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Abstract 
 
Background: `Herbal mixtures` containing synthetic cannabinoid receptor agonists 
(SCRAs) are promoted as legal alternative to marihuana and are easily available via 
the Internet. Keeping analytical methods for the detection of these SCRAs up-to-date 
is a continuous challenge for clinicians and toxicologists due to the high diversity of 
the chemical structures and the frequent emergence of new compounds. Since many 
SCRAs are extensively metabolized, analytical methods used for urine testing require 
previous identification of the major metabolites of each compound. 
Objective: The aim of this study was to identify the in vivo major metabolites of nine 
SCRAs (AM-694, AM-2201, JWH-007, JWH-019, JWH-203, JWH-307, MAM-2201, 
UR-144, XLR-11) for unambiguous detection of a drug uptake by analysis of urine 
samples. 
Method: Positive urine samples from patients of hospitals, detoxification and therapy 
centers as well as forensic-psychiatric clinics were analyzed by means of liquid 
chromatography-tandem mass spectrometry (LC-MS/MS) and liquid 
chromatography-quadrupole time-of-flight mass spectrometry (LC-qToF-MS) for 
investigation of the in vivo major metabolites. 
Results: For all investigated SCRAs, monohydroxylation, dihydroxylation and/or 
formation of the N-pentanoic acid metabolites were among the most abundant 
metabolites detected in human urine samples. Substitution of the fluorine atom was 
observed to be an important metabolic reaction for compounds carrying an N-(5-
fluoropentyl) chain. Dealkylated metabolites were not detected in vivo. 
Conclusion: The investigated metabolites facilitate the reliable detection of drug 
uptake by analysis of urine samples. For distinction between uptake of the fluorinated 
and the non-fluorinated analogs, the N-(4-hydroxypentyl) metabolite of the non-
fluorinated analog was identified as a useful analytical target and consumption 
marker. 
 
Keywords 
synthetic cannabinoid receptor agonists; metabolism; LC-MS/MS; aminoalkylindoles; 
clinical toxicology; forensic toxicology. 
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Introduction 
 
`Herbal mixtures` containing synthetic cannabinoid receptor agonists (SCRAs) have 
become a constant challenge for clinicians and toxicologists worldwide. New 
psychoactive substances (NPS) emerge frequently, in part, driven by implementation 
of control measures aiming at supply reduction [1-6]. However, a particular challenge 
encountered with the detection of SCRAs is the impressive diversity associated with 
the chemical structures and compound classes, which can make it difficult to keep 
analytical methods up to date. The development of methods used for the analysis of 
whole blood [7, 8], serum [9-14], hair [15, 16] or oral fluid [17-19] allows for the 
targeting of the parent compounds, whereas analytical methods used for urine testing 
require previous identification of the major metabolites since many SCRAs are 
extensively metabolized [12, 20-34]. Since the emergence of ‘first generation’ 
SCRAs, such as JWH-018 ((naphthalen-1-yl)(1-pentyl-1H-indol-3-yl)methanone) or 
JWH-073 ((1-butyl-1H-indol-3-yl)(naphthalen-1-yl)methanone) [35, 36], it has been 
observed that monohydroxylations, dihydoxylations and dealkylations are amongst 
the most commonly observed transformations followed by further oxidation to 
carboxylated products and conjugation [37]. During the last decade, the expansion 
into a wider range of chemically diverse chemical entities has resulted in the 
emergence of many new drugs on the NPS market [38-40]. However, despite this 
larger complexity, challenges can remain when faced with the identification of more 
‘established’ derivatives.  
 
This work presents an overview of major metabolites detected in human urine 
samples that originated from clinical/forensic casework involving the consumption of 
‘first’ and ‘second’ generation SCRAs. The SCRAs investigated in this study were 
JWH-007, JWH-019, JWH-203, JWH-307, UR-144, XLR-11, AM-2201, MAM-2201 
and AM-694 (Fig. 1).  
 
Material and Methods 
 
Chemicals and reagents 
 
Methanol and 2-propanol were of gradient grade and were obtained from J.T. Baker 
(Deventer, Netherlands) and Carl Roth (Karlsruhe, Germany). tert-Butyl methyl ether 
and ammonium formate were supplied by Sigma-Aldrich (Steinheim, Germany), 
formic acid by Carl Roth (Karlsruhe, Germany) and β-glucuronidase (expressed by 
Escherichia coli, 140 U/mg at 37 °C) by Roche Diagnostics (Mannheim, Germany). 
Deionized water was prepared with a cartridge deionizer from Memtech 
(Moorenweis, Germany). The reference standards including AM-2201 N-(4-
hydroxypentyl) metabolite, AM-2201 6-hydroxyindole metabolite, JWH-019 N-(6-
hydroxyhexyl) metabolite, JWH-019 5-hydroxyindole metabolite, JWH-122 N-(5-
hydroxypentyl) metabolite, JWH-122 N-(4-hydroxypentyl) metabolite, JWH-122 N-(5-
carboxypentyl) metabolite, UR-144 N-(5-carboxypentyl) metabolite, UR-144 N-(5-
hydroxypentyl) metabolite, UR-144 N-(4-hydroxypentyl) metabolite, UR-144 N-(5-
carboxypentyl) metabolite and XLR-11 N-(4-hydroxypentyl) metabolite were provided 
by Cayman Chemicals (Ann Arbor, USA). 
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Mobile phase A consisted of water with 0.2 % formic acid and 2 mmol/L ammonium 
formate and was freshly prepared prior to analysis. Pure methanol was used as 
mobile phase B. 
 
Authentic urine samples 
 
Drug positive urine samples were obtained from patients of hospitals, detoxification 
and therapy centers as well as forensic-psychiatric clinics. All samples were paired 
with serum samples sent to our laboratory for detection of designer drug abuse and 
showed positive results for at least one SCRA related to the ‘aminoalkylindole’ 
subclass. At least five urine samples corresponding to positive serum samples for 
each SCRA were screened for major metabolites.  
 
Urine sample preparation 
 
Urine samples were extracted using the protocol described by Hutter et al. [31]. In 
brief: Liquid-liquid extraction of 0.5 mL urine was performed with tert-butyl methyl 
ether at pH 9 after enzymatic cleavage of glucuronides. The organic phase was 
evaporated and reconstituted in 100 µL mobile phase A/B (50:50, v/v). 
 
Instrumentation and method 
 
 The extracted urine samples were analyzed by means of liquid chromatography-
tandem mass spectrometry (LC-MS/MS) and liquid chromatography-quadrupol time-
of-flight mass spectrometry (LC-qToF-MS). LC and MS settings were as described in 
a previous publication [31]. MassHunter Qualitative Analysis B.05.00 software was 
used for data analysis. 
Drug positive urine samples were screened for major metabolites of the SCRAs 
found in the corresponding serum samples applying a similar approach as described 
by Hutter et al. [31]. The investigation covered the following phase I reactions: 
monohydroxylation, dihydroxylation, further oxidation steps, dealkylation, 
dehalogenation, epoxidation followed by rearrangement or hydrolysis and 
combinations of these reactions. 
 
Results and Discussion 
 
For identification of the major metabolites of the different compounds the anticipated 
fragment spectra of the metabolites were considered, based on the fragmentation of 
the parent compound. The examination of fragment masses allowed for the 
localization of the functional group introduced by the respective metabolic phase I 
reaction. For all metabolites with reference material available, matching of the 
retention times was evaluated. However, as there was no reference material for 
many of the metabolites, the exact position of the functional groups remains unclear 
in these cases. 
 
(2-Methyl-1-pentyl-1H-indol-3-yl)(naphthalen-1-yl)methanone (JWH-007) 
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Figure 2 shows the multiple reaction monitoring (MRM) chromatogram (Fig. 2a) of a 
representative urine sample positive for metabolites of JWH-007 as well as the 
enhanced product ion spectra (EPI) of the parent compound (Fig. 2b) and its major 
metabolites (Fig. 2c-e). Two metabolites, carrying a hydroxyl group at the N-alkyl 
side chain, were detected as the most abundant metabolites in all analyzed urine 
samples (Fig. 2c). The fragment ion with a mass-to-charge ratio (m/z) of 244, which 
is 16 amu higher than the corresponding fragment ion m/z 228 of the parent 
compound, together with the unaltered indole fragment ion m/z 158 suggested 
hydroxylation at the N-pentyl side chain. Additionally, the N-pentanoic acid metabolite 
(Fig. 2d) originating from a further oxidation of the terminal hydroxylated N-alkyl side 
chain metabolite was detected among the major metabolites as well as a 
dihydroxylated metabolite (Fig. 2e), carrying both hydroxyl groups at the N-alkyl side 
chain. 
 
(1-Hexyl-1H-indol-3-yl)(naphthalen-1-yl)methanone (JWH-019) 
 
Two monohydroxylated and one N-hexanoic acid metabolites were identified as the 
major in vivo phase I biotransformation products of the SCRA JWH-019 (Fig. 3). Both 
monohydroxylated metabolites (Fig. 3c) with m/z 372 are characterized by unaltered 
naphthyl (fragment ions m/z 127, m/z 155) and indole moieties (m/z 144). The m/z 
372>155 (quantifier) and m/z 372>127 (qualifier) transitions have been employed for 
the detection of the JWH-019 5-hydroxyindole metabolite in a method development 
study on the analysis of a range of metabolites in urine [41]. In combination with the 
fragment ion m/z 244, which is 16 amu higher than the corresponding fragment ion of 
the parent compound (m/z 228), monohydroxylation at the N-alkyl side chain at 
different positions for both compounds is suggested. The third metabolite detected in 
high abundance is the N-hexanoic acid metabolite (Fig. 3d) formed by a further 
oxidation of the terminal monohydroxylated metabolite. JWH-019 differs from JWH-
018 in the length of the alkyl side chain only and the major metabolites of JWH-019 
are in good accordance with the major metabolites described for JWH-018. However, 
no indole-hydroxylated metabolite was detected among the major metabolites as 
reported for JWH-018 [31]. In analogy to JWH-018, where a decarboxylation reaction 
of the carboxylated metabolite leads to metabolites typical for JWH-073 [31, 42], 
metabolites typical for JWH-018 were detected in urine samples positive for JWH-
019 to a minor extent (data not shown). No JWH-018 was detected in the 
corresponding serum samples, therefore leading to the assumption that a 
decarboxylation reaction of the N-hexanoic acid metabolite of JWH-019 is 
responsible for the detected metabolites of JWH-018. By comparison with the 
available reference material the monohydroxylated metabolite eluting at retention 
time 8.0 min was identified as the JWH-019 N-(6-hydroxyhexyl) metabolite.  
 
2-(2-Chlorophenyl)-1-(1-pentyl-1H-indol-3-yl)ethan-1-one (JWH-203) 
 
The major metabolites of JWH-203 are depicted in Figure 4. Three 
monohydroxylated and one carboxylated compounds were detected as major 
metabolites. Two of the monohydroxylated metabolites (Fig. 4c) showed the same 
fragmentation pattern with unchanged indole (m/z 144) and 2-chlorobenzyl (m/z 125) 
moieties indicating hydroxylation at different positions of the N-alkyl side chain. In 
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both spectra the dehydrogenated fragment ion m/z 186 is more abundant than the 
fragment m/z 204 itself. The third monohydroxylated metabolite (Fig. 4d) shows 
hydroxylation at the indole moiety (m/z 160), which is not prone to further 
dehydrogenation reactions. Therefore, no fragment ion m/z 186 is detected in this 
case. In contrast, a predominant decarboxylated fragment ion (m/z 200) was 
detected in the spectrum of the N-pentanoic acid metabolite (Fig. 4e). As no 
reference standards for JWH-203 metabolites were available, further characterization 
of the monohydroxylated metabolites remains unclear. Interestingly, no 
dehalogenation was observed within the metabolic profiles of the analyzed urine 
sample. A comprehensive study on JWH-203 in vivo metabolism was also published 
by Kavanagh et al. whose results showed perfect accordance with the data obtained 
in this study [43].  
 
[5-(2-Fluorophenyl)-1-pentyl-1H-pyrrol-3-yl](naphthalen-1-yl)methanone (JWH-
307) 

 
A notable structural feature in the SCRA JWH-307 is a 2-fluoro-phenyl pentyl pyrrol 
moiety substituting of the indole moiety. Figure 5 shows the major metabolites 
detected in the human urine samples. One of the two monohydroxylated metabolites 
detected at the 2-fluoro-phenyl pentyl pyrrol moiety showed highest abundance (Fig. 
5a). In the ESI spectra (Fig. 5c) only the fragment ion m/z 230 was detected beside 
the unchanged naphthyl fragment ion m/z 155, deriving from a dehydrogenation of 
the theoretical fragment ion m/z 248 carrying the hydroxyl group. Further, a naphthyl 
dihydrodiol metabolite m/z 420 (indicated by the fragment ions m/z 189 and m/z 161) 
deriving from a hydrolysis of an epoxide intermediate was identified (Fig. 5d). The 
fragment ion m/z 171 is deriving from a loss of water of the fragment ion m/z 189 and 
a further elimination of CO leads to the fragment ion m/z 143. Additionally, two 
dihydroxylated metabolites were detected carrying the hydroxyl groups at the 
naphthyl (m/z 143 and m/z 171) and the 2-fluoro-phenyl pentyl pyrrol moiety 
(m/z 230), respectively. In comparison, Strano-Rossi et al. published an in vitro study 
about the identified phase I major metabolites of JWH-307 using rat liver slices [44]. 
They reported a monohydroxy, two ketone, one unsaturated and one dihydroxy 
compound to be the most abundant phase I metabolites identified. The supposed ω-
1 monohydroxy metabolite might be identical to one of the monohydroxy metabolites 
detected during our study, while the other four reported metabolites did not 
correspond to any major metabolites identified in our study. Furthermore, there was 
no dihydrodiol metabolite identified in vitro, which occurred in high abundance in vivo. 
This comparison shows that in vitro results can be extremely different from the actual 
human in vivo metabolic profiles and in silico or in vitro predicted phase I metabolites 
have to be confirmed by analysis of human urine samples.  
 
(1-Pentyl-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)methanone (UR-144) 
 
Studies on the chemical characteristics and in vitro and in vivo studies of the 
metabolism of the SCRA UR-144 have been reported previously [45-49]. UR-144 and 
its isomers with an altered tetra methyl cyclopropyl moiety were found in herbal 
mixtures as well as after thermal degradation and can be distinguished by their 
chromatographic behavior as well as by their differences observed in the product ion 
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mass spectra. No product ions typical for the tetra methyl cyclopropyl moiety 
(m/z 125 and m/z 97) were detected in the ESI mass spectra of the isomers of UR-
144 [45, 46]. Different metabolites monohydroxylated at the N-alkyl side chain, the 
indole moiety or the tetra methyl cyclopropyl moiety of UR-144, respectively, as well 
as two monohydroxylated metabolites of the ring opened isomer were reported to be 
most abundant in human urine samples. Before suitable reference materials were 
commercially available, a hydroxyindole and hydroxypentyl metabolite was identified 
qualitatively during the course of an acute intoxication [50]. Additionally, a 
monohydroxylated hydrated metabolite of the ring opened isomer was detected in 
urine samples with high abundance [45, 46]. In urine samples analyzed in our 
laboratory, four monohydroxylated metabolites were identified as major metabolites 
of UR-144. One monohydroxylated metabolite of the ring-opened isomer was the 
most abundant metabolite showing monohydroxylation at the N-alkyl side chain 
(m/z 230) (Fig. 6c). The open ring form is suggested since the product ions m/z 125 
or m/z 97 were not detected (Fig 6c). Additionally, two N-alkyl side chain 
hydroxylated metabolites (m/z 230) with an unaltered tetra methyl cyclopropyl ring 
indicated by the presence of m/z 125 (Fig. 6d) as well as a monohydroxylated 
metabolite at the tetra methyl cyclopropyl moiety (m/z 214) (Fig. 6e) were detected. 
Further chromatographic separation of the peak at 7.9 min and comparison with the 
reference material revealed two N-alkyl side chain hydroxylated metabolites, namely 
the UR-144 N-(4-hydroxypentyl) showing the higher abundance and the N-(5-
hydroxypentyl) metabolite (data not shown). Neither the parent compound UR-144 
nor the hydrated ring opened isomer or the ring opened isomer itself were detected in 
any of the urine samples. In summary, the results of our study are in agreement with 
the major metabolites reported in scientific literature [49, 51] and it was possible to 
confirm the structures of two of these monohydroxylated metabolites.  
 
[1-(5-Fluoropentyl)-1H-indol-3-yl](2,2,3,3-tetramethylcyclopropyl)methanone 
(XLR-11) 
 
The 5-fluoropentyl analog of UR-144, namely XLR-11, firstly appeared in herbal 
mixtures in November 2012 on the European market. In analogy to UR-144 in herbal 
mixtures as well as in serum samples a ring-opened isomer of XLR-11 can be 
detected beside the XLR-11 itself indicated by the lacking fragments m/z 125 and 
m/z 97 [52, 53]. Hence, a similar metabolism pattern to UR-144 is suspected (Fig. 7). 
In contrast to UR-144 the N-(5-hydroxypentyl) metabolite was detected with high 
abundance and only small traces of the N-(4-hydroxypentyl) metabolite of UR-144 
were found. Therefore, similar to what has been observed for AM-2201 and MAM-
2201 (see below), the N-(5-hydroxypentyl) metabolite can be used as a marker to 
distinguish between UR-144 and XLR-11 consumption [54, 55]. Only small traces of 
the ring opened isomer as well as the hydrated isomer m/z 348 and no XLR-11 were 
detected in any of the urine samples analyzed. Further studies performed by 
Wohlfarth et al., Kanamori et al., Nielsen et al., Jang et al. Cannaert et al. and Richter 
et al. showed comparable qualitative results [49, 51-53, 56, 57].  
 
[1-(5-Fluoropentyl)-1H-indol-3-yl](naphthalen-1-yl)methanone (AM-2201) 
 



 8 

First detected in 2011, fluorinated analogs of already known SCRAs appeared on the 
market. AM-2201, the 5-fluoropentyl analog of JWH-018 was detected in an herbal 
mixture in Europe in June 2011 for the first time. Metabolism of AM-2201 was already 
reported in previous studies [45, 54, 58-61] One 5-fluoropentyl chain and one indole 
hydroxylated metabolite of AM-2201 were identified as the major metabolites of AM-
2201 in our study (Fig. 8). Comparison of retention times of the identified compounds 
with the available reference material led to their assignment as the AM-2201 N-(4-
hydroxy-5-fluoropentyl) metabolite (Fig. 8c), one hydroxypentyl metabolite targeted 
for urinary analysis [61, 62], and the AM-2201 6-OH-indole metabolite (Fig. 8d), 
respectively. Interestingly, metabolites typical for JWH-018 were found among the 
major metabolites of AM-2201 even after oral administration of pure AM-2201 [54]. 
The abundance of the JWH-018 metabolites deriving from AM-2201 however was 
higher than those of the metabolites still carrying the fluorine atom (Fig. 9).  
 
[1-(5-Fluoropentyl)-1H-indol-3-yl](4-methylnaphthalen-1-yl)methanone (MAM-
2201) 
 
Simultaneously with AM-2201, the 5-fluoropentyl analog of JWH-122, called MAM-
2201, appeared on the European market. Major metabolites of JWH-122 showed 
monohydroxylation at the pentyl side chain, the naphthyl and the indole moiety with 
the pentyl hydroxylated metabolite showing the highest abundance [31]. 
Hydroxylations at the indole (Fig. 10c) as well as at the naphthyl moieties (Fig. 10d) 
were detected among the major metabolites in all urine samples investigated. 
Furthermore, the N-pentanoic acid metabolite was identified (Fig. 10e) which was 
further confirmed by comparison with the JWH-122 N-pentanoic acid metabolite 
reference material. Apparently, also in case of MAM-2201, a oxidative defluorination 
reaction leading to the metabolites of JWH-122 takes place in humans. In analogy to 
AM-2201, the JWH-122 N-(5-hydroxypentyl) metabolite but not the JWH-122 N-(4-
hydroxypentyl) metabolite, which is one of the major metabolites of JWH-122, was 
detected in the authentic urine samples (Fig. 10 peak f) [54]. JWH-122 was not 
detected in any of the serum samples corresponding to the analyzed urine samples 
supporting the suggestion that the metabolites of JWH-122 detected in the urine 
samples derive from biotransformation of MAM-2201. These observations are 
consistent with results from a metabolism study published by Jang et al. [55]. The 
MAM-2201 N-(4-hydroxypentyl) metabolite was detected and used for targeted 
analysis by Kronstrand et al. [63] and Knittel et al. [62].  
 
[1-(5-Fluoropentyl)-1H-indol-3-yl](2-iodophenyl)methanone (AM-694) 
 
The SCRA AM-694 is also characterized by the presence of an N-(5-fluoropentyl) tail. 
As there have been only a small number of urine samples with paired serum samples 
positive for AM-694 for confirmation of drug uptake the metabolism of this SCRA was 
investigated by a controlled self-experiment where an adult volunteer (45 year old 
Caucasian male, 75 kg) ingested 5 mg of pure crystalline AM-694 in a gelatine 
capsule orally. Urine samples were collected for the following days and analyzed as 
described above. The volunteer experienced no physical or mental effects at any 
stage of the experiment. The major metabolites of AM-694 detected in this 
experiment are depicted in Figure 11. Two metabolites hydroxylated at the N-alkyl 
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chain still carrying the fluoro atom were identified (Fig. 11c) as well as one metabolite 
formed by oxidative defluorination (Fig. 11d). Dehydration of the product ion at 
m/z 204 carrying the hydroxyl group led to the ion at m/z 186 that showed a higher 
abundance in the EPI spectra as the hydroxylated fragment ion itself. Furthermore, 
the N-pentanoic acid metabolite formed by further oxidation of the N-(hydroxypentyl) 
metabolite was identified (Fig. 11e). Since the analyzed urine samples derived from a 
self-experiment, where only pure AM-694 was ingested, these results along with 
observations within the metabolic patterns of the other fluorinated SCRAs above 
(AM-2201, MAM-2201 and XLR-11), confirm that oxidative defluorination takes place 
during biotransformation of these compounds in humans. The observations made 
were consistent with those reported by Grigoryev et al. [29] and Bertol et al. [64] who 
reported on the analysis of urine samples obtained from intoxication cases.  
 
Limitations of the study 
 
(I) Oxidative metabolism is mainly catalyzed by different CYP 450 isoenzymes as 
already shown for other SCRAs. Several CYP isoforms (e.g. CYP2D6 and 
CYP2C19) are known to be polymorphically expressed. This fact might influence 
individual metabolic profiles and could have clinical relevance e.g. in case of drug-
drug interactions. However, as our study mainly focused on the detection of SCRA 
use by urine analysis, we refrained from experimental identification of the 
isoenzymes involved in the metabolic reactions. Moreover, the abundance of 
detected drug metabolites depends on many other factors like consumption behavior 
(e.g. frequency and time period of consumption; route and amount of drug uptake) 
and time distance to the last drug uptake. However, reliable information about a 
subject´s consumption behavior or phenotype is lacking in most clinical or forensic 
cases. Whenever possible, individual variation of the metabolic profiles was taken 
into account by analysis of several positive urine samples. 
(II) Since commercial reference standards were not available for most metabolites, 
qualitative classification as ‘major’ or ‘minor’ metabolite was based on peak heights. 
Although similar response factors can be assumed for structurally similar phase I 
metabolites of a SCRA, differences in extraction efficiency, ionization efficiency, 
fragmentation efficiency, and matrix effects might strongly bias the signal intensities. 
 
Conclusion 
 
For all investigated SCRAs encountered during casework, monohydroxylation, 
dihydroxylation and/or formation of the carboxylic acid were among the main 
metabolic reactions according to the metabolites detected in human urine samples. 
For all SCRAs investigated carrying an N-(5-fluoropentyl) chain, a metabolic 
substitution of the fluorine atom was observed and in cases where reference material 
was available, these biotransformation products were identified as the N-(5-
hydroxypentyl) metabolite of the non-fluorinated analog, leading to common major 
metabolites of these analogs. In contrast, the highly abundant N-(4-hydroxypentyl) 
metabolites of the non-fluorinated analogs were not formed from the N-(5-
fluoropentyl) analogs and can therefore serve as a useful biomarker for distinction 
between uptake of the fluorinated and the non-fluorinated analogs. Dealkylated 
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metabolites were not detected by the applied EPI scan method in the in vivo 
samples. As reference standards for the metabolites of many aminoalkylindoles were 
not yet available at the time of these investigations, the exact positions of the 
hydroxylation sites remained unclear, although some of the positions might be 
suggested by considering relative retention time differences in comparison with 
known metabolic profiles of structurally related compounds.  
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Table 1: List of the major metabolites identified in human urine samples. 
Characteristic fragment ions, accurate masses and elemental composition are given 
for each metabolite. 

Metabolite and Monoisotopic Elemental Error Retention 
characteristic transitions accurate mass composition [ppm] time [min] 

AM-2201:     
Monohydroxylated N-alkyl chain    7.1 
  molecular ion [M+H]+ (m/z 376) 376.1707 C25H22FNO2 -0.7  
  fragment ion (m/z 155) 155.0484 C11H7O 4.81  
  fragment ion (m/z 127) 127.0537 C10H7 4.18  
  fragment ion (m/z 144) 144.044 C9H6NO 2.73  
Monohydroxylated indole moiety    7.3 
  molecular ion [M+H]+ (m/z 376) 376.1706 C25H22FNO2 0.36  
  fragment ion (m/z 248) 248.1077 C14H15FNO2 1.75  
  fragment ion (m/z 160) 160.039 C9H6NO2 1.92  
  fragment ion (m/z 155) 155.0488 C11H7O 2.22  
  fragment ion (m/z 127) 127.054 C10H7 1.8  
        
AM-694:      
Monohydroxylated N-alkyl side chain    6.4/6.6 
  molecular ion [M+H]+ (m/z 452) 452.0516 C20H20FINO2 0.28  
  fragment ion (m/z 231) 230.9293 C7H4IO 3.63  
  fragment ion (m/z 203) 202.9353 C6H4I -0.4  
Hydrolytically defluorinated   6.7 
  molecular ion [M+H]+ (m/z 434) 434.0611 C20H21INO2 0  
  fragment ion (m/z 231) 230.9296 C7H4IO 2.32  
  fragment ion (m/z 203) 202.9353 C6H4I -0.4  
  fragment ion (m/z 186) 186.1277 C13H16N 0.14  
  fragment ion (m/z 144) 144.0446 C9H6NO -1.47  
N-Pentanoic acid metabolite    6.5 
  molecular ion [M+H]+ (m/z 448) 448.0408 C20H19INO3 -0.87  
  fragment ion (m/z 244) 244.0969 C14H14NO3 -0.33  
  fragment ion (m/z 231) 230.9293 C7H4IO 3.63  
  fragment ion (m/z 203) 202.9357 C6H4I -2.38  
  fragment ion (m/z 144) 144.0446 C9H6NO -1.47  
       
JWH-007:     
Monohydroxylated N-alkyl chain    7.7/8.2 
  molecular ion [M+H]+ (m/z 372) 372.1961 C25H26NO2 -0.79  
  fragment ion (m/z 244) 244.1336 C15H18NO2 -1.62  
  fragment ion (m/z 158) 158.0604 C10H8NO -2.29  
  fragment ion (m/z 155) 155.0492 C11H7O -0.38  
  fragment ion (m/z 127) 127.0541 C10H7 1  
N-Pentanoic acid metabolite    7.5 
  molecular ion [M+H]+ (m/z 386) 386.175 C25H24NO3 0.18  
  fragment ion (m/z 258) 258.1131 C15H16NO3 -2.45  
  fragment ion (m/z 158) 158.0598 C10H8NO 1.53  
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  fragment ion (m/z 155) 155.0487 C11H7O 2.86  
  fragment ion (m/z 127) 127.0539 C10H7 2.59  
Dihydroxylated N-alkyl chain    6.9 
  molecular ion [M+H]+ (m/z 388) 388.191 C25H26NO3 -0.72  
  fragment ion (m/z 260) 260.1276 C15H18NO3 2  
  fragment ion (m/z 158) 158.0598 C10H8NO 1.53  
  fragment ion (m/z 155) 155.0492 C11H7O -0.38  
  fragment ion (m/z 127) 127.0541 C10H7 1  
        
JWH-019:      
Monohydroxylated N-alkyl chain    7.2/8.0 
  molecular ion [M+H]+ (m/z 372) 372.1958 C25H26NO2 -0.23  
  fragment ion (m/z 155) 155.0486 C11H7O 3.51  
  fragment ion (m/z 127) 127.0536 C10H7 4.97  
N-Hexanoic acid metabolite    7.0 
  molecular ion [M+H]+ (m/z 386) 386.1751 C25H24NO3 -1.67  
  fragment ion (m/z 155) 155.0488 C11H7O 2.22  
  fragment ion (m/z 127) 127.0537 C10H7 4.18  
        
JWH-203:     
Monohydroxylated N-alkyl chain    7.2/7.7 
  molecular ion [M+H]+ (m/z 356) 356.1412 C21H23ClNO2 0.13  
  fragment ion (m/z 125) 125.0147 C7H6Cl 4.47  
  fragment ion (m/z 186) 186.1271 C13H16N 3.38  
  fragment ion (m/z 204) 204.1379 C13H18NO 1.92  
  fragment ion (m/z 144) 144.0801 C9H6NO 0.53  
Monohydroxylated indole moiety    8.3 
  molecular ion [M+H]+ (m/z 356) 356.1412 C21H23ClNO2 -1.59  
  fragment ion (m/z 125) 125.0147 C7H6Cl 4.47  
  fragment ion (m/z 204) 204.138 C13H18NO 1.43  
  fragment ion (m/z 160) 160.0386 C9H6NO2 4.43  
  fragment ion (m/z 230) 230.1175 C14H16NO2 0.24  
N-Pentanoic acid metabolite    7.0 
  molecular ion [M+H]+ (m/z = 370) 370.1204 C21H21ClNO3 1.03  
  fragment ion (m/z 125) 125.0147 C7H6Cl 4.47  
  fragment ion (m/z 200) 200.1061 C13H14NO 4.47  
  fragment ion (m/z 144) 144.0809 C9H6NO 2.63  
  fragment ion (m/z 218) 218.1184 C13H16NO2 -3.89  
  fragment ion (m/z 244) 244.0965 C14H14NO3 -2.8  
        
JWH-307:     
Monohydroxylated 2-fluoro-phenyl pentyl pyrrol moiety   8.2/8.5 
  molecular ion [M+H]+ (m/z 402) 402.1864 C26H25FNO2 0.38  
  fragment ion (m/z 230) 230.1329 C15H17FN 4.6  
  fragment ion (m/z 155) 155.0484 C11H7O 4.81  
Dihydrodiol-naphthyl metabolites   8.1 
  molecular ion [M+H]+ (m/z 420) 420.1967 C26H27FNO3 0.59  
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  fragment ion (m/z 258) 258.1283 C16H17FNO 2.21  
  fragment ion (m/z 189) 189.0543 C11H9O3 1.7  
  fragment ion (m/z 171) 171.0437 C11H7O2 2.09  
  fragment ion (m/z 161) 161.06 C10H9O2 -1.84  
  fragment ion (m/z 143) 143.0491 C10H7O 0  
Hydroxylated at naphthyl and 2-fluoro-phenyl pentyl pyrrol moieties  6.9/7.2 
  molecular ion [M+H]+ (m/z 418) 418.1813 C26H25FNO3 -0.51  
  fragment ion (m/z 248) 248.1435 C15H19FNO 4.12  
  fragment ion (m/z 230) 230.1339 C15H17FN 0.24  
  fragment ion (m/z 171) 171.0435 C11H7O2 3.3  
        
MAM-2201:     
Monohydroxylated indole moiety    7.9 
  molecular ion [M+H]+ (m/z 390) 390.1863 C25H25FNO2 0.21  
  fragment ion (m/z 248) 248.1076 C14H15FNO2 2.16  
  fragment ion (m/z 169) 169.0644 C12H9O 2.33  
  fragment ion (m/z 160) 160.0392 C9H6NO2 0.66  
Monohydroxylated naphthyl moiety    7.5 
  molecular ion [M+H]+ (m/z 390) 390.1862 C25H25FNO2 0.47  
  fragment ion (m/z 232) 232.1128 C14H15FNO 1.81  
  fragment ion (m/z 185) 185.0596 C12H9O2 0.58  
  fragment ion (m/z 144) 144.0446 C9H6NO -1.47  
N-Pentanoic acid metabolite    7.8 
  molecular ion [M+H]+ (m/z = 386) 386.1747 C25H24NO3 0.96  
  fragment ion (m/z 169) 169.0647 C12H9O 0.54  
  fragment ion (m/z 144) 144.0444 C9H6NO -0.07  
  fragment ion (m/z 141) 141.0696 C11H9 1.98  
        
UR-144:     
Monohydroxylated N-alkyl chain of the ring opened isomer   7.9 
  molecular ion [M+H]+ (m/z 328) 328.2273 C21H30NO2 -0.59  
  fragment ion (m/z 230) 230.1176 C14H16NO2 0  
  fragment ion (m/z 144) 144.0441 C9H6NO 2.03  
Monohydroxylated N-alkyl side chain    8.3/8.8 
  molecular ion [M+H]+ (m/z 328) 328.2268 C21H30NO2 0.93  
  fragment ion (m/z 230) 230.1176 C14H16NO2 0  
  fragment ion (m/z 125) 125.0963 C8H13O -1.68  
Monohydroxylated tetra methyl cyclopropyl moiety   9.2 
  molecular ion [M+H]+ (m/z 328) 328.2272 C21H30NO2 -0.29  
  fragment ion (m/z 214) 214.1221 C14H16NO 2.54  
  fragment ion (m/z 144) 144.0447 C9H6NO -2.17  
        
XLR-11:     
N-Pentanoic acid metabolite of the ring opened isomer   7.8 
  molecular ion [M+H]+ (m/z 342) 342.2074 C21H28NO3 -3  
  fragment ion (m/z 244) 244.0977 C14H14NO3 -3.8  
  fragment ion (m/z 144) 144.0447 C9H6NO -2.2  
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Tetra methyl cyclopropyl carboxylic acid metabolite   7.6 
  molecular ion [M+H]+ (m/z 360) 360.1966 C21H27FNO3 0.9  
  fragment ion (m/z 232) 232.1136 C14H15FNO -1.5  
  fragment ion (m/z 144) 144.0447 C9H6NO -2  
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Figure 1. Chemical structures of the synthetic cannabinoids investigated. 
  

AM-694 JWH-203 JWH-307

UR-144 XLR-11

R1 R2 R3
AM-2201 5-fluoropentyl H H
JWH-007 pentyl methyl H
JWH-019 hexyl H H
MAM-2201 5-fluoropentyl H methyl
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Figure 2: MRM chromatogram of the urinary metabolites (a) and ESI(+) MS/MS 
spectra of the parent compound JWH-007 (b), the two metabolites monohydroxylated 
at the N-alkyl chain (c), the N-pentanoic acid metabolite (d) and the metabolite 
dihydroxylated at the N-alkyl side chain (e). The ion traces corresponding to the m/z 
values printed in bold are depicted in the MRM chromatogram. Different collision 
energies were used in MRM mode (a) and EPI mode (b)-(e). 
  

158

155

127

260

100 200 300 400
m/z, Da0

67
388.1

127.1

158.1

260.2 370.4

(e)

155.0

In
te

ns
ity

 x
 1

06
[c

ps
]

0

57
386.1

127.0

158.1
258.2

158

155

127

258(d)

155.0

5.0 6.0 7.0 8.0 9.0 10.0 11.00

4.3

Time, min

(a) 6.9 (e)
7.5 (d)

8.2 (c)

7.7 (c)

0

372.1

127.0

244.2

74

158.1

158

155

127

244(c)

154.9

158

155

127

228

0

5.8 155.2

356.5

127.1 228.4

(b)

158.2



 25 

 
Figure 3: MRM chromatogram of the urinary metabolites (a) and ESI(+) MS/MS 
spectra of the parent compound JWH-019 (b), the two metabolites monohydroxylated 
at the N-alkyl chain (c) and the N-hexanoic acid metabolite (d). The ion traces 
corresponding to the m/z values printed in bold are depicted in the MRM 
chromatogram. Different collision energies were used in MRM mode (a) and EPI 
mode (b)-(d). 
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Figure 4: MRM chromatogram of the urinary metabolites (a) and ESI(+) MS/MS 
spectra of the parent compound JWH-203 (b), the two metabolites monohydroxylated 
at the N-alkyl chain (c), the metabolite monohydroxylated at the indole moiety (d) and 
the N-pentanoic acid metabolite (e). The ion traces corresponding to the m/z values 
printed in bold are depicted in the MRM chromatogram. Different collision energies 
were used in MRM mode (a) and EPI mode (b)-(e). 
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Figure 5: MRM chromatogram of the urinary metabolites (a) and ESI(+) MS/MS 
spectra of the parent compound JWH-307 (b), the two metabolites monohydroxylated 
at the 2-fluoro-phenyl pentyl pyrrol moiety (c), a dihydrodiol metabolite at the 
naphthyl moiety (d) and the two metabolites dihydroxylated at the naphthyl and 2-
fluoro-phenyl pentyl pyrrol moieties (e). The ion traces corresponding to the m/z 
values printed in bold are depicted in the MRM chromatogram. Different collision 
energies were used in MRM mode (a) and EPI mode (b)-(e). 
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Figure 6: MRM chromatogram of the urinary metabolites (a) and ESI(+) MS/MS 
spectra of the parent compound UR-144 (b), the metabolite of the ring opened 
isomer monohydroxylated at the N-alkyl side chain (c), the two metabolites 
monohydroxylated at the N-alkyl side chain (d) and the metabolite monohydroxylated 
at the tetra methyl cyclopropyl moiety (e). The ion traces corresponding to the m/z 
values printed in bold are depicted in the MRM chromatogram. Different collision 
energies were used in MRM mode (a) and EPI mode (b)-(e). 
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Figure 7: MRM chromatogram of the urinary metabolites (a) and ESI(+) MS/MS 
spectra of the parent compound XLR-11 (b), the N-pentanoic acid metabolite of the 
ring opened isomer (c) and a tetra methyl cyclopropyl carboxylic acid metabolite (d). 
The ion traces corresponding to the m/z values printed in bold are depicted in the 
MRM chromatogram. Different collision energies were used in MRM mode (a) and 
EPI mode (b)-(d). 
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Figure 8: MRM chromatogram of the urinary metabolites (a) and ESI(+) MS/MS 
spectra of the parent compound AM-2201 (b), the metabolite monohydroxylated at 
the N-alkyl side chain (c) and the metabolite monohydroxylated at the indole moiety 
(d). The ion traces corresponding to the m/z values printed in bold are depicted in the 
MRM chromatogram. Different collision energies were used in MRM mode (a) and 
EPI mode (b)-(d). 
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Figure 9: MRM chromatogram of a human urine sample positive for AM-2201. 
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Figure 10: MRM chromatogram of the urinary metabolites (a) and ESI(+) MS/MS 
spectra of the parent compound MAM-2201 (b), the metabolite monohydroxylated at 
the indole moiety (c), the metabolite monohydroxylated at naphthyl moiety (d) and 
the N-pentanoic acid metabolite (e). The ion traces corresponding to the m/z values 
printed in bold are depicted in the MRM chromatogram. Different collision energies 
were used in MRM mode (a) and EPI mode (b)-(e).  
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Figure 11: MRM chromatogram of the urinary metabolites (a) and ESI(+) MS/MS 
spectra of the parent compound AM-694 (b), the two metabolite monohydroxylated at 
the N-alkyl side chain (c), the metabolite formed by hydrolytic defluorination (d) and 
the N-pentanoic acid metabolite (e). The ion traces corresponding to the m/z values 
printed in bold are depicted in the MRM chromatogram. Different collision energies 
were used in MRM mode (a) and EPI mode (b)-(e). 
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