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Abstract
Historically, forensic STR panels have been unsuccessful for population assignment due to the limited ancestry information that can be derived from the non-coding 
STR loci and the low number of loci included in the panel. However, given the recent adoption of expanded (16+ loci) and ‘mega-plex’ (23+ loci) STR panels, the 
ability to identify source population groups may be improved. This study assessed the impact of increasing locus number on population assignment under different 
analysis conditions using a published US population dataset comprised of individuals from the African American, Caucasian, Hispanic and Asian populations. The 
Bayesian clustering programme STRUCTURE was used to assess first, whether increasing the number of loci and the inclusion of known sample population data 
enabled greater resolution between the four populations in the dataset, and second, the utility for population assignment using criteria based on inferred ancestry 
scores. Results suggest that increasing the number of loci and including population of origin data allowed the identification of more distinct populations, with three 
primary populations being observed; African American, Asian, and Caucasian/Hispanic. The close grouping of the Caucasian and Hispanic populations is supported 
by their recently common ancestry from Western Europe. The ability of the programme to support population assignment to each of the four existing populations was 
assessed through the application of population and panel specific assignment thresholds based on the inferred ancestry scores obtained from the analysis programme. 
Predictive accuracy based on a training dataset of 984 individuals suggest that assignment accuracy is > 96% across the four populations and can reach 100% under 
some test conditions. The accuracy was > 90% when blind testing was performed on 40 ‘unknown’ individuals. As such, the approach described is considered within 
the acceptable range for a presumptive test and can be performed using data already collected as part of routine forensic investigations.  
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Introduction
Inference of the ethnic origin of a suspect from their DNA recovered 

from a crime scene sample can act as ‘investigative intelligence’ and 
help enforcement agencies concentrate their resources in the absence 
of any other suspect specific information. This idea is not new and has 
been explored extensively in the literature through the development 
and application of assignment approaches that use genetic markers 
to identify unique genetic groups or populations [1-3]. The specific 
identification of Ancestry Informative Markers (AIMs) panels that are 
particularly powerful at inferring ethnic origin has also been the focus 
of much research and the assessment of different classes of molecular 
marker has slowly moved from mitochondrial DNA (mtDNA) 
sequence variation, through autosomal and Y linked Short Tandem 
Repeat (STRs) markers to Single Nucleotide Polymorphisms (SNPs) [4-
8]. SNP markers are currently considered the most applicable for use 
due to deficiencies displayed by other markers; uniparental markers 
(mtDNA and Y-STRs) typically require large datasets to be useful while 
autosomal STRs are not considered informative by some researchers in 
numbers less than 50 [9].

A number of biogeographically informative SNP marker panels 
have been developed [9,10], and with the adoption of Massively Parallel 
Sequencing (MPS) as a resource in forensic genetics, commercial 
MPS forensic panels are available that amplify both traditional STR, 
Y-STR phenotypic and AIM markers in a single reaction run [11-13]. 
However, despite the promise of MPS and the development of AIM 
panels, the forensic genetics community continues to use traditional 
multiplex-PCR kits for the amplification and size separation of STRs 
through capillary electrophoresis (CE). Reasons for the slow adoption 

of MPS technologies include high per sample cost, increased processing 
time and uncertainty around data handling and ethics [13,14]. As such, 
laboratories continue to use CE approaches and have seen the number 
of loci included in commercial panels virtually double in the last five 
years. For example, the European standard set (ESS) now comprises 17 
STR loci and the American CODIS system comprises 20 core loci [15-
18], while both the commercially available GloablFiler and PowerPlex 
Fusion kits boast an impressive 22+ STR loci [19,20]. Consequently, 
the increasing number of STR loci may now enable better resolution 
between populations, thus making expanded and mega-plex STR kits 
suitable for genetic differentiation between populations [21] and the 
inference of ethnic origin. Such an approach would be useful if labs 
continue to use CE methods for the foreseeable future.

Population assignment requires the use of a mathematical model 
that groups an unknown individual to a putative population and can 
be used to detect dispersal, hybridization, genetic mixture, origin 
of specific individuals, population delineation and structure [22]. 
Common population assignment models include Bayesian assignment, 
frequency-based, and Bayesian clustering approaches. The Bayesian 
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assignment approach developed by Rannala and Mountain [23] 
calculates the posterior probabilities that a genotype is observed at a 
locus when the individual belongs to each putative population. The 
probability is then determined for each locus (assuming no linkage) and 
multiplied, and results are provided as the posterior probability with 
lower values indicating rarer events. This approach has been used in the 
detection of poaching hot-spots [24], differentiation between closely 
related species [25] and the identification of illegally translocated deer 
[26]. An alternative, frequency-based method developed by Paetkau 
et al., [27] calculates genotype likelihood ratios and determines the 
probability that the genotype groups with each population using Monte 
Carlo resampling. This approach has been used to assign individual dogs 
to their population of origin [28], identify livestock predators [29], and 
to detect fishing competition fraud [30]. These two approaches, popular 
in molecular ecology, have seen little application in human population 
assignment, where research has concentrated on the development 
of bespoke models [7,10,31]. Perhaps one of the most common 
approaches to investigate human population genetic differentiation 
is the Bayesian clustering method developed by Pritchard et al., [32] 
which uses multi-locus genotype data to infer the number of distinct 
genetic clusters (populations) based on the allele frequencies observed 
in each population. Individuals across the dataset are assigned to single 
populations, or to multiple populations if admixture is detected. This 
approach has been successfully used to map clines in human population 
genetic structure with geography [33-35]. 

This proof of concept research aims to establish whether the 
increased number of loci used in expanded and mega-plex STR panels 
improves assignment accuracy and asks whether there is scope for a 
‘presumptive’ population assignment test for forensic laboratories 
continuing to use CE based systems. 

Methods
Sample data

STR profiles from 1036 individuals previously reported in ref. 
[36,37] were downloaded from Promega (https://www.promega.
com/products/pm/genetic-identity/population-statistics/allele-
frequencies/). Samples with genotyping errors as highlighted by Steffen 
et al., [38] were removed from the analysis resulting in a final sample 
set of 1024 individuals. This final dataset represents four common 

American population groups; African American (AA; n = 338), 
Caucasian (Ca; n = 358), Hispanic (His; n = 232) and Asian (As; n = 
96). Genotype data were reformatted with new allele nomenclature (see 
supplemental Table 1) to allow for software analysis. Y-linked markers 
were removed from the dataset due to software input criteria, resulting 
in a panel comprising 30 autosomal STR loci. Separate input files were 
created to represent commonly used commercial STR profiling kits, 
each with a different number of STR loci; PowerPlex 16 (16 autosomal 
loci), AmpFlSTR NGM SElect (17 autosomal loci), AmpFlSTR 
GlobalFiler™ (22 autosomal loci, and excluding the DYS391 Y-linked 
locus) and PowerPlex Fusion (23 autosomal loci, and excluding the 
YINDEL Y-linked locus). 

Population structuring

The Bayesian clustering method STRUCTURE [32] was first used 
to identify the likely number of distinct genetic clusters (populations; 
K) existing in the data for each of the STR profiling kits. Two different 
analysis parameters (1 and 2) were initially tested to explore population 
structuring with and without the inclusion of known sample population 
data (Table 1). Each parameter set underwent five analysis iterations at 
each possible K (1-5). The optimal K was identified using three different 
approaches, avoiding the use of a single ad-hoc approach [32,39]: first, 
the highest mean log-likelihood value (lnPD) method outlined in ref. 
[32] was used; second, the ΔK method detailed in ref. [40] was calculated 
using the web-based STRUCTURE HARVESTER programme [41]; and 
third, the point at which the lnPD values begin to plateau as outlined 
in ref. [33]. CLUMPAK [42] was used to visualise the data. The use of 
the LOCPRIOR setting in parameter set two was shown to identify fine 
scale population differences more effectively and was selected for use 
when assessing population assignment. 

Population assignment

Assignment accuracy was assessed under the expected number 
of populations (K=4) using analysis parameter three (Table 1) for 
each of the five STR profiling kits under study. This parameter set 
included the use of the POPFLAG feature in STRUCTURE that 
allows the assignment of individuals of unknown origin to a dataset 
containing individuals of known origin. Ten random individuals from 
each population were labelled as ‘unknowns’ resulting in a total of 
984 known and 40 ‘unknown’ samples run using analysis parameter 

Analysis 
Parameter Purpose

STRUCTURE Software 
Conditions Estimated K using 3 methods

Run Conditions Population  
Model LOCPRIOR POPFLAG STR Panel and Locus 

number (n)
Hightest 

InPD ΔK Plateau 
InPD

1 Structure 
Identification

100k burnin, 
100k MCMC 

reps
Admixed No No

PowerPlex (16)
NGM Select (17)
Global Filer (22) 

PowerPlex Fusion (23) 
Combined Panel (30)

3
3
3
4
5

2
2
2
2
2

2
2
3
3
4

2 Structure 
Identification

100k burnkt. 
100k MCMC 

reps
Admixed yes No

PowerPlex (16)
NGM Select (17)
Global Filer (22) 

PowerPlex Fusion(23) 
Combined Panel (30)

3
4
5
4
4

2
2
2
2
2

2
3
3
3
3

3

Setting 
Population 
Assignment 
Criteria and 
Assessing

100k burnin, 
100k MCMC 

reps
Admixed yes yes

PowerPlex (16)
NGM Select (17)
Global Filer (22)

PowerPlex Fusion(23)
Combined Panel (30)

5
5
5
5
5

2
2
2
2
3

3
3
3
3
3

Table 1: Parameter Settings and estimated K for three different analyses using STRUCTURE
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set three. Predicted assignment accuracy was calculated based on the 
reduced data set of 984 individuals, which was used as a ‘training’ 
sample set to develop suitable acceptance criteria for assignment. To 
do this, the mean inferred ancestry scores for each individual from 
the five iterations when K=4 were calculated in CLUMPAK and the 
distributions for each population in each of the four clusters plotted. 
Assignment criteria for each population for each STR kit were then 
determined by setting a threshold for inferred ancestry score for each 
of the four genetic clusters. This approach is analogous to the setting of 
an analytical threshold to differentiate signal (true contribution) and 
noise (false contribution). Across the training dataset of 984 samples 
the number of individuals that were assigned to a single group using 
the defined criteria was calculated. An individual that satisfied all 
four criteria was given a score of four and categorised as either True 
Positives (TP) or False Positives (TP), while individuals that were given 
a scores of less than four were classified as True Negatives or False 
Negatives following the definitions supplied in Supplemental Table 2. 
Once categorised, these values were used to determine the predicted 
test sensitivity and specificity following the binary classification system 
outlined in ref. [43]. The ten randomly selected ‘unknown’ individuals 
from each population were then assessed to see how well they were 
assigned to the populations based on the defined criteria. 

Results and Discussion
The STRUCTURE analysis shows that the number of distinct genetic 

groups (K) identified varies depending on which method is used in the 
estimation (Table 1). The recommended method for interpreting the 
correct K using STRUCTURE is to not use a single add-hoc approach 
as they each have limitations [32,39]. The ΔK method outlined in ref. 
[40] is predicted to underestimate the number of distinct clusters, 
while taking the highest mean log-likelihood value (lnPD) is thought 
to overestimate. Using the plateau approach [32] generally identifies 
a K value between the two methods and was considered the most 

appropriate in this study. Using this method the number of clusters 
identified increases with locus number under STRUCTURE analysis 
parameter 1 with two distinct clusters identified for both PowerPlex 16 
and AmpFlSTR NGM Select (16 and 17 loci respectively), three clusters 
for GlobalFiler and PowerPlex Fusion (22 and 23 loci respectively), 
and four clusters for the combined panel of 30 loci. This is seen to a 
lesser extent in the results for parameter 2, with two distinct clusters 
identified for PowerPlex 16 and three clusters for the other four marker 
panels. Highest lnPD followed a similar trend of increasing K with 
number of loci and provided the greatest estimates of K, while ΔK 
showed little change across all analyses. An increase in the ability to 
identify more clusters with more loci was expected as it has previously 
been observed that using fewer markers reduces STRUCTURE’s ability 
to cluster into a higher number of populations as less genetic variation 
is observed [21,44]. Previous research has shown that the ability to 
distinguish between populations is improved with more markers but 
also as a function of how informative the loci are [40] and the presence 
of rare or private alleles [45]. 

There are slight differences in the returned K value for analysis 
parameter sets 1 and 2, with a higher K obtained with less loci for 
parameter set 2 using both the plateau and highest lnPD. Parameter set 2 
used the LOCPRIOR setting in STRUCTURE which allows the software 
to use information associated with the samples such as phenotype, in 
this instance the sample population of African American, Caucasian, 
Hispanic or Asian, to support the resolution of fine scale clusters [32]. 
Analysis under these parameters provided greater resolution to the 
inferred ancestry scores leading to more confidence in the population 
clusters (Figure 1), while not having a substantial impact on the number 
of clusters observed. For application in a forensic setting, the samples 
can be considered as a database containing samples of known origin 
allowing the use of the LOCPRIOR setting for population assignment. 

Genetic differentiation begins to be observed when K=2 with 
the African American population showing a distinct cluster while all 

Population Accuracy PowerPlex (16) NGMSelect (17) Global Filer (22) Power Plex Fusion (23) Combined Panel (30)

African
American

TP 328 328 328 328 328
TN 656 656 656 656 656
FP 0 0 0 0 0
FN 0 0 0 0 0

Sensitivity 100% 100% 100% 100% 100%
Specificity 100% 100% 100% 100% 100%

Caucasian

TP 348 348 348 348 348
TN 636 636 632 631 635
FP 0 0 4 5 1
FN 0 0 0 0 0

Sensitivity 100% 100% 100% 100% 100%
Specificity 100% 100% 99.3% 99% 99.8%

Hispanic

TP 222 222 222 222 222
TN 676 762 728 738 760
FP 0 0 34 24 2
FN 0 0 0 0 0

Sensitivity 100% 100% 100% 100% 100%
Specificity 100% 100% 96% 97% 99.7%

Asian

TP 86 86 86 86 85
TN 898 898 898 898 898
FP 0 0 0 0 0
FN 0 0 0 0 1

Sensitivity 100% 100% 100% 100% 98.8%
Specificity 100% 100% 100% 100% 100%

TP: True Positives, TN: True Negatives, FP: False Postives, FN: False Negatives. Sensitivity =TP/(TP4FN) and Specificity = TN/(TN4FP) calculated according to Ref. [43].

Table 2: Predicted accuracy of population assignment test for different STR panels
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other populations group as a single cluster (Figure 1). The next cluster 
to appear when K=3 is the separation of the Asian population from 
the Caucasian and Hispanic populations. This pattern is expected as 
human populations have their geographic origins in Africa, with 
dispersal first east through the Asian continent and then again later 
west through the European continent [46]. In addition, both the Asian 
and European populations are thought to have undergone population 
bottlenecks in their life histories [47] that will have led to variation 
in their allele frequencies. The grouping of Caucasian and Hispanic 
populations when K=3 can also be explained due to the admixed nature 
of the Hispanic population in America, which is derived from the influx 
of Europeans into the native population, and so shares recent common 
ancestry with the Caucasian population [48]. Differences between the 
Hispanic and Caucasian populations begin to emerge when K=4 and 5 
and is apparent for the 30-locus panel shown in Figure 1.

 Calculating the predictive accuracy of population assignment was 
performed on the 984 individuals analysed under parameter 3 using 
data for K=4 to enable assignment to the four known populations. 
While the STRUCTURE results provide most support for three clusters 
(although K=5 for highest lnPD), the distribution of inferred ancestry 
scores for the 30-locus panel shows there is some clear pattern of 
differentiation between the four populations over four clusters (Figure 
2). Threshold values, as shown for the African American population in 
Figure 2, were determined from these distributions and formed the four 
criteria for assignment to a population.

Thresholds set for each population for each kit were used to assess 
the predicative accuracy of the assignment test. Individuals satisfying all 
criteria were considered positive (true or false) and any single criteria 
not satisfied led to the individual being considered negative (true or 
false). The sensitivity and specificity for the test was calculated based on 
the number of true/false positive and true/false negative assignments 
across the 984 individuals (Table 2). For the 30-locus data set the 
thresholding mechanism described was able to correctly assign 99% 
of all individuals to the correct population. A high degree of accuracy 
(>96%) was also shown for the two commercial mega-plex panels and 
those with expanded core loci, suggesting that the approach detailed 
here is robust and repeatable across panels, with only small fluctuations 
in accuracy.

Using the same thresholds and assignment criteria described above, 
the 40 ‘unknown’ individuals removed from the ‘training’ dataset were 

assigned to each of the populations (Figure 3). The sensitivity of the 
assignment was > 90% for all the STR panels tested and with only 8 
false negatives observed; three for 30-locus panel, 1 for PowerPlex 
Fusion, 1 for GlobalFiler, 2 for NGM Select, 1 for PowerPlex 16. 
Specificity was greater than 99% with only 2 false positives observed; 
1 for PowerPlex Fusion, 1 for GlobalFiler. These observed levels align 
closely with the predicted values based on the training data. The few 
samples that were not correctly assigned were outliers that did not 

Figure 1. Stacked bar graphs for 1024 individuals for 30-locus panel showing inferred ancestry scores for population genetic clusters identified by different colours. IAS1 = Orange; IAS2 
= Light Blue; IAS3 = Green; IAS4 = Purple; IAS5 = Pink. Population sample data grouped showing African American (AA), Caucasian (Ca), Hispanic (His) and Asian (As). Parameter 2 
shows better differentiation between the genetic clusters and was used for setting threshold criteria for population assignment. 

Figure 2. Box and Whisker plots showing distribution of Inferred Ancestry Scores (IAS) to 
each of the four genetic clusters identified by STRUCTURE for the 30-locus panel. Where 
there is overlap in one distribution there is usually clear separation at another which allows 
the setting of a contingent threshold for each population for each cluster. The thresholds and 
examples values for the AA population are shown in red
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cluster with the inferred ancestry score distribution and so were failed 
based on the thresholds set. Although it is likely that such outliers will 
continue to be observed in the wider population, the training dataset of 
984 individuals is considered relatively robust and representative, and 
the thresholds can be refined to improve accuracy. It is important to 
consider that the accuracy is only based on the four test populations. 
The addition of further populations of interest is likely to reduce the 
accuracy as population genetic clusters become harder to distinguish, 
resulting in a wider distribution of the inferred ancestry scores. 
Furthermore, any individual from a population not represented in the 
dataset would still group with one of the populations in the absence of 
any representative of their own population. This is a common limitation 
to population assignment tests as they tend to assume all source 
populations are represented in the database. As such it is the authors 
opinion that this data be viewed as a test case for assignment rather 
than a usable approach for the identification of African American, 
Caucasian, Hispanic and Asian American individuals. Only with the 
addition of more population groups will the utility of the approach be 
truly understood. However, the high accuracy achieved would suggest 
there is merit in exploring the described application in more detail. 

The utility of a presumptive population assignment test such as that 
described here is important to consider in relation to other approaches. 
While there are better characterised panels of ancestry informative 
markers available, they have not all been commercialised into a quality-
controlled product and are not used as part of routine analysis by most 
forensic laboratories. Additionally, the adoption of MPS as an approach 
is still some years away for many laboratories. It therefore seems 
prudent to understand whether there is any further information that 
can be derived from the use of existing STR panels. It is also important 
to consider that enforcement agencies already attempt to infer ethnic 
origin using less reliable methods than that described here. Questions 
of suspect skin colour and race are commonly addressed through 
witness statements and CCTV, both with low accuracy and subject 
to conscious and unconscious bias [49-51]. For example, individuals 
providing eyewitness testimony’s can adhere to a phenomenon known 
as ‘own race/ethnicity bias’ which results in a larger percentage of 
correct identification of race when the individual is of the same race 
[52]. The first study to assess the accuracy of cross-racial identification 
between ‘Anglo’ (non-Hispanic white), ‘black’, and Mexican American 
individuals found that the correct ethnicity was assigned only 44.2% of 
the time [53]. The results of this ethnicity bias study underlines why eye 

witness testimonies are not viewed by jurors as highly reliable evidence 
[54], but also recognises there is a balance to be struck between accuracy 
and evidential strength. Novel genetic assays and tools developed for 
forensic science are typically expected to be extremely accurate, an 
expectation derived from the high discriminatory power observed when 
performing DNA profiling. However, the development and adoption of 
presumptive DNA tests for ‘rapid-intelligence’ [55,56] suggest that the 
reality is likely to be more nuanced. As such, the authors feel that there 
may be some merit to the consideration of a ‘presumptive’ population 
assignment approach similar to that described here. Other non-forensic 
applications of this approach may include the inference of ancestry for 
supporting biogeographic research [1]. Given that STR data for human 
populations are routinely collected and published online it seems likely 
that the approach described here can be initially used to support wider 
research into human life history.

Summary
This preliminary study demonstrates that population assignment 

is possible using expanded and mega-plex STR panel with >90% 
accuracy. This level of accuracy is in the range of a presumptive test 
and the analysis can be performed using existing STR data collected 
as part of routine criminal casework. The use of presumptive tests 
to inform investigative leads is common in forensic laboratories and 
enforcement authorities understand the limitations of such tests. 
As such it is considered that this approach may provide some useful 
insight into the ethnic origin of unknown individuals based on their 
crime scene profile. Before adoption, further research should look to 
include a greater range of population data to understand the true utility 
of this approach and to assess the reproducibility of the approach. To 
facilitate this, the authors have included the relevant allele coding in 
the supplemental material for other interested groups to perform their 
own analysis. Once optimised the approach can be compared to other 
existing population assignment methods described in the literature to 
compare performance. 
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Figure 3. Accuracy of five different STR panels when assigning unknown samples to each population (AA, CA, HIS, AS). T = True assignment, F = False assignment. Sensitivity and 
Specificity measures provided based on average across all four populations.
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