallicity gra-

dient, even when measuring only the gradient of accreted stars. This may

not be surprising, however, as the radial metallicity gradient would have

theoretically been created by the satellites which already accreted onto the

central, and thus investigating correlation with that population may prove

more informative. Testing this correlation using two EAGLE models with

extremely high and low feedback showed that the mass-metallicity relation

is not affected consistently by stellar feedback. While the radial metallicity

gradient changes in the presence of extremely strong or weak feedback, the

mass-metallicity gradient did not.

The outer stellar halo fraction (defined as mass beyond 5 half-light radii)

of galaxies in a wider mass range were measured for comparison with recent

stellar halo surveys. The stellar halo mass fraction of EAGLE galaxies was

found to be correlated with galaxy stellar mass, with the mean fraction rising

from 1% at M∗ ∼ 5× 109M� to 18% at M∗ ∼ 5× 1011M� . The sample has

an overall mean halo mass fraction of 3%, ranging from 0.1% to 30%. These

results were broadly inconsistent with stellar halo fractions measured in the

Dragonfly Nearby Galaxies Survey, though a possible confounding factor is

the slightly different outer stellar halo definitions used.



Chapter 4

Future Work

The results presented in this study can form the basis of future work in-

vestigating the stellar halos of galaxies in the EAGLE simulations. This

chapter outlines some potential avenues of study that would continue the

work detailed here.

4.1 Metallicity profiles

Disagreement remains between observations of stellar halo metallicity dis-

tributions and predictions from simulations. While observations detect neg-

ative metallicity gradients in only some galaxies, simulations - including

EAGLE - are consistently negative in the Milky Way (MW) mass range. In

this work it was shown that the simulation feedback strength plays a strong

part in the steepness of galaxy metallicity gradients, with stronger feedback

eliciting a steeper gradient. In further study there is scope to investigate the

gradient strength dependency further - what other mechanisms and inputs

49
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alter the strength and shape of metallicity gradients in the EAGLE simu-

lations? Does a galaxy’s merger history affect the metallicity gradient, for

example?

The diversity of metallicity profiles was shown here (Figure 2.11), but

not investigated in detail. Future studies could investigate what causes

one galaxy to have a metallicity profile that is mostly flat, with a short

and steep decline, while another smoothly decreases in metallicity from the

inner to outer regions. The origin of the in situ metallicity gradient was also

not investigated in detail. The accreted population can likely be explained

by the behaviour of accreted satellites, but the in situ population requires

a different explanation. Future work could investigate the origin of this

gradient, exploring avenues such as kinematic heating during mergers and

the migration of stars during their life.

Figure 2.15 showed the mass-metallicity relation of satellites of the galax-

ies analysed in the rest of this work. It may be more informative, however,

to investigate the relation - and its correlation with other properties - of the

satellites which were previously accreted into the galaxy. This is likely to

uncover more interesting results as it will have directly impacted the z = 0

galaxy properties.

4.2 Stellar halo diversity

This work has focused on disc dominated galaxies of approximately MW

mass. This is only a narrow window on galaxy populations as a whole,

however. Future study could apply the investigations carried out here to
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wider mass ranges, exploring the galaxy mass dependence to uncover new

insights. Comparisons between galaxies of different types (i.e. early vs. late

type), environments, and merger histories would may prove enlightening,

and could explain ongoing discrepancies between observations and theory.

It would also be informative to split some of the generalised results into

per-galaxy investigations, such as measurements of the density profile break

radii of individual galaxies (rather than the median profile) and quantifying

the shape of metallicity profiles.

4.3 Stellar halo fractions

Stellar halos are defined in varying ways from one study to the next, espe-

cially when comparing observations to theoretical data sets. Future work

could be done using the EAGLE simulations to explore these definitions and

come to a conclusion on how comparable they are.

By taking a data set from EAGLE (such as the ones analysed here),

and applying a range of observational and theoretical stellar halo definitions

to the same galaxies, a future study could investigate the stellar halo frac-

tions calculated through each definition. Such a study could conclude which

observational techniques are most reliable (since the simulation knows the

’true’ answer), as well as making recommendations for how to best com-

pare a theoretical (usually kinematic) definition of the stellar halo, with one

based on observational metrics.
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